Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
Plant J ; 119(3): 1596-1612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38831668

RESUMO

Genome annotation files play a critical role in dictating the quality of downstream analyses by providing essential predictions for gene positions and structures. These files are pivotal in decoding the complex information encoded within DNA sequences. Here, we generated experimental data resolving RNA 5'- and 3'-ends as well as full-length RNAs for cassava TME12 sticklings in ambient temperature and cold. We used these data to generate genome annotation files using the TranscriptomeReconstructoR (TR) tool. A careful comparison to high-quality genome annotations suggests that our new TR genome annotations identified additional genes, resolved the transcript boundaries more accurately and identified additional RNA isoforms. We enhanced existing cassava genome annotation files with the information from TR that maintained the different transcript models as RNA isoforms. The resultant merged annotation was subsequently utilized for comprehensive analysis. To examine the effects of genome annotation files on gene expression studies, we compared the detection of differentially expressed genes during cold using the same RNA-seq data but alternative genome annotation files. We found that our merged genome annotation that included cold-specific TR gene models identified about twice as many cold-induced genes. These data indicate that environmentally induced genes may be missing in off-the-shelf genome annotation files. In conclusion, TR offers the opportunity to enhance crop genome annotations with implications for the discovery of differentially expressed candidate genes during plant-environment interactions.


Assuntos
Genoma de Planta , Manihot , Anotação de Sequência Molecular , Manihot/genética , Genoma de Planta/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , RNA de Plantas/genética
2.
Plant J ; 119(2): 1014-1029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805573

RESUMO

Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.


Assuntos
Celulose , Regulação da Expressão Gênica de Plantas , Giberelinas , Manihot , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Celulose/metabolismo , Celulose/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Giberelinas/metabolismo , Parede Celular/metabolismo , Crescimento Celular , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Polissacarídeos/metabolismo
3.
Plant J ; 119(4): 2045-2062, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961707

RESUMO

Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.


Assuntos
Carbono , Parede Celular , Inositol , Manihot , Raízes de Plantas , Rafinose , Amido , Amido/metabolismo , Manihot/genética , Manihot/metabolismo , Carbono/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Parede Celular/metabolismo , Inositol/metabolismo , Rafinose/metabolismo , Genótipo , Carotenoides/metabolismo
4.
Plant Physiol ; 194(2): 1218-1232, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37874769

RESUMO

Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.


Assuntos
Manihot , Melatonina , Vírus do Mosaico , Potexvirus , Resistência à Doença/genética , Manihot/genética , Manihot/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Potexvirus/genética , Melatonina/metabolismo , Doenças das Plantas/genética
5.
Plant Physiol ; 195(4): 2566-2578, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38701041

RESUMO

Bacteria from the genus Xanthomonas are prolific phytopathogens that elicit disease in over 400 plant species. Xanthomonads carry a repertoire of specialized proteins called transcription activator-like (TAL) effectors that promote disease and pathogen virulence by inducing the expression of host susceptibility (S) genes. Xanthomonas phaseoli pv. manihotis (Xpm) causes bacterial blight on the staple food crop cassava (Manihot esculenta Crantz). The Xpm effector TAL20 induces ectopic expression of the S gene Manihot esculenta Sugars Will Eventually be Exported Transporter 10a (MeSWEET10a), which encodes a sugar transporter that contributes to cassava bacterial blight (CBB) susceptibility. We used CRISPR/Cas9 to generate multiple cassava lines with edits to the MeSWEET10a TAL20 effector binding site and/or coding sequence. In several of the regenerated lines, MeSWEET10a expression was no longer induced by Xpm, and in these cases, we observed reduced CBB disease symptoms post Xpm infection. Because MeSWEET10a is expressed in cassava flowers, we further characterized the reproductive capability of the MeSWEET10a promoter and coding sequence mutants. Lines were crossed to themselves and to wild-type plants. The results indicated that expression of MeSWEET10a in female, but not male, flowers is critical to produce viable F1 seed. In the case of promoter mutations that left the coding sequence intact, viable F1 progeny were recovered. Taken together, these results demonstrate that blocking MeSWEET10a induction is a viable strategy for decreasing cassava susceptibility to CBB and that ideal lines will contain promoter mutations that block TAL effector binding while leaving endogenous expression of MeSWEET10a unaltered.


Assuntos
Sistemas CRISPR-Cas , Manihot , Mutação , Doenças das Plantas , Xanthomonas , Manihot/genética , Manihot/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Xanthomonas/patogenicidade , Xanthomonas/fisiologia , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Genomics ; 116(4): 110871, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38806102

RESUMO

Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.


Assuntos
Resposta ao Choque Frio , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigênese Genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Elementos de DNA Transponíveis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
BMC Genomics ; 25(1): 699, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020298

RESUMO

BACKGROUND: Cassava is one of three major potato crops and the sixth most important food crop globally. Improving yield remains a primary aim in cassava breeding. Notably, plant height significantly impacts the yield and quality of crops; however, the mechanisms underlying cassava plant height development are yet to be elucidated. RESULTS: In this study, we investigated the mechanisms responsible for cassava plant height development using phenotypic, anatomical, and transcriptomic analyses. Phenotypic and anatomical analysis revealed that compared to the high-stem cassava cultivar, the dwarf-stem cassava cultivar exhibited a significant reduction in plant height and a notable increase in internode tissue xylem area. Meanwhile, physiological analysis demonstrated that the lignin content of dwarf cassava was significantly higher than that of high cassava. Notably, transcriptome analysis of internode tissues identified several differentially expressed genes involved in cell wall synthesis and expansion, plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis between the two cassava cultivars. CONCLUSIONS: Our findings suggest that internode tissue cell division, secondary wall lignification, and hormone-related gene expression play important roles in cassava plant height development. Ultimately, this study provides new insights into the mechanisms of plant height morphogenesis in cassava and identifies candidate regulatory genes associated with plant height that can serve as valuable genetic resources for future crop dwarfing breeding.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Manihot , Manihot/genética , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Fenótipo , Transcriptoma , Lignina/metabolismo , Lignina/biossíntese
8.
BMC Genomics ; 25(1): 436, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698332

RESUMO

BACKGROUND: Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS: Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS: This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.


Assuntos
Manihot , Vírus do Mosaico , Manihot/classificação , Manihot/genética , Manihot/imunologia , Manihot/virologia , Vírus do Mosaico/fisiologia , Imunidade Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas , Análise de Sequência de RNA
9.
BMC Genomics ; 25(1): 448, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38802758

RESUMO

MeFtsZ2-1 is a key gene for plant plastid division, but the mechanism by which MeFtsZ2-1 affects pigment accumulation in cassava (Manihot esculenta Crantz) through plastids remains unclear. We found that MeFtsZ2-1 overexpression in cassava (OE) exhibited darker colors of leaves, with increased levels of anthocyanins and carotenoids. Further observation via Transmission Electron Microscopy (TEM) revealed no apparent defects in chloroplast structure but an increase in the number of plastoglobule in OE leaves. RNA-seq results showed 1582 differentially expressed genes (DEGs) in leaves of OE. KEGG pathway analysis indicated that these DEGs were enriched in pathways related to flavonoid, anthocyanin, and carotenoid biosynthesis. This study reveals the role of MeFtsZ2-1 in cassava pigment accumulation from a physiological and transcriptomic perspective, providing a theoretical basis for improving cassava quality.


Assuntos
Manihot , Folhas de Planta , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Transcriptoma , Antocianinas/metabolismo , Antocianinas/biossíntese , Carotenoides/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Plastídeos/metabolismo , Plastídeos/genética
10.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714917

RESUMO

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Assuntos
Arabidopsis , Manihot , Proteínas de Plantas , Plantas Geneticamente Modificadas , Potássio , Estresse Salino , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/fisiologia , Plantas Geneticamente Modificadas/genética , Potássio/metabolismo , Estresse Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Regulação da Expressão Gênica de Plantas , Tolerância ao Sal/genética , Sódio/metabolismo
11.
Plant Biotechnol J ; 22(9): 2424-2434, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38600705

RESUMO

The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.


Assuntos
Resistência à Doença , Etilenos , Manihot , Doenças das Plantas , Proteínas de Plantas , Manihot/genética , Manihot/metabolismo , Manihot/microbiologia , Etilenos/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Xanthomonas axonopodis/patogenicidade , Plantas Geneticamente Modificadas , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo
12.
PLoS Pathog ; 18(2): e1010332, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180277

RESUMO

Cassava brown streak disease (CBSD), dubbed the "Ebola of plants", is a serious threat to food security in Africa caused by two viruses of the family Potyviridae: cassava brown streak virus (CBSV) and Ugandan (U)CBSV. Intriguingly, U/CBSV, along with another member of this family and one secoviridae, are the only known RNA viruses encoding a protein of the Maf/ham1-like family, a group of widespread pyrophosphatase of non-canonical nucleotides (ITPase) expressed by all living organisms. Despite the socio-economic impact of CDSD, the relevance and role of this atypical viral factor has not been yet established. Here, using an infectious cDNA clone and reverse genetics, we demonstrate that UCBSV requires the ITPase activity for infectivity in cassava, but not in the model plant Nicotiana benthamiana. HPLC-MS/MS experiments showed that, quite likely, this host-specific constraint is due to an unexpected high concentration of non-canonical nucleotides in cassava. Finally, protein analyses and experimental evolution of mutant viruses indicated that keeping a fraction of the yielded UCBSV ITPase covalently bound to the viral RNA-dependent RNA polymerase (RdRP) optimizes viral fitness, and this seems to be a feature shared by the other members of the Potyviridae family expressing Maf/ham1-like proteins. All in all, our work (i) reveals that the over-accumulation of non-canonical nucleotides in the host might have a key role in antiviral defense, and (ii) provides the first example of an RdRP-ITPase partnership, reinforcing the idea that RNA viruses are incredibly versatile at adaptation to different host setups.


Assuntos
Manihot , Potyviridae , Manihot/genética , Nucleotídeos , Doenças das Plantas , Potyviridae/genética , Pirofosfatases , RNA Viral/análise , RNA Viral/genética , RNA Polimerase Dependente de RNA , Espectrometria de Massas em Tandem
13.
New Phytol ; 242(6): 2734-2745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581188

RESUMO

Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.


Assuntos
Proteínas de Choque Térmico HSP90 , Manihot , Doenças das Plantas , Proteínas de Plantas , Fosforilação , Proteínas de Choque Térmico HSP90/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Manihot/microbiologia , Manihot/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Xanthomonas/patogenicidade , Interações Hospedeiro-Patógeno , Ligação Proteica , Regulação da Expressão Gênica de Plantas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Resistência à Doença/genética
14.
Plant Physiol ; 192(4): 2672-2686, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37148300

RESUMO

Cassava (Manihot esculenta Crantz) is an important staple crop for food security in Africa and South America. The present study describes an integrated genomic and metabolomic approach to the characterization of Latin American cassava germplasm. Classification based on genotyping correlated with the leaf metabolome and indicated a key finding of adaption to specific eco-geographical environments. In contrast, the root metabolome did not relate to genotypic clustering, suggesting the different spatial regulation of this tissue's metabolome. The data were used to generate pan-metabolomes for specific tissues, and the inclusion of phenotypic data enabled the identification of metabolic sectors underlying traits of interest. For example, tolerance to whiteflies (Aleurotrachelus socialis) was not linked directly to cyanide content but to cell wall-related phenylpropanoid or apocarotenoid content. Collectively, these data advance the community resources and provide valuable insight into new candidate parental breeding materials with traits of interest directly related to combating food security.


Assuntos
Manihot , Manihot/genética , Manihot/metabolismo , América Latina , Melhoramento Vegetal , Fenótipo , Genótipo
15.
Plant Physiol ; 194(1): 456-474, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37706525

RESUMO

Cassava (Manihot esculenta Crantz) is an important crop with a high photosynthetic rate and high yield. It is classified as a C3-C4 plant based on its photosynthetic and structural characteristics. To investigate the structural and photosynthetic characteristics of cassava leaves at the cellular level, we created a single-cell transcriptome atlas of cassava leaves. A total of 11,177 high-quality leaf cells were divided into 15 cell clusters. Based on leaf cell marker genes, we identified 3 major tissues of cassava leaves, which were mesophyll, epidermis, and vascular tissue, and analyzed their distinctive properties and metabolic activity. To supplement the genes for identifying the types of leaf cells, we screened 120 candidate marker genes. We constructed a leaf cell development trajectory map and discovered 6 genes related to cell differentiation fate. The structural and photosynthetic properties of cassava leaves analyzed at the single cellular level provide a theoretical foundation for further enhancing cassava yield and nutrition.


Assuntos
Manihot , Manihot/genética , Manihot/química , Manihot/metabolismo , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/genética , RNA/metabolismo
16.
Plant Physiol ; 193(3): 2232-2247, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37534747

RESUMO

Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.


Assuntos
Manihot , Xanthomonas axonopodis , Xanthomonas axonopodis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/microbiologia , Histonas/metabolismo , Resistência à Doença/genética , Acetilação , Doenças das Plantas/microbiologia
17.
Plant Physiol ; 193(2): 1479-1490, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37307568

RESUMO

The endophytic nitrogen (N)-fixing bacterium A02 belongs to the genus Curtobacterium (Curtobacterium sp.) and is crucial for the N metabolism of cassava ( Manihot esculenta Crantz). We isolated the A02 strain from cassava cultivar SC205 and used the 15N isotope dilution method to study the impacts of A02 on growth and accumulation of N in cassava seedlings. Furthermore, the whole genome was sequenced to determine the N-fixation mechanism of A02. Compared with low N control (T1), inoculation with the A02 strain (T2) showed the highest increase in leaf and root dry weight of cassava seedlings, and 120.3 nmol/(mL·h) was the highest nitrogenase activity recorded in leaves, which were considered the main site for colonization and N-fixation. The genome of A02 was 3,555,568 bp in size and contained a circular chromosome and a plasmid. Comparison with the genomes of other short bacilli revealed that strain A02 showed evolutionary proximity to the endophytic bacterium NS330 (Curtobacterium citreum) isolated from rice (Oryza sativa) in India. The genome of A02 contained 13 nitrogen fixation (nif) genes, including 4 nifB, 1 nifR3, 2 nifH, 1 nifU, 1 nifD, 1 nifK, 1 nifE, 1 nifN, and 1 nifC, and formed a relatively complete N fixation gene cluster 8-kb long that accounted for 0.22% of the whole genome length. The nifHDK of strain A02 (Curtobacterium sp.) is identical to the Frankia alignment. Function prediction showed high copy number of the nifB gene was related to the oxygen protection mechanism. Our findings provide exciting information about the bacterial genome in relation to N support for transcriptomic and functional studies for increasing N use efficiency in cassava.


Assuntos
Manihot , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Manihot/genética , Manihot/metabolismo , Nitrogenase/genética , Nitrogenase/metabolismo , Sequência de Bases , Bactérias/metabolismo , Nitrogênio/metabolismo
18.
Mol Biol Rep ; 51(1): 882, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088099

RESUMO

BACKGROUND: Macrophomina phaseolina is a pathogen that causes an opportunistic disease that spreads by soil and seeds and affects more than 500 different plant species, like fruits, trees, and row crops. Mycotoxins, such as phaseolinic acid, and phaseolinone, are produced by M. phaseolina isolates in previous investigations; however, the production of these mycotoxins seems to vary depending on the host and the region. METHODS AND RESULTS: In this study, Macrophomina phaseolina strain 3 A was isolated from rotten cassava tuber and identified using the analysis of the sequences of the internal transcribed spacer region. The isolate was inoculated on a fresh healthy cassava tuber at 25 °C and tuber-rotting potential was monitored for 4 weeks. Virulence genes MPH_06603, MPH_06955, and MPH_01521 were determined with designed primers, and secondary metabolites were characterized by FTIR and GCMS. The rotten tuber effect was observed from the 2nd week of the experiment with severe tuber rot and weight reduction. The PCR showed the presence of MPH_06603 virulence gene. The GCMS showed N-Methylpivalamide (115.0 m/z), Butane, 1,4-dimethoxy- (119.0 m/z), and 5-Hydroxymethylfurfural (126.0 m/z) were the predominant metabolites produced by the pathogen. The compounds in the metabolites inhibit CYP3A4 enzymes, cause eye irritation, and Human Ether-a-go-go-related gene inhibition. CONCLUSION: This study revealed that M. phaseolina was responsible for the cassava tuber rot which leads to a lower yield of farm produce. The metabolites produced are toxic and unsafe for human consumption. It is suggested that farmers should destroy any cassava affected by this pathogen to prevent its toxic effects on humans and animals.


Assuntos
Ascomicetos , Manihot , Doenças das Plantas , Tubérculos , Manihot/microbiologia , Manihot/genética , Nigéria , Tubérculos/microbiologia , Virulência/genética , Ascomicetos/patogenicidade , Ascomicetos/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fazendas , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Filogenia
19.
Plant Cell Rep ; 43(6): 153, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806727

RESUMO

KEY MESSAGE: MePMTR1 is involved in plant development and production as well as photosynthesis in plant. Melatonin is widely involved in plant growth and development as well as stress responses. Compared with the extending studies of melatonin in stress responses, the direct link between melatonin and plant development in the whole stages remains unclear. With the identification of phytomelatonin receptor PMTR1 in plants, melatonin signalling is becoming much clearer. However, the function of MePMTR1 in tropical crop cassava remains elusive. In this study, we found that overexpression of MePMTR1 showed larger biomass than wild type (WT), including higher number and area of leaves, weight, and accompanying with higher photosynthetic efficiency. Consistently, exogenous melatonin accelerated photosynthetic rate in Arabidopsis. In addition, MePMTR1-overexpressed plants exhibited more resistance to dark-induced senescence compared with WT, demonstrated by higher chlorophyll, lower hydrogen peroxide and superoxide content. In summary, this study illustrated that melatonin and its receptor regulate growth, development and senescence in plants, highlighting the potential application of melatonin and its receptor in improving crop yield and photosynthesis.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Manihot , Melatonina , Fotossíntese , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Melatonina/metabolismo , Manihot/genética , Manihot/crescimento & desenvolvimento , Manihot/metabolismo , Receptores de Melatonina/metabolismo , Receptores de Melatonina/genética , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Clorofila/metabolismo , Escuridão , Peróxido de Hidrogênio/metabolismo
20.
Genomics ; 115(3): 110626, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37062363

RESUMO

Receptor-like cytoplasmic kinases (RLCKs) play important roles in various developmental processes and stress responses in plants. Whereas, the detailed information of this family in cassava has not clear yet. In this study, A total of 322 MeRLCK genes were identified in the cassava genome, and they could be divided into twelve clades (Clades I-XII) according to their phylogenetic relationships. Most RLCK members in the same clade have similar characteristics and motif compositions. Over half of the RLCKs possess cis-elements in their promoters that respond to ABA, MeJA, defense reactions, and stress. Under Xpm11 infection, the expression levels of four genes show significant changes, suggesting their involvement in Xpm11 resistance. Two RLCK (MeRLCK11 and MeRLCK84) genes potentially involved in resistance to cassava bacterial blight were identified through VIGS experiments. This work laid the foundation for studying the function of the cassava RLCK genes, especially the genes related to pathogen resistance.


Assuntos
Manihot , Manihot/genética , Manihot/metabolismo , Manihot/microbiologia , Resistência à Doença , Filogenia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa