Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Insect Sci ; 20(4)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841344

RESUMO

Glochidion plants and Epicephala moths played different roles and kept the balance in the mutualism. We studied the four coexisting Epicephala species on Glochidion sphaerogynum in detail and reconstructed the phylogenic tree of 40 Gracillariidae species. The results showed that one of them (Epicephala impolliniferens) did not pollinate G. sphaerogynum, because of lacking the specialized structure of carrying pollen. These results suggested that E. impolliniferens acted as a 'cheater' in the system. The phylogenetic analyses suggested that E. impolliniferens derived from a pollinating species, and had secondarily gave up the ability to pollinate. This is a typical phenomenon of mutualism reversal. The phenomenon exhibits the co-evolutionary diversification under selection pressures.


Assuntos
Evolução Biológica , Herbivoria , Malpighiales/fisiologia , Mariposas/fisiologia , Polinização , Simbiose , Animais , Filogenia
2.
New Phytol ; 221(1): 565-576, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030969

RESUMO

Whole-genome duplications (WGDs) are widespread and prevalent in vascular plants and frequently coincide with major episodes of global and climatic upheaval, including the mass extinction at the Cretaceous-Tertiary boundary (c. 65 Ma) and during more recent periods of global aridification in the Miocene (c. 10-5 Ma). Here, we explore WGDs in the diverse flowering plant clade Malpighiales. Using transcriptomes and complete genomes from 42 species, we applied a multipronged phylogenomic pipeline to identify, locate, and determine the age of WGDs in Malpighiales using three means of inference: distributions of synonymous substitutions per synonymous site (Ks ) among paralogs, phylogenomic (gene tree) reconciliation, and a likelihood-based gene-count method. We conservatively identify 22 ancient WGDs, widely distributed across Malpighiales subclades. Importantly, these events are clustered around the Eocene-Paleocene transition (c. 54 Ma), during which time the planet was warmer and wetter than any period in the Cenozoic. These results establish that the Eocene Climatic Optimum likely represents a previously unrecognized period of prolific WGDs in plants, and lends further support to the hypothesis that polyploidization promotes adaptation and enhances plant survival during episodes of global change, especially for tropical organisms like Malpighiales, which have tight thermal tolerances.


Assuntos
Genoma de Planta , Malpighiales/genética , Filogenia , Adaptação Fisiológica , Clima , Funções Verossimilhança , Malpighiales/fisiologia
3.
Sci Rep ; 11(1): 23661, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880337

RESUMO

Rafflesia is a unique plant species existing as a single flower and produces the largest flower in the world. While Rafflesia buds take up to 21 months to develop, its flowers bloom and wither within about a week. In this study, transcriptome analysis was carried out to shed light on the molecular mechanism of senescence in Rafflesia. A total of 53.3 million high quality reads were obtained from two Rafflesia cantleyi flower developmental stages and assembled to generate 64,152 unigenes. Analysis of this dataset showed that 5,166 unigenes were differentially expressed, in which 1,073 unigenes were identified as genes involved in flower senescence. Results revealed that as the flowers progress to senescence, more genes related to flower senescence were significantly over-represented compared to those related to plant growth and development. Senescence of the R. cantleyi flower activates senescence-associated genes in the transcription activity (members of the transcription factor families MYB, bHLH, NAC, and WRKY), nutrient remobilization (autophagy-related protein and transporter genes), and redox regulation (CATALASE). Most of the senescence-related genes were found to be differentially regulated, perhaps for the fine-tuning of various responses in the senescing R. cantleyi flower. Additionally, pathway analysis showed the activation of genes such as ETHYLENE RECEPTOR, ETHYLENE-INSENSITIVE 2, ETHYLENE-INSENSITIVE 3, and ETHYLENE-RESPONSIVE TRANSCRIPTION FACTOR, indicating the possible involvement of the ethylene hormone response pathway in the regulation of R. cantleyi senescence. Our results provide a model of the molecular mechanism underlying R. cantleyi flower senescence, and contribute essential information towards further understanding the biology of the Rafflesiaceae family.


Assuntos
Flores/genética , Genes de Plantas , Malpighiales/fisiologia , Senescência Vegetal/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Malpighiales/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa