Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.383
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(26): 5739-5750.e17, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38070510

RESUMO

Conscious perception is greatly diminished during sleep, but the underlying circuit mechanism is poorly understood. We show that cortical ignition-a brain process shown to be associated with conscious awareness in humans and non-human primates-is strongly suppressed during non-rapid-eye-movement (NREM) sleep in mice due to reduced cholinergic modulation and rapid inhibition of cortical responses. Brain-wide functional ultrasound imaging and cell-type-specific calcium imaging combined with optogenetics showed that activity propagation from visual to frontal cortex is markedly reduced during NREM sleep due to strong inhibition of frontal pyramidal neurons. Chemogenetic activation and inactivation of basal forebrain cholinergic neurons powerfully increased and decreased visual-to-frontal activity propagation, respectively. Furthermore, although multiple subtypes of dendrite-targeting GABAergic interneurons in the frontal cortex are more active during wakefulness, soma-targeting parvalbumin-expressing interneurons are more active during sleep. Chemogenetic manipulation of parvalbumin interneurons showed that sleep/wake-dependent cortical ignition is strongly modulated by perisomatic inhibition of pyramidal neurons.


Assuntos
Eletroencefalografia , Parvalbuminas , Sono , Animais , Camundongos , Neurônios Colinérgicos/fisiologia , Lobo Frontal/metabolismo , Parvalbuminas/metabolismo , Sono/fisiologia , Vigília/fisiologia
2.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774681

RESUMO

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Assuntos
Doença de Alzheimer , Lobo Frontal , Microglia , Neurônios , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Microglia/patologia , Neurônios/patologia , Células Piramidais , Biópsia , Lobo Frontal/patologia , Análise da Expressão Gênica de Célula Única , Núcleo Celular/metabolismo , Núcleo Celular/patologia
3.
Cell ; 186(22): 4885-4897.e14, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37804832

RESUMO

Human reasoning depends on reusing pieces of information by putting them together in new ways. However, very little is known about how compositional computation is implemented in the brain. Here, we ask participants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI, we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational and compositional. With MEG, we find that replay assembles elements into compounds, with each replay sequence constituting a hypothesis about a possible configuration of elements. The content of sequences evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually converging on the correct configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compositional inference and hypothesis testing.


Assuntos
Hipocampo , Córtex Pré-Frontal , Humanos , Encéfalo , Lobo Frontal , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais , Córtex Pré-Frontal/fisiologia
4.
Cell ; 184(14): 3717-3730.e24, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214471

RESUMO

Neural activity underlying short-term memory is maintained by interconnected networks of brain regions. It remains unknown how brain regions interact to maintain persistent activity while exhibiting robustness to corrupt information in parts of the network. We simultaneously measured activity in large neuronal populations across mouse frontal hemispheres to probe interactions between brain regions. Activity across hemispheres was coordinated to maintain coherent short-term memory. Across mice, we uncovered individual variability in the organization of frontal cortical networks. A modular organization was required for the robustness of persistent activity to perturbations: each hemisphere retained persistent activity during perturbations of the other hemisphere, thus preventing local perturbations from spreading. A dynamic gating mechanism allowed hemispheres to coordinate coherent information while gating out corrupt information. Our results show that robust short-term memory is mediated by redundant modular representations across brain regions. Redundant modular representations naturally emerge in neural network models that learned robust dynamics.


Assuntos
Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Envelhecimento/fisiologia , Animais , Comportamento Animal , Cérebro/fisiologia , Comportamento de Escolha , Feminino , Luz , Masculino , Camundongos , Modelos Neurológicos , Córtex Motor/fisiologia , Neurônios/fisiologia
5.
Cell ; 181(2): 396-409.e26, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32220308

RESUMO

Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.


Assuntos
Lobo Frontal/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Adulto , Mapeamento Encefálico , Lobo Frontal/anatomia & histologia , Corpo Humano , Humanos , Córtex Motor/metabolismo , Movimento/fisiologia
6.
Cell ; 175(2): 472-487.e20, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146164

RESUMO

The dorsal raphe (DR) constitutes a major serotonergic input to the forebrain and modulates diverse functions and brain states, including mood, anxiety, and sensory and motor functions. Most functional studies to date have treated DR serotonin neurons as a single population. Using viral-genetic methods, we found that subcortical- and cortical-projecting serotonin neurons have distinct cell-body distributions within the DR and differentially co-express a vesicular glutamate transporter. Further, amygdala- and frontal-cortex-projecting DR serotonin neurons have largely complementary whole-brain collateralization patterns, receive biased inputs from presynaptic partners, and exhibit opposite responses to aversive stimuli. Gain- and loss-of-function experiments suggest that amygdala-projecting DR serotonin neurons promote anxiety-like behavior, whereas frontal-cortex-projecting neurons promote active coping in the face of challenge. These results provide compelling evidence that the DR serotonin system contains parallel sub-systems that differ in input and output connectivity, physiological response properties, and behavioral functions.


Assuntos
Núcleo Dorsal da Rafe/anatomia & histologia , Núcleo Dorsal da Rafe/fisiologia , Serotonina/fisiologia , Adaptação Psicológica/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Ansiedade/fisiopatologia , Encéfalo/fisiologia , Núcleo Dorsal da Rafe/metabolismo , Feminino , Lobo Frontal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Serotonina/metabolismo
7.
Nature ; 629(8011): 393-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632400

RESUMO

Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta-gamma phase-amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3-5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.


Assuntos
Hipocampo , Memória de Curto Prazo , Neurônios , Adulto , Feminino , Humanos , Masculino , Potenciais de Ação , Cognição/fisiologia , Lobo Frontal/fisiologia , Lobo Frontal/citologia , Ritmo Gama/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia , Lobo Temporal/citologia , Ritmo Teta/fisiologia , Pessoa de Meia-Idade
8.
Nature ; 632(8026): 841-849, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143207

RESUMO

Humans have the remarkable cognitive capacity to rapidly adapt to changing environments. Central to this capacity is the ability to form high-level, abstract representations that take advantage of regularities in the world to support generalization1. However, little is known about how these representations are encoded in populations of neurons, how they emerge through learning and how they relate to behaviour2,3. Here we characterized the representational geometry of populations of neurons (single units) recorded in the hippocampus, amygdala, medial frontal cortex and ventral temporal cortex of neurosurgical patients performing an inferential reasoning task. We found that only the neural representations formed in the hippocampus simultaneously encode several task variables in an abstract, or disentangled, format. This representational geometry is uniquely observed after patients learn to perform inference, and consists of disentangled directly observable and discovered latent task variables. Learning to perform inference by trial and error or through verbal instructions led to the formation of hippocampal representations with similar geometric properties. The observed relation between representational format and inference behaviour suggests that abstract and disentangled representational geometries are important for complex cognition.


Assuntos
Cognição , Hipocampo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/citologia , Cognição/fisiologia , Lobo Frontal/citologia , Lobo Frontal/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Aprendizagem/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Neurocirurgia , Lobo Temporal/fisiologia , Lobo Temporal/citologia , Adulto Jovem
9.
Nature ; 633(8030): 624-633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232159

RESUMO

Decades of neuroimaging studies have shown modest differences in brain structure and connectivity in depression, hindering mechanistic insights or the identification of risk factors for disease onset1. Furthermore, whereas depression is episodic, few longitudinal neuroimaging studies exist, limiting understanding of mechanisms that drive mood-state transitions. The emerging field of precision functional mapping has used densely sampled longitudinal neuroimaging data to show behaviourally meaningful differences in brain network topography and connectivity between and in healthy individuals2-4, but this approach has not been applied in depression. Here, using precision functional mapping and several samples of deeply sampled individuals, we found that the frontostriatal salience network is expanded nearly twofold in the cortex of most individuals with depression. This effect was replicable in several samples and caused primarily by network border shifts, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was stable over time, unaffected by mood state and detectable in children before the onset of depression later in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in frontostriatal circuits that tracked fluctuations in specific symptoms and predicted future anhedonia symptoms. Together, these findings identify a trait-like brain network topology that may confer risk for depression and mood-state-dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.


Assuntos
Mapeamento Encefálico , Corpo Estriado , Depressão , Lobo Frontal , Rede Nervosa , Vias Neurais , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Afeto/fisiologia , Anedonia/fisiologia , Mapeamento Encefálico/métodos , Mapeamento Encefálico/normas , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Depressão/diagnóstico por imagem , Depressão/patologia , Depressão/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Reprodutibilidade dos Testes
10.
Nature ; 628(8008): 648-656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538789

RESUMO

Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.


Assuntos
Envelhecimento , Núcleo Celular , Cromatina , Lobo Frontal , RNA , Análise de Célula Única , Idoso , Feminino , Humanos , Masculino , Envelhecimento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Núcleo Celular/genética , Senescência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Lobo Frontal/metabolismo , Perfilação da Expressão Gênica/métodos , Regiões Promotoras Genéticas , Locos de Características Quantitativas , RNA/genética , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Análise de Célula Única/métodos , Transcrição Gênica
11.
Annu Rev Neurosci ; 43: 231-247, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32084328

RESUMO

The claustrum is one of the most widely connected regions of the forebrain, yet its function has remained obscure, largely due to the experimentally challenging nature of targeting this small, thin, and elongated brain area. However, recent advances in molecular techniques have enabled the anatomy and physiology of the claustrum to be studied with the spatiotemporal and cell type-specific precision required to eventually converge on what this area does. Here we review early anatomical and electrophysiological results from cats and primates, as well as recent work in the rodent, identifying the connectivity, cell types, and physiological circuit mechanisms underlying the communication between the claustrum and the cortex. The emerging picture is one in which the rodent claustrum is closely tied to frontal/limbic regions and plays a role in processes, such as attention, that are associated with these areas.


Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Claustrum/anatomia & histologia , Vias Neurais/fisiologia , Animais , Gânglios da Base/anatomia & histologia , Claustrum/fisiopatologia , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/fisiologia
12.
Nature ; 608(7922): 381-389, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896749

RESUMO

Working memory-the brain's ability to internalize information and use it flexibly to guide behaviour-is an essential component of cognition. Although activity related to working memory has been observed in several brain regions1-3, how neural populations actually represent working memory4-7 and the mechanisms by which this activity is maintained8-12 remain unclear13-15. Here we describe the neural implementation of visual working memory in mice alternating between a delayed non-match-to-sample task and a simple discrimination task that does not require working memory but has identical stimulus, movement and reward statistics. Transient optogenetic inactivations revealed that distributed areas of the neocortex were required selectively for the maintenance of working memory. Population activity in visual area AM and premotor area M2 during the delay period was dominated by orderly low-dimensional dynamics16,17 that were, however, independent of working memory. Instead, working memory representations were embedded in high-dimensional population activity, present in both cortical areas, persisted throughout the inter-stimulus delay period, and predicted behavioural responses during the working memory task. To test whether the distributed nature of working memory was dependent on reciprocal interactions between cortical regions18-20, we silenced one cortical area (AM or M2) while recording the feedback it received from the other. Transient inactivation of either area led to the selective disruption of inter-areal communication of working memory. Therefore, reciprocally interconnected cortical areas maintain bound high-dimensional representations of working memory.


Assuntos
Córtex Cerebral , Retroalimentação Fisiológica , Memória de Curto Prazo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Lobo Frontal/citologia , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Neocórtex/citologia , Neocórtex/fisiologia , Optogenética , Recompensa , Córtex Visual/citologia , Córtex Visual/fisiologia , Percepção Visual
13.
Nature ; 601(7891): 139-143, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880495

RESUMO

The abnormal aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in neurons and glia is the defining pathological hallmark of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and multiple forms of frontotemporal lobar degeneration (FTLD)1,2. It is also common in other diseases, including Alzheimer's and Parkinson's. No disease-modifying therapies exist for these conditions and early diagnosis is not possible. The structures of pathological TDP-43 aggregates are unknown. Here we used cryo-electron microscopy to determine the structures of aggregated TDP-43 in the frontal and motor cortices of an individual who had ALS with FTLD and from the frontal cortex of a second individual with the same diagnosis. An identical amyloid-like filament structure comprising a single protofilament was found in both brain regions and individuals. The ordered filament core spans residues 282-360 in the TDP-43 low-complexity domain and adopts a previously undescribed double-spiral-shaped fold, which shows no similarity to those of TDP-43 filaments formed in vitro3,4. An abundance of glycine and neutral polar residues facilitates numerous turns and restricts ß-strand length, which results in an absence of ß-sheet stacking that is associated with cross-ß amyloid structure. An uneven distribution of residues gives rise to structurally and chemically distinct surfaces that face external densities and suggest possible ligand-binding sites. This work enhances our understanding of the molecular pathogenesis of ALS and FTLD and informs the development of diagnostic and therapeutic agents that target aggregated TDP-43.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Lobo Frontal/ultraestrutura , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor/metabolismo , Córtex Motor/patologia , Córtex Motor/ultraestrutura , Mutação
14.
Cell ; 149(1): 232-44, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464332

RESUMO

cis-trans isomerization of proteins phosphorylated by proline-directed kinases is proposed to control numerous signaling molecules and is implicated in the pathogenesis of Alzheimer's and other diseases. However, there is no direct evidence for the existence of cis-trans protein isomers in vivo or for their conformation-specific function or regulation. Here we develop peptide chemistries that allow the generation of cis- and trans-specific antibodies and use them to raise antibodies specific for isomers of phosphorylated tau. cis, but not trans, p-tau appears early in the brains of humans with mild cognitive impairment, accumulates exclusively in degenerated neurons, and localizes to dystrophic neurites during Alzheimer's progression. Unlike trans p-tau, the cis isomer cannot promote microtubule assembly, is more resistant to dephosphorylation and degradation, and is more prone to aggregation. Pin1 converts cis to trans p-tau to prevent Alzheimer's tau pathology. Isomer-specific antibodies and vaccines may therefore have value for the early diagnosis and treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer/patologia , Prolina/química , Prolina/metabolismo , Proteínas tau/metabolismo , Idoso , Doença de Alzheimer/fisiopatologia , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Lobo Frontal/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Isomerismo , Camundongos , Camundongos Endogâmicos C57BL , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/metabolismo
15.
Nature ; 591(7849): 270-274, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33408410

RESUMO

Neural mechanisms that mediate the ability to make value-guided decisions have received substantial attention in humans and animals1-6. Experiments in animals typically involve long training periods. By contrast, choices in the real world often need to be made between new options spontaneously. It is therefore possible that the neural mechanisms targeted in animal studies differ from those required for new decisions, which are typical of human imaging studies. Here we show that the primate medial frontal cortex (MFC)7 is involved in making new inferential choices when the options have not been previously experienced. Macaques spontaneously inferred the values of new options via similarities with the component parts of previously encountered options. Functional magnetic resonance imaging (fMRI) suggested that this ability was mediated by the MFC, which is rarely investigated in monkeys3; MFC activity reflected different processes of comparison for unfamiliar and familiar options. Multidimensional representations of options in the MFC used a coding scheme resembling that of grid cells, which is well known in spatial navigation8,9, to integrate dimensions in this non-physical space10 during novel decision-making. By contrast, the orbitofrontal cortex held specific object-based value representations1,11. In addition, minimally invasive ultrasonic disruption12 of MFC, but not adjacent tissue, altered the estimation of novel choice values.


Assuntos
Comportamento de Escolha/fisiologia , Lobo Frontal/citologia , Lobo Frontal/fisiologia , Macaca mulatta/fisiologia , Neurônios/fisiologia , Adulto , Animais , Feminino , Células de Grade/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Navegação Espacial/fisiologia , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 121(31): e2403445121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047041

RESUMO

Modulation of neuronal firing rates by the spatial locations of physical objects is a widespread phenomenon in the brain. However, little is known about how neuronal responses to the actions of biological entities are spatially tuned and whether such spatially tuned responses are affected by social contexts. These issues are of key importance for understanding the neural basis of embodied social cognition, such as imitation and perspective-taking. Here, we show that spatial representation of actions can be dynamically changed depending on others' social relevance and agents of action. Monkeys performed a turn-taking choice task with a real monkey partner sitting face-to-face or a filmed partner in prerecorded videos. Three rectangular buttons (left, center, and right) were positioned in front of the subject and partner as their choice targets. We recorded from single neurons in two frontal nodes in the social brain, the ventral premotor cortex (PMv) and the medial prefrontal cortex (MPFC). When the partner was filmed rather than real, spatial preference for partner-actions was markedly diminished in MPFC, but not PMv, neurons. This social context-dependent modulation in the MPFC was also evident for self-actions. Strikingly, a subset of neurons in both areas switched their spatial preference between self-actions and partner-actions in a diametrically opposite manner. This observation suggests that these cortical areas are associated with coordinate transformation in ways consistent with an actor-centered perspective-taking coding scheme. The PMv may subserve such functions in context-independent manners, whereas the MPFC may do so primarily in social contexts.


Assuntos
Lobo Frontal , Animais , Masculino , Lobo Frontal/fisiologia , Macaca mulatta , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção Espacial/fisiologia , Macaca
17.
Proc Natl Acad Sci U S A ; 121(34): e2401687121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133845

RESUMO

The language network of the human brain has core components in the inferior frontal cortex and superior/middle temporal cortex, with left-hemisphere dominance in most people. Functional specialization and interconnectivity of these neocortical regions is likely to be reflected in their molecular and cellular profiles. Excitatory connections between cortical regions arise and innervate according to layer-specific patterns. Here, we generated a gene expression dataset from human postmortem cortical tissue samples from core language network regions, using spatial transcriptomics to discriminate gene expression across cortical layers. Integration of these data with existing single-cell expression data identified 56 genes that showed differences in laminar expression profiles between the frontal and temporal language cortex together with upregulation in layer II/III and/or layer V/VI excitatory neurons. Based on data from large-scale genome-wide screening in the population, DNA variants within these 56 genes showed set-level associations with interindividual variation in structural connectivity between the left-hemisphere frontal and temporal language cortex, and with the brain-related disorders dyslexia and schizophrenia which often involve affected language. These findings identify region-specific patterns of laminar gene expression as a feature of the brain's language network.


Assuntos
Idioma , Neocórtex , Humanos , Neocórtex/metabolismo , Lobo Temporal/metabolismo , Masculino , Feminino , Esquizofrenia/genética , Esquizofrenia/metabolismo , Neurônios/metabolismo , Lobo Frontal/metabolismo , Transcriptoma , Adulto
18.
PLoS Pathog ; 20(8): e1012446, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39116185

RESUMO

HIV persistence in the brain is a barrier to cure, and potentially contributes to HIV-associated neurocognitive disorders. Whether HIV transcription persists in the brain despite viral suppression with antiretroviral therapy (ART) and is subject to the same blocks to transcription seen in other tissues and blood, is unclear. Here, we quantified the level of HIV transcripts in frontal cortex tissue from virally suppressed or non-virally suppressed people with HIV (PWH). HIV transcriptional profiling of frontal cortex brain tissue (and PBMCs where available) from virally suppressed (n = 11) and non-virally suppressed PWH (n = 13) was performed using digital polymerase chain reaction assays (dPCR). CD68+ myeloid cells or CD3+ T cells expressing HIV p24 protein present in frontal cortex tissue was detected using multiplex immunofluorescence imaging. Frontal cortex brain tissue from PWH had HIV TAR (n = 23/24) and Long-LTR (n = 20/24) transcripts. Completion of HIV transcription was evident in brain tissue from 12/13 non-virally suppressed PWH and from 5/11 virally suppressed PWH, with HIV p24+CD68+ cells detected in these individuals. While a block to proximal elongation was present in frontal cortex tissue from both PWH groups, this block was more extensive in virally suppressed PWH. These findings suggest that the brain is a transcriptionally active HIV reservoir in a subset of virally suppressed PWH.


Assuntos
Encéfalo , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Masculino , Encéfalo/metabolismo , Encéfalo/virologia , Adulto , Pessoa de Meia-Idade , Feminino , Transcrição Gênica , Lobo Frontal/metabolismo , Lobo Frontal/virologia
19.
PLoS Biol ; 21(3): e3002010, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862726

RESUMO

Reward-guided choice is fundamental for adaptive behaviour and depends on several component processes supported by prefrontal cortex. Here, across three studies, we show that two such component processes, linking reward to specific choices and estimating the global reward state, develop during human adolescence and are linked to the lateral portions of the prefrontal cortex. These processes reflect the assignment of rewards contingently to local choices, or noncontingently, to choices that make up the global reward history. Using matched experimental tasks and analysis platforms, we show the influence of both mechanisms increase during adolescence (study 1) and that lesions to lateral frontal cortex (that included and/or disconnected both orbitofrontal and insula cortex) in human adult patients (study 2) and macaque monkeys (study 3) impair both local and global reward learning. Developmental effects were distinguishable from the influence of a decision bias on choice behaviour, known to depend on medial prefrontal cortex. Differences in local and global assignments of reward to choices across adolescence, in the context of delayed grey matter maturation of the lateral orbitofrontal and anterior insula cortex, may underlie changes in adaptive behaviour.


Assuntos
Lobo Frontal , Aprendizagem , Adulto , Animais , Humanos , Adolescente , Recompensa , Córtex Pré-Frontal , Macaca , Comportamento de Escolha
20.
PLoS Biol ; 21(1): e3001985, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716348

RESUMO

Humans have been shown to strategically explore. They can identify situations in which gathering information about distant and uncertain options is beneficial for the future. Because primates rely on scarce resources when they forage, they are also thought to strategically explore, but whether they use the same strategies as humans and the neural bases of strategic exploration in monkeys are largely unknown. We designed a sequential choice task to investigate whether monkeys mobilize strategic exploration based on whether information can improve subsequent choice, but also to ask the novel question about whether monkeys adjust their exploratory choices based on the contingency between choice and information, by sometimes providing the counterfactual feedback about the unchosen option. We show that monkeys decreased their reliance on expected value when exploration could be beneficial, but this was not mediated by changes in the effect of uncertainty on choices. We found strategic exploratory signals in anterior and mid-cingulate cortex (ACC/MCC) and dorsolateral prefrontal cortex (dlPFC). This network was most active when a low value option was chosen, which suggests a role in counteracting expected value signals, when exploration away from value should to be considered. Such strategic exploration was abolished when the counterfactual feedback was available. Learning from counterfactual outcome was associated with the recruitment of a different circuit centered on the medial orbitofrontal cortex (OFC), where we showed that monkeys represent chosen and unchosen reward prediction errors. Overall, our study shows how ACC/MCC-dlPFC and OFC circuits together could support exploitation of available information to the fullest and drive behavior towards finding more information through exploration when it is beneficial.


Assuntos
Comportamento de Escolha , Córtex Pré-Frontal , Humanos , Animais , Comportamento de Escolha/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Frontal/fisiologia , Recompensa , Macaca mulatta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa