Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0060024, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38771054

RESUMO

Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.IMPORTANCEPolycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, including Streptomyces and Lysobacter spp. Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.


Assuntos
Família Multigênica , Filogenia , Vias Biossintéticas/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/classificação , Lysobacter/genética , Lysobacter/metabolismo , Lysobacter/classificação , Biologia Computacional , Lactamas/metabolismo
2.
Appl Environ Microbiol ; 90(5): e0041824, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624198

RESUMO

Cyclic di-GMP (c-di-GMP) is a crucial signaling molecule found extensively in bacteria, involved in the regulation of various physiological and biochemical processes such as biofilm formation, motility, and pathogenicity through binding to downstream receptors. However, the structural dissimilarity of c-di-GMP receptor proteins has hindered the discovery of many such proteins. In this study, we identified LspE, a homologous protein of the type II secretion system (T2SS) ATPase GspE in Lysobacter enzymogenes, as a receptor protein for c-di-GMP. We identified the more conservative c-di-GMP binding amino acid residues as K358 and T359, which differ from the previous reports, indicating that GspE proteins may represent a class of c-di-GMP receptor proteins. Additionally, we found that LspE in L. enzymogenes also possesses a novel role in regulating the production of the antifungal antibiotic HSAF. Further investigations revealed the critical involvement of both ATPase activity and c-di-GMP binding in LspE-mediated regulation of HSAF (Heat-Stable Antifungal Factor) production, with c-di-GMP binding having no impact on LspE's ATPase activity. This suggests that the control of HSAF production by LspE encompasses two distinct processes: c-di-GMP binding and the inherent ATPase activity of LspE. Overall, our study unraveled a new function for the conventional protein GspE of the T2SS as a c-di-GMP receptor protein and shed light on its role in regulating antibiotic production.IMPORTANCEThe c-di-GMP signaling pathway in bacteria is highly intricate. The identification and functional characterization of novel receptor proteins have posed a significant challenge in c-di-GMP research. The type II secretion system (T2SS) is a well-studied secretion system in bacteria. In this study, our findings revealed the ATPase GspE protein of the T2SS as a class of c-di-GMP receptor protein. Notably, we discovered its novel function in regulating the production of antifungal antibiotic HSAF in Lysobacter enzymogenes. Given that GspE may be a conserved c-di-GMP receptor protein, it is worthwhile for researchers to reevaluate its functional roles and mechanisms across diverse bacterial species.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , GMP Cíclico , Lysobacter , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Lysobacter/metabolismo , Lysobacter/genética , Lysobacter/enzimologia , Sistemas de Secreção Tipo II/metabolismo , Sistemas de Secreção Tipo II/genética , Antibacterianos/metabolismo , Regulação Bacteriana da Expressão Gênica , Antifúngicos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38805031

RESUMO

Two Gram-negative bacteria, designated as strains LF1T and HM2-2T, were isolated from an artificial pond in a honey farm at Hoengseong-gun, Gangwon-do, Republic of Korea. The 16S rRNA sequence analysis results revealed that strain LF1T belonged to the genus Lysobacter and had the highest sequence similarity to Lysobacter niastensis GH41-7T (99.0 %), Lysobacter panacisoli CJ29T (98.9 %), and Lysobacter prati SYSU H10001T (98.2 %). Its growth occurred at 20-37 °C, at pH 5.0-12.0, and in the presence of 0-2% NaCl. The major fatty acids were iso-C15 : 0, iso-C16 : 0, and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C content was 67.5 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain LF1T and species of the genus Lysobacter were 79.1-84.4% and 22.0-27.5 %, respectively. The 16S rRNA sequence analysis results revealed that strain HM2-2T belonged to the genus Limnohabitans and was most closely related to Limnohabitans planktonicus II-D5T (98.9 %), Limnohabitans radicicola JUR4T (98.4%), and Limnohabitans parvus II-B4T (98.4 %). Its growth occurred at 10-35 °C, at pH 5.0-11.0, and in the presence of 0-2% NaCl. The major fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 59.9 mol%. The ANI and dDDH values between strain HM2-2T and its closely related strains were 75.1-83.0% and 20.4-26.4 %, respectively. Phenotypic, genomic, and phylogenetic data revealed that strains LF1T and HM2-2T represent novel species in the genera Lysobacter and Limnohabitans, for which the names Lysobacter stagni sp. nov. and Limnohabitans lacus sp. nov. are proposed, respectively. The type strain of Lys. stagni is LF1T (=KACC 23251T=TBRC 17648T), and that of Lim. lacus is HM2-2T (=KACC 23250T=TBRC 17649T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Lysobacter , Hibridização de Ácido Nucleico , Filogenia , Lagoas , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Ácidos Graxos/análise , Lysobacter/genética , Lysobacter/classificação , Lysobacter/isolamento & purificação , DNA Bacteriano/genética , República da Coreia , Lagoas/microbiologia , Dados de Sequência Molecular , Fosfolipídeos/análise
4.
J Hazard Mater ; 473: 134716, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38797074

RESUMO

Ochratoxin A (OTA) is a toxic secondary metabolite that widely contaminates agro-products and poses a significant dietary risk to human health. Previously, a carboxypeptidase CP4 was characterized for OTA degradation in Lysobacter sp. CW239, but the degradation activity was much lower than its host strain CW239. In this study, an amidohydrolase ADH2 was screened for OTA hydrolysis in this strain. The result showed that 50 µg/L OTA was completely degraded by 1.0 µg/mL rADH2 within 5 min, indicating ultra-efficient activity. Meanwhile, the two hydrolases (i.e., CP4 and ADH2) in the strain CW239 showed the same degradation manner, which transformed the OTA to ochratoxin α (OTα) and l-ß-phenylalanine. Gene mutants (Δcp4, Δadh2 and Δcp4-adh2) testing result showed that OTA was co-degraded by carboxypeptidase CP4 and amidohydrolase ADH2, and the two hydrolases are sole agents in strain CW239 for OTA degradation. Hereinto, the ADH2 was the overwhelming efficient hydrolase, and the two types of hydrolases co-degraded OTA in CW239 by synergistic effect. The results of this study are highly significant to ochratoxin A contamination control during agro-products production and postharvest.


Assuntos
Lysobacter , Ocratoxinas , Ocratoxinas/metabolismo , Ocratoxinas/toxicidade , Lysobacter/metabolismo , Lysobacter/genética , Amidoidrolases/metabolismo , Amidoidrolases/genética , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Hidrolases/metabolismo , Hidrolases/genética
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38959853

RESUMO

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Assuntos
Proteínas de Bactérias , Lysobacter , Pseudomonas , Sistemas de Secreção Tipo IV , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Regulação Bacteriana da Expressão Gênica , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Transativadores/genética , Transativadores/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator sigma/genética , Fator sigma/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa