Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.846
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Immunity ; 54(9): 2143-2158.e15, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34453881

RESUMO

Neutralizing antibodies (NAbs) are effective in treating COVID-19, but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment during prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. Real-time imaging revealed that the virus spread sequentially from the nasal cavity to the lungs in mice and thereafter systemically to various organs including the brain, culminating in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct neutralization, depletion studies indicated that Fc effector interactions of NAbs with monocytes, neutrophils, and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Encéfalo/patologia , COVID-19/imunologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Testículo/patologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Encéfalo/virologia , COVID-19/terapia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Luciferases/genética , Medições Luminescentes , Pulmão/virologia , Masculino , Camundongos , Camundongos Transgênicos , Testículo/virologia
2.
Mol Cell ; 82(19): 3745-3749.e2, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36115342

RESUMO

The research article describing the discovery of ribosomal frameshifting in the bacterial CopA gene also reported the occurrence of frameshifting in the expression of the human ortholog ATP7B based on assays using dual luciferase reporters. An examination of the publicly available ribosome profiling data and the phylogenetic analysis of the proposed frameshifting site cast doubt on the validity of this claim and prompted us to reexamine the evidence. We observed similar apparent frameshifting efficiencies as the original authors using the same type of vector that synthesizes both luciferases as a single polyprotein. However, we noticed anomalously low absolute luciferase activities from the N-terminal reporter that suggests interference of reporter activity or levels by the ATP7B test cassette. When we tested the same proposed ATP7B frameshifting cassette in a more recently developed reporter system in which the reporters are released without being included in a polyprotein, no frameshifting was detected above background levels.


Assuntos
ATPases Transportadoras de Cobre/metabolismo , Mudança da Fase de Leitura do Gene Ribossômico , Poliproteínas , Mudança da Fase de Leitura do Gene Ribossômico/genética , Humanos , Luciferases/genética , Conformação de Ácido Nucleico , Filogenia , Poliproteínas/genética , Poliproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nature ; 614(7949): 774-780, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36813896

RESUMO

De novo enzyme design has sought to introduce active sites and substrate-binding pockets that are predicted to catalyse a reaction of interest into geometrically compatible native scaffolds1,2, but has been limited by a lack of suitable protein structures and the complexity of native protein sequence-structure relationships. Here we describe a deep-learning-based 'family-wide hallucination' approach that generates large numbers of idealized protein structures containing diverse pocket shapes and designed sequences that encode them. We use these scaffolds to design artificial luciferases that selectively catalyse the oxidative chemiluminescence of the synthetic luciferin substrates diphenylterazine3 and 2-deoxycoelenterazine. The designed active sites position an arginine guanidinium group adjacent to an anion that develops during the reaction in a binding pocket with high shape complementarity. For both luciferin substrates, we obtain designed luciferases with high selectivity; the most active of these is a small (13.9 kDa) and thermostable (with a melting temperature higher than 95 °C) enzyme that has a catalytic efficiency on diphenylterazine (kcat/Km = 106 M-1 s-1) comparable to that of native luciferases, but a much higher substrate specificity. The creation of highly active and specific biocatalysts from scratch with broad applications in biomedicine is a key milestone for computational enzyme design, and our approach should enable generation of a wide range of luciferases and other enzymes.


Assuntos
Aprendizado Profundo , Luciferases , Biocatálise , Domínio Catalítico , Estabilidade Enzimática , Temperatura Alta , Luciferases/química , Luciferases/metabolismo , Luciferinas/metabolismo , Luminescência , Oxirredução , Especificidade por Substrato
4.
Cell ; 152(1-2): 340-51, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332765

RESUMO

Monitoring cancer and aging in vivo remains experimentally challenging. Here, we describe a luciferase knockin mouse (p16(LUC)), which faithfully reports expression of p16(INK4a), a tumor suppressor and aging biomarker. Lifelong assessment of luminescence in p16(+/LUC) mice revealed an exponential increase with aging, which was highly variable in a cohort of contemporaneously housed, syngeneic mice. Expression of p16(INK4a) with aging did not predict cancer development, suggesting that the accumulation of senescent cells is not a principal determinant of cancer-related death. In 14 of 14 tested tumor models, expression of p16(LUC) was focally activated by early neoplastic events, enabling visualization of tumors with sensitivity exceeding other imaging modalities. Activation of p16(INK4a) was noted in the emerging neoplasm and surrounding stromal cells. This work suggests that p16(INK4a) activation is a characteristic of all emerging cancers, making the p16(LUC) allele a sensitive, unbiased reporter of neoplastic transformation.


Assuntos
Envelhecimento/genética , Biomarcadores , Transformação Celular Neoplásica , Inibidor p16 de Quinase Dependente de Ciclina/genética , Luciferases/genética , Neoplasias/genética , Animais , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Técnicas de Introdução de Genes , Camundongos , Neoplasias/fisiopatologia , Ferimentos e Lesões/genética
5.
Mol Cell ; 74(4): 729-741.e7, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30982745

RESUMO

The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aß40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the ßNAC subunit (N-ßNAC) as a major chaperone entity of NAC. N-ßNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.


Assuntos
Peptídeos beta-Amiloides/genética , Chaperonas Moleculares/genética , Agregação Patológica de Proteínas/genética , Peptídeos beta-Amiloides/química , Sítios de Ligação/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Luciferases/química , Luciferases/genética , Chaperonas Moleculares/química , Peptídeos/química , Peptídeos/genética , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Domínios Proteicos/genética , Dobramento de Proteína , Ribossomos/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
6.
Proc Natl Acad Sci U S A ; 120(40): e2214636120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37769257

RESUMO

Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.


Assuntos
Ritmo Circadiano , Perfil de Ribossomos , Sono , Animais , Camundongos , Ritmo Circadiano/genética , Luciferases/genética , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , Sono/genética , Proteínas Circadianas Period/genética
7.
Traffic ; 24(10): 453-462, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403269

RESUMO

Each cell in a multicellular organism permanently adjusts the concentration of its cell surface proteins. In particular, epithelial cells tightly control the number of carriers, transporters and cell adhesion proteins at their plasma membrane. However, sensitively measuring the cell surface concentration of a particular protein of interest in live cells and in real time represents a considerable challenge. Here, we introduce a novel approach based on split luciferases, which uses one luciferase fragment as a tag on the protein of interest and the second fragment as a supplement to the extracellular medium. Once the protein of interest arrives at the cell surface, the luciferase fragments complement and generate luminescence. We compared the performance of split Gaussia luciferase and split Nanoluciferase by using a system to synchronize biosynthetic trafficking with conditional aggregation domains. The best results were achieved with split Nanoluciferase, for which luminescence increased more than 6000-fold upon recombination. Furthermore, we showed that our approach can separately detect and quantify the arrival of membrane proteins at the apical and basolateral plasma membrane in single polarized epithelial cells by detecting the luminescence signals with a microscope, thus opening novel avenues for characterizing the variations in trafficking in individual epithelial cells.


Assuntos
Células Epiteliais , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Células Epiteliais/metabolismo , Membrana Celular/metabolismo , Luciferases/genética , Luciferases/metabolismo , Polaridade Celular
8.
J Biol Chem ; 300(5): 107277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588804

RESUMO

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Assuntos
Hidrolases de Éster Carboxílico , Quinase 1 do Ponto de Checagem , Proteína Fosfatase 2 , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Humanos , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Fosforilação , Luciferases/metabolismo , Luciferases/genética , Ligação Proteica , Células HEK293
9.
J Biol Chem ; 300(1): 105512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042486

RESUMO

Aging presents fundamental health concerns worldwide; however, mechanisms underlying how aging is regulated are not fully understood. Here, we show that cartilage regulates aging by controlling phosphate metabolism via ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). We newly established an Enpp1 reporter mouse, in which an EGFP-luciferase sequence was knocked-in at the Enpp1 gene start codon (Enpp1/EGFP-luciferase), enabling detection of Enpp1 expression in cartilage tissues of resultant mice. We then established a cartilage-specific Enpp1 conditional knockout mouse (Enpp1 cKO) by generating Enpp1 flox mice and crossing them with cartilage-specific type 2 collagen Cre mice. Relative to WT controls, Enpp1 cKO mice exhibited phenotypes resembling human aging, such as short life span, ectopic calcifications, and osteoporosis, as well as significantly lower serum pyrophosphate levels. We also observed significant weight loss and worsening of osteoporosis in Enpp1 cKO mice under phosphate overload conditions, similar to global Enpp1-deficient mice. Aging phenotypes seen in Enpp1 cKO mice under phosphate overload conditions were rescued by a low vitamin D diet, even under high phosphate conditions. These findings suggest overall that cartilage tissue plays an important role in regulating systemic aging via Enpp1.


Assuntos
Envelhecimento , Osteoporose , Diester Fosfórico Hidrolases , Pirofosfatases , Animais , Humanos , Camundongos , Envelhecimento/genética , Cartilagem/metabolismo , Luciferases , Camundongos Knockout , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo
10.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38174583

RESUMO

Bioluminescence in beetles has long fascinated biologists, with diverse applications in biotechnology. To date, however, our understanding of its evolutionary origin and functional variation mechanisms remains poor. To address these questions, we obtained high-quality reference genomes of luminous and nonluminous beetles in 6 Elateroidea families. We then reconstructed a robust phylogenetic relationship for all luminous families and related nonluminous families. Comparative genomic analyses and biochemical functional experiments suggested that gene evolution within Elateroidea played a crucial role in the origin of bioluminescence, with multiple parallel origins observed in the luminous beetle families. While most luciferase-like proteins exhibited a conserved nonluminous amino acid pattern (TLA346 to 348) in the luciferin-binding sites, luciferases in the different luminous beetle families showed divergent luminous patterns at these sites (TSA/CCA/CSA/LVA). Comparisons of the structural and enzymatic properties of ancestral, extant, and site-directed mutant luciferases further reinforced the important role of these sites in the trade-off between acyl-CoA synthetase and luciferase activities. Furthermore, the evolution of bioluminescent color demonstrated a tendency toward hypsochromic shifts and variations among the luminous families. Taken together, our results revealed multiple parallel origins of bioluminescence and functional divergence within the beetle bioluminescent system.


Assuntos
Besouros , Animais , Humanos , Besouros/genética , Filogenia , Sequência de Aminoácidos , Luciferases/genética , Luciferases/química , Luciferases/metabolismo , Sítios de Ligação
11.
Nat Methods ; 19(7): 893-898, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739310

RESUMO

Bioluminescence imaging with luciferase-luciferin pairs is a well-established technique for visualizing biological processes across tissues and whole organisms. Applications at the microscale, by contrast, have been hindered by a lack of detection platforms and easily resolved probes. We addressed this limitation by combining bioluminescence with phasor analysis, a method commonly used to distinguish spectrally similar fluorophores. We built a camera-based microscope equipped with special optical filters to directly assign phasor locations to unique luciferase-luciferin pairs. Six bioluminescent reporters were easily resolved in live cells, and the readouts were quantitative and instantaneous. Multiplexed imaging was also performed over extended time periods. Bioluminescent phasor further provided direct measures of resonance energy transfer in single cells, setting the stage for dynamic measures of cellular and molecular features. The merger of bioluminescence with phasor analysis fills a long-standing void in imaging capabilities, and will bolster future efforts to visualize biological events in real time and over multiple length scales.


Assuntos
Medições Luminescentes , Microscopia , Luciferases , Medições Luminescentes/métodos
12.
Nat Chem Biol ; 19(2): 198-205, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266349

RESUMO

Detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the lack of a comprehensive characterization of the aggregates, which are typically heterogeneous. Here we designed a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase flanked by stress-resistant fluorescent domains, which upon denaturation formed a discrete population of small aggregates. Combining Förster resonance energy transfer and enzymatic activity measurements provided unprecedented details on the aggregated, unfolded, Hsp70-bound and native MLucV conformations. The Hsp70 mechanism first involved ATP-fueled disaggregation and unfolding of the stable pre-aggregated substrate, which stretched MLucV beyond simply unfolded conformations, followed by native refolding. The ATP-fueled unfolding and refolding action of Hsp70 on MLucV aggregates could accumulate native MLucV species under elevated denaturing temperatures highly adverse to the native state. These results unambiguously exclude binding and preventing of aggregation from the non-equilibrium mechanism by which Hsp70 converts stable aggregates into metastable native proteins.


Assuntos
Proteínas de Choque Térmico HSP70 , Dobramento de Proteína , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química , Luciferases/metabolismo , Trifosfato de Adenosina , Desnaturação Proteica , Desdobramento de Proteína
13.
FASEB J ; 38(1): e23348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084798

RESUMO

A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos , Animais , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/fisiologia , Relógios Circadianos/fisiologia , Luciferases/metabolismo , Neurônios/metabolismo
14.
FASEB J ; 38(3): e23459, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329343

RESUMO

Wound healing is facilitated by neoangiogenesis, a complex process that is essential to tissue repair in response to injury. MicroRNAs are small, noncoding RNAs that can regulate the wound healing process including stimulation of impaired angiogenesis that is associated with type-2 diabetes (T2D). Expression of miR-409-3p was significantly increased in the nonhealing skin wounds of patients with T2D compared to the non-wounded normal skin, and in the skin of a murine model with T2D. In response to high glucose, neutralization of miR-409-3p markedly improved EC growth and migration in human umbilical vein endothelial cells (HUVECs), promoted wound closure and angiogenesis as measured by increased CD31 in human skin organoids, while overexpression attenuated EC angiogenic responses. Bulk mRNA-Seq transcriptomic profiling revealed BTG2 as a target of miR-409-3p, where overexpression of miR-409-3p significantly decreased BTG2 mRNA and protein expression. A 3' untranslated region (3'-UTR) luciferase assay of BTG2 revealed decreased luciferase activity with overexpression of miR-409-3p, while inhibition had opposite effects. Mechanistically, in response to high glucose, miR-409-3p deficiency in ECs resulted in increased mTOR phosphorylation, meanwhile BTG-anti-proliferation factor 2 (BTG2) silencing significantly decreased mTOR phosphorylation. Endothelial-specific and tamoxifen-inducible miR-409-3p knockout mice (MiR-409IndECKO ) with hyperglycemia that underwent dorsal skin wounding showed significant improvement of wound closure, increased blood flow, granulation tissue thickness (GTT), and CD31 that correlated with increased BTG2 expression. Taken together, our results show that miR-409-3p is a critical mediator of impaired angiogenesis in diabetic skin wound healing.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Imediatamente Precoces , MicroRNAs , Proteínas Supressoras de Tumor , Animais , Humanos , Camundongos , Angiogênese , Proliferação de Células/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Imediatamente Precoces/genética , Luciferases , Camundongos Obesos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor/genética , Cicatrização/genética
15.
Exp Cell Res ; 436(1): 113962, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316250

RESUMO

Non-small cell lung cancer (NSCLC) is a prevalent tumor and acidic tumor microenvironment provides an energy source driving tumor progression. We previously demonstrated significantly upregulated Integrin ß6 (ITGB6) in NSCLC cells. This study was designed to investigate the role of ITGB6 in NSCLC metastasis and explore the potential mechanisms. The expression of ITGB6 was evaluated in patients with NSCLC. Migration and invasion assays were utilized to investigate the role of ITGB6, and ChIP-qPCR and dual-luciferase reporter experiments preliminarily analyzed the relationship between ETS proto-oncogene 1 (ETS1) and ITGB6. Bioinformatics analysis and rescue models were performed to explore the underlying mechanisms. The results demonstrated that ITGB6 was upregulated in NSCLC patients and the difference was even more pronounced in patients with poor prognosis. Functionally, acidity-induced ITGB6 promoted migration and invasion of NSCLC cells in vitro, and epithelial-mesenchymal transition (EMT) and focal adhesion were the important mechanisms responsible for ITGB6-involved metastasis. Mechanistically, we revealed ETS1 enriched in the ITGB6 promoter region and promoted transcription to triggered the activation of subsequent signaling pathways. Moreover, ChIP-qPCR and dual-luciferase reporter experiments demonstrated that ETS1 played an important role in directly mediating ITGB6 expression. Furthermore, we found ITGB6 was responsible for the acidic microenvironment-mediated migration and invasion processes in NSCLC by performing rescue experiments with ITGB6 knockdown. Our findings indicated acidic microenvironment directly induced ETS1 to regulate the expression of ITGB6, and then the highly expressed ITGB6 further mediate EMT and activates the downstream focal adhesion pathways, eventually promotes the invasion and migration in NSCLC progression and metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cadeias beta de Integrinas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Adesões Focais/metabolismo , Luciferases , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Microambiente Tumoral
16.
Nucleic Acids Res ; 51(20): 11162-11177, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819016

RESUMO

MicroRNAs (miRNAs) are short RNAs that post-transcriptionally regulate gene expression by binding to specific sites in mRNAs. Site recognition is primarily mediated by the seed region (nucleotides g2-g8 in the miRNA), but pairing beyond the seed (3'-pairing) is important for some miRNA:target interactions. Here, we use SHAPE, luciferase reporter assays and transcriptomics analyses to study the combined effect of 3'-pairing and secondary structures in mRNAs on repression efficiency. Using the interaction between miR-34a and its SIRT1 binding site as a model, we provide structural and functional evidence that 3'-pairing can compensate for low seed-binding site accessibility, enabling repression of sites that would otherwise be ineffective. We show that miRNA 3'-pairing regions can productively base-pair with nucleotides far upstream of the seed-binding site and that both hairpins and unstructured bulges within the target site are tolerated. We use SHAPE to show that sequences that overcome inaccessible seed-binding sites by strong 3'-pairing adopt the predicted structures and corroborate the model using luciferase assays and high-throughput modelling of 8177 3'-UTR targets for six miRNAs. Finally, we demonstrate that PHB2, a target of miR-141, is an inaccessible target rescued by efficient 3'-pairing. We propose that these results could refine predictions of effective target sites.


Assuntos
MicroRNAs , RNA Mensageiro , Pareamento de Bases , Luciferases/genética , MicroRNAs/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Regulação da Expressão Gênica , Conformação de Ácido Nucleico
17.
PLoS Genet ; 18(10): e1010449, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36251728

RESUMO

Light plays a major role in resetting the circadian clock, allowing the organism to synchronize with the environmental day and night cycle. In Chlamydomonas the light-induced degradation of the circadian clock protein, RHYTHM OF CHLOROPLAST 15 (ROC15), is considered one of the key events in resetting the circadian clock. Red/violet and blue light signals have been shown to reach the clock via different molecular pathways; however, many of the participating components of these pathways are yet to be elucidated. Here, we used a forward genetics approach using a reporter strain that expresses a ROC15-luciferase fusion protein. We isolated a mutant that showed impaired ROC15 degradation in response to a wide range of visible wavelengths and impaired light-induced phosphorylation of ROC15. These results suggest that the effects of different wavelengths converge before acting on ROC15 or at ROC15 phosphorylation. Furthermore, the mutant showed a weakened phase resetting in response to light, but its circadian rhythmicity remained largely unaffected under constant light and constant dark conditions. Surprisingly, the gene disrupted in this mutant was found to encode a protein that possessed a very weak similarity to the Arabidopsis thaliana EARLY FLOWERING 3 (ELF3). Our results suggest that this protein is involved in the many different light signaling pathways to the Chlamydomonas circadian clock. However, it may not influence the transcriptional oscillator of Chlamydomonas to a great extent. This study provides an opportunity to further understand the mechanisms underlying light-induced clock resetting and explore the evolution of the circadian clock architecture in Viridiplantae.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas , Relógios Circadianos , Chlamydomonas/genética , Chlamydomonas/metabolismo , Relógios Circadianos/genética , Arabidopsis/metabolismo , Ritmo Circadiano/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Luz , Transdução de Sinais/genética , Luciferases/genética , Luciferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Proc Natl Acad Sci U S A ; 119(15): e2120913119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35324337

RESUMO

SignificanceThe coronavirus main protease (Mpro) is required for viral replication. Here, we obtained the extended conformation of the native monomer of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Mpro by trapping it with nanobodies and found that the catalytic domain and the helix domain dissociate, revealing allosteric targets. Another monomeric state is termed compact conformation and is similar to one protomer of the dimeric form. We designed a Nanoluc Binary Techonology (NanoBiT)-based high-throughput allosteric inhibitor assay based on structural conformational change. Our results provide insight into the maturation, dimerization, and catalysis of the coronavirus Mpro and pave a way to develop an anticoronaviral drug through targeting the maturation process to inhibit the autocleavage of Mpro.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases , SARS-CoV-2 , Regulação Alostérica/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , COVID-19/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Humanos , Luciferases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Multimerização Proteica
19.
Biochemistry ; 63(6): 733-742, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437583

RESUMO

Photinus pyralis luciferase (FLuc) has proven a valuable tool for bioluminescence imaging, but much of the light emitted from the native enzyme is absorbed by endogenous biomolecules. Thus, luciferases displaying red-shifted emission enable higher resolution during deep-tissue imaging. A robust model of how protein structure determines emission color would greatly aid the engineering of red-shifted mutants, but no consensus has been reached to date. In this work, we applied deep mutational scanning to systematically assess 20 functionally important amino acid positions on FLuc for red-shifting mutations, predicting that an unbiased approach would enable novel contributions to this debate. We report dozens of red-shifting mutations as a result, a large majority of which have not been previously identified. Further characterization revealed that mutations N229T and T352M, in particular, bring about unimodal emission with the majority of photons being >600 nm. The red-shifting mutations identified by this high-throughput approach provide strong biochemical evidence for the multiple-emitter mechanism of color determination and point to the importance of a water network in the enzyme binding pocket for altering the emitter ratio. This work provides a broadly applicable mutational data set tying FLuc structure to emission color that contributes to our mechanistic understanding of emission color determination and should facilitate further engineering of improved probes for deep-tissue imaging.


Assuntos
Vaga-Lumes , Luciferases de Vaga-Lume , Animais , Luciferases de Vaga-Lume/química , Cinética , Luciferases/metabolismo , Vaga-Lumes/genética , Mutação , Medições Luminescentes/métodos
20.
Carcinogenesis ; 45(4): 199-209, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38270181

RESUMO

Disulfidptosis is a novel form of programmed cell death involved in migration and invasion of cancer cells, but few studies investigated the roles of genetic variants in disulfidptosis-related genes in survival of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We used Cox proportional hazards regression analyses, Kaplan-Meier curves and receiver operating characteristic curves to assess effects of genetic variants in 14 disulfidptosis-related genes on overall survival of 866 HBV-HCC patients. The Bayesian false discovery probability was used for multiple testing corrections. We also investigated biological mechanisms of the significant variants through expression quantitative trait loci analyses using the data from publicly available databases, luciferase reporter assays and differential expression analyses. As a result, we identified two independently functional single nucleotide polymorphisms (SNPs) (INF2 rs4072285 G > A and INF2 rs4444271 A > T) that predicted overall survival of HBV-HCC patients, with adjusted hazard ratios of 1.60 (95% CI = 1.22-2.11, P = 0.001) and 1.50 (95% CI = 1.80-1.90, P < 0.001), respectively, after multiple testing correction. Luciferase reporter assays indicated that both INF2 rs4072285 A and INF2 rs4444271 T alleles increased INF2 mRNA expression levels (P < 0.001) that were also higher in HCC tumor tissues than in adjacent normal tissues (P < 0.001); such elevated INF2 expression levels were associated with a poorer survival of HBV-HCC patients (P < 0.001) in the TCGA database. In summary, this study supported that INF2 rs4072285 and INF2 rs4444271 may be novel biomarkers for survival of HBV-HCC patients.


Assuntos
Carcinoma Hepatocelular , Forminas , Hepatite B , Neoplasias Hepáticas , Humanos , Teorema de Bayes , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Forminas/genética , Hepatite B/complicações , Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Luciferases
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa