Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96.898
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865273

RESUMO

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Assuntos
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animais , Nanomedicina Teranóstica/métodos , Humanos , Camundongos , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Camundongos Nus , Meios de Contraste/química
2.
Proc Natl Acad Sci U S A ; 120(27): e2219036120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364102

RESUMO

We report the preparation and spectroscopic characterization of a highly elusive copper site bound exclusively to oxygen donor atoms within a protein scaffold. Despite copper generally being considered unsuitable for use in MRI contrast agents, which in the clinic are largely Gd(III) based, the designed copper coiled coil displays relaxivity values equal to, or superior than, those of the Gd(III) analog at clinical field strengths. The creation of this new-to-biology proteinaceous CuOx-binding site demonstrates the power of the de novo peptide design approach to access chemistry for abiological applications, such as for the development of MRI contrast agents.


Assuntos
Meios de Contraste , Cobre , Cobre/metabolismo , Meios de Contraste/química , Imageamento por Ressonância Magnética , Sítios de Ligação , Peptídeos
3.
Proc Natl Acad Sci U S A ; 120(18): e2220036120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094132

RESUMO

SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Camundongos , Animais , Meios de Contraste/química , Cirrose Hepática/patologia , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Nanopartículas Magnéticas de Óxido de Ferro , Colágeno/análise
4.
Nat Methods ; 19(2): 242-254, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145319

RESUMO

Despite advances in imaging, image-based vascular systems biology has remained challenging because blood vessel data are often available only from a single modality or at a given spatial scale, and cross-modality data are difficult to integrate. Therefore, there is an exigent need for a multimodality pipeline that enables ex vivo vascular imaging with magnetic resonance imaging, computed tomography and optical microscopy of the same sample, while permitting imaging with complementary contrast mechanisms from the whole-organ to endothelial cell spatial scales. To achieve this, we developed 'VascuViz'-an easy-to-use method for simultaneous three-dimensional imaging and visualization of the vascular microenvironment using magnetic resonance imaging, computed tomography and optical microscopy in the same intact, unsectioned tissue. The VascuViz workflow permits multimodal imaging with a single labeling step using commercial reagents and is compatible with diverse tissue types and protocols. VascuViz's interdisciplinary utility in conjunction with new data visualization approaches opens up new vistas in image-based vascular systems biology.


Assuntos
Encéfalo/irrigação sanguínea , Imagem Multimodal/métodos , Biologia de Sistemas/métodos , Animais , Encéfalo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Circulação Cerebrovascular , Meios de Contraste , Visualização de Dados , Feminino , Hemodinâmica , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Masculino , Camundongos Endogâmicos , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
5.
Hepatology ; 79(2): 380-391, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548928

RESUMO

BACKGROUND AND AIMS: The objective of this study is to determine the diagnostic accuracy of the American College of Radiology Contrast-Enhanced Ultrasound (CEUS) Liver Imaging Reporting and Data System LR-5 characterization for HCC diagnosis in North American or European patients. APPROACH AND RESULTS: A prospective multinational cohort study was performed from January 2018 through November 2022 at 11 academic and nonacademic centers in North America and Europe. Patients at risk for HCC with at least 1 liver observation not previously treated, identified on ultrasound (US), or multiphase CT or MRI performed as a part of standard clinical care were eligible for the study. All participants were examined with CEUS of the liver within 4 weeks of CT/MRI or tissue diagnosis to characterize up to 2 liver nodules per participant using ACR CEUS Liver Imaging Reporting and Data System. Definite HCC diagnosis on the initial CT/MRI, imaging follow-up, or histology for CT/MRI-indeterminate nodules were used as reference standards. A total of 545 nodules had confirmed reference standards in 480 patients, 73.8% were HCC, 5.5% were other malignancies, and 20.7% were nonmalignant. The specificity of CEUS LR-5 for HCC was 95.1% (95% CI 90.1%-97.7%), sensitivity 62.9% (95% CI 57.9%-67.7%), positive predictive value 97.3% (95% CI 94.5%-98.7%), and negative predictive value 47.7% (95% CI 41.7%-53.8%). In addition, benign CEUS characterization (LR-1 or LR-2) had 100% specificity and 100% positive predictive value for nonmalignant liver nodules. CONCLUSIONS: CEUS Liver Imaging Reporting and Data System provides an accurate categorization of liver nodules in participants at risk for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Prospectivos , Estudos de Coortes , Meios de Contraste , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Europa (Continente) , América do Norte , Sensibilidade e Especificidade
6.
PLoS Comput Biol ; 20(5): e1012106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38748755

RESUMO

Contrast transport models are widely used to quantify blood flow and transport in dynamic contrast-enhanced magnetic resonance imaging. These models analyze the time course of the contrast agent concentration, providing diagnostic and prognostic value for many biological systems. Thus, ensuring accuracy and repeatability of the model parameter estimation is a fundamental concern. In this work, we analyze the structural and practical identifiability of a class of nested compartment models pervasively used in analysis of MRI data. We combine artificial and real data to study the role of noise in model parameter estimation. We observe that although all the models are structurally identifiable, practical identifiability strongly depends on the data characteristics. We analyze the impact of increasing data noise on parameter identifiability and show how the latter can be recovered with increased data quality. To complete the analysis, we show that the results do not depend on specific tissue characteristics or the type of enhancement patterns of contrast agent signal.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Meios de Contraste/química , Meios de Contraste/farmacocinética , Imageamento por Ressonância Magnética/métodos , Humanos , Modelos Biológicos , Biologia Computacional , Simulação por Computador
7.
Proc Natl Acad Sci U S A ; 119(29): e2123527119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858309

RESUMO

A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.


Assuntos
Meios de Contraste , Gadolínio , Ouro , Imageamento por Ressonância Magnética , Nanoconchas , Terapia Fototérmica , Meios de Contraste/síntese química , Gadolínio/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanoconchas/química , Terapia Fototérmica/métodos , Polietilenoglicóis/química , Dióxido de Silício/química
8.
Eur Heart J ; 45(18): 1647-1658, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38513060

RESUMO

BACKGROUND AND AIMS: Contrast-induced nephropathy (CIN), also known as contrast-associated acute kidney injury (CA-AKI) underlies a significant proportion of the morbidity and mortality following coronary angiographic procedures in high-risk patients and remains a significant unmet need. In pre-clinical studies inorganic nitrate, which is chemically reduced in vivo to nitric oxide, is renoprotective but this observation is yet to be translated clinically. In this study, the efficacy of inorganic nitrate in the prevention of CIN in high-risk patients presenting with acute coronary syndromes (ACS) is reported. METHODS: NITRATE-CIN is a double-blind, randomized, single-centre, placebo-controlled trial assessing efficacy of inorganic nitrate in CIN prevention in at-risk patients presenting with ACS. Patients were randomized 1:1 to once daily potassium nitrate (12 mmol) or placebo (potassium chloride) capsules for 5 days. The primary endpoint was CIN (KDIGO criteria). Secondary outcomes included kidney function [estimated glomerular filtration rate (eGFR)] at 3 months, rates of procedural myocardial infarction, and major adverse cardiac events (MACE) at 12 months. This study is registered with ClinicalTrials.gov: NCT03627130. RESULTS: Over 3 years, 640 patients were randomized with a median follow-up of 1.0 years, 319 received inorganic nitrate with 321 received placebo. The mean age of trial participants was 71.0 years, with 73.3% male and 75.2% Caucasian; 45.9% had diabetes, 56.0% had chronic kidney disease (eGFR <60 mL/min) and the mean Mehran score of the population was 10. Inorganic nitrate treatment significantly reduced CIN rates (9.1%) vs. placebo (30.5%, P < .001). This difference persisted after adjustment for baseline creatinine and diabetes status (odds ratio 0.21, 95% confidence interval 0.13-0.34). Secondary outcomes were improved with inorganic nitrate, with lower rates of procedural myocardial infarction (2.7% vs. 12.5%, P = .003), improved 3-month renal function (between-group change in eGFR 5.17, 95% CI 2.94-7.39) and reduced 1-year MACE (9.1% vs. 18.1%, P = .001) vs. placebo. CONCLUSIONS: In patients at risk of renal injury undergoing coronary angiography for ACS, a short (5 day) course of once-daily inorganic nitrate reduced CIN, improved kidney outcomes at 3 months, and MACE events at 1 year compared to placebo.


Assuntos
Síndrome Coronariana Aguda , Injúria Renal Aguda , Meios de Contraste , Angiografia Coronária , Nitratos , Humanos , Angiografia Coronária/efeitos adversos , Angiografia Coronária/métodos , Meios de Contraste/efeitos adversos , Masculino , Feminino , Método Duplo-Cego , Nitratos/administração & dosagem , Nitratos/uso terapêutico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Idoso , Pessoa de Meia-Idade , Taxa de Filtração Glomerular/efeitos dos fármacos , Compostos de Potássio/administração & dosagem , Compostos de Potássio/uso terapêutico
9.
Eur Heart J ; 45(23): 2079-2094, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38748258

RESUMO

BACKGROUND AND AIMS: Patients with repaired tetralogy of Fallot remain at risk of life-threatening ventricular tachycardia related to slow-conducting anatomical isthmuses (SCAIs). Preventive ablation of SCAI identified by invasive electroanatomical mapping is increasingly performed. This study aimed to non-invasively identify SCAI using 3D late gadolinium enhancement cardiac magnetic resonance (3D-LGE-CMR). METHODS: Consecutive tetralogy of Fallot patients who underwent right ventricular electroanatomical mapping (RV-EAM) and 3D-LGE-CMR were included. High signal intensity threshold for abnormal myocardium was determined based on direct comparison of bipolar voltages and signal intensity by co-registration of RV-EAM with 3D-LGE-CMR. The diagnostic performance of 3D-LGE-CMR to non-invasively identify SCAI was determined, validated in a second cohort, and compared with the discriminative ability of proposed risk scores. RESULTS: The derivation cohort consisted of 48 (34 ± 16 years) and the validation cohort of 53 patients (36 ± 18 years). In the derivation cohort, 78 of 107 anatomical isthmuses (AIs) identified by EAM were normal-conducting AI, 22 were SCAI, and 7 blocked AI. High signal intensity threshold was 42% of the maximal signal intensity. The sensitivity and specificity of 3D-LGE-CMR for identifying SCAI or blocked AI were 100% and 90%, respectively. In the validation cohort, 85 of 124 AIs were normal-conducting AI, 36 were SCAI, and 3 blocked AI. The sensitivity and specificity of 3D-LGE-CMR were 95% and 91%, respectively. All risk scores showed an at best modest performance to identify SCAI (area under the curve ≤ .68). CONCLUSIONS: 3D late gadolinium enhancement cardiac magnetic resonance can identify SCAI with excellent accuracy and may refine non-invasive risk stratification and patient selection for invasive EAM in tetralogy of Fallot.


Assuntos
Imageamento Tridimensional , Taquicardia Ventricular , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/cirurgia , Tetralogia de Fallot/diagnóstico por imagem , Masculino , Feminino , Adulto , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/diagnóstico por imagem , Adulto Jovem , Meios de Contraste , Pessoa de Meia-Idade
10.
Chem Soc Rev ; 53(12): 6068-6099, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38738633

RESUMO

Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.


Assuntos
Meios de Contraste , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Humanos , Meios de Contraste/química , Animais , Imagem Multimodal/métodos , Imageamento por Ressonância Magnética/métodos
11.
Chem Soc Rev ; 53(13): 6779-6829, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828885

RESUMO

This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.


Assuntos
Vesículas Extracelulares , Corantes Fluorescentes , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Corantes Fluorescentes/química , Traçadores Radioativos , Imageamento por Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Meios de Contraste/metabolismo
12.
Nano Lett ; 24(1): 209-214, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156794

RESUMO

Despite the real-time, nonionizing, and cost-effective nature of ultrasound imaging, there is a dearth of methods to visualize two or more populations of contrast agents simultaneously─a technique known as multiplex imaging. Here, we present a new approach to multiplex ultrasound imaging using perfluorocarbon (PFC) nanodroplets. The nanodroplets, which undergo a liquid-to-gas phase transition in response to an acoustic trigger, act as activatable contrast agents. This work characterized the dynamic responses of two PFC nanodroplets with boiling points of 28 and 56 °C. These characteristic responses were then used to demonstrate that the relative concentrations of the two populations of PFC nanodroplets could be accurately measured in the same imaging volume within an average error of 1.1%. Overall, the findings indicate the potential of this approach for multiplex ultrasound imaging, allowing for the simultaneous visualization of multiple molecular targets simultaneously.


Assuntos
Meios de Contraste , Fluorocarbonos , Ultrassonografia/métodos , Transição de Fase , Acústica
13.
Nano Lett ; 24(22): 6696-6705, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38796774

RESUMO

Ultra-high-field (UHF) magnetic resonance imaging (MRI) stands as a pivotal cornerstone in biomedical imaging, yet the challenge of false imaging persists, constraining its full potential. Despite the development of dual-mode contrast agents improving conventional MRI, their effectiveness in UHF remains suboptimal due to the high magnetic moment, resulting in diminished T1 relaxivity and excessively enhanced T2 relaxivity. Herein, we report a DNA-mediated magnetic-dimer assembly (DMA) of iron oxide nanoparticles that harnesses UHF-tailored nanomagnetism for fault-free UHF-MRI. DMA exhibits a dually enhanced longitudinal relaxivity of 4.42 mM-1·s-1 and transverse relaxivity of 26.23 mM-1·s-1 at 9 T, demonstrating a typical T1-T2 dual-mode UHF-MRI contrast agent. Importantly, DMA leverages T1-T2 dual-modality image fusion to achieve artifact-free breast cancer visualization, effectively filtering interference from hundred-micrometer-level false-positive signals with unprecedented precision. The UHF-tailored T1-T2 dual-mode DMA contrast agents hold promise for elevating the accuracy of MR imaging in disease diagnosis.


Assuntos
Meios de Contraste , DNA , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Humanos , DNA/química , Camundongos , Nanopartículas Magnéticas de Óxido de Ferro/química , Feminino , Animais , Neoplasias da Mama/diagnóstico por imagem , Nanopartículas de Magnetita/química , Linhagem Celular Tumoral
14.
Lancet Oncol ; 25(1): 137-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081200

RESUMO

BACKGROUND: Guidelines are inconclusive on whether contrast-enhanced MRI using gadoxetic acid and diffusion-weighted imaging should be added routinely to CT in the investigation of patients with colorectal liver metastases who are scheduled for curative liver resection or thermal ablation, or both. Although contrast-enhanced MRI is reportedly superior than contrast-enhanced CT in the detection and characterisation of colorectal liver metastases, its effect on clinical patient management is unknown. We aimed to assess the clinical effect of an additional liver contrast-enhanced MRI on local treatment plan in patients with colorectal liver metastases amenable to local treatment, based on contrast-enhanced CT. METHODS: We did an international, multicentre, prospective, incremental diagnostic accuracy trial in 14 liver surgery centres in the Netherlands, Belgium, Norway, and Italy. Participants were aged 18 years or older with histological proof of colorectal cancer, a WHO performance status score of 0-4, and primary or recurrent colorectal liver metastases, who were scheduled for local therapy based on contrast-enhanced CT. All patients had contrast-enhanced CT and liver contrast-enhanced MRI including diffusion-weighted imaging and gadoxetic acid as a contrast agent before undergoing local therapy. The primary outcome was change in the local clinical treatment plan (decided by the individual clinics) on the basis of liver contrast-enhanced MRI findings, analysed in the intention-to-image population. The minimal clinically important difference in the proportion of patients who would have change in their local treatment plan due to an additional liver contrast-enhanced MRI was 10%. This study is closed and registered in the Netherlands Trial Register, NL8039. FINDINGS: Between Dec 17, 2019, and July 31, 2021, 325 patients with colorectal liver metastases were assessed for eligibility. 298 patients were enrolled and included in the intention-to-treat population, including 177 males (59%) and 121 females (41%) with planned local therapy based on contrast-enhanced CT. A change in the local treatment plan based on liver contrast-enhanced MRI findings was observed in 92 (31%; 95% CI 26-36) of 298 patients. Changes were made for 40 patients (13%) requiring more extensive local therapy, 11 patients (4%) requiring less extensive local therapy, and 34 patients (11%) in whom the indication for curative-intent local therapy was revoked, including 26 patients (9%) with too extensive disease and eight patients (3%) with benign lesions on liver contrast-enhanced MRI (confirmed by a median follow-up of 21·0 months [IQR 17·5-24·0]). INTERPRETATION: Liver contrast-enhanced MRI should be considered in all patients scheduled for local treatment for colorectal liver metastases on the basis of contrast-enhanced CT imaging. FUNDING: The Dutch Cancer Society and Bayer AG - Pharmaceuticals.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Masculino , Feminino , Humanos , Meios de Contraste , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/terapia , Neoplasias Colorretais/patologia
15.
J Cell Mol Med ; 28(1): e18016, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909687

RESUMO

Contrast-induced nephropathy (CIN) is a condition that causes kidney damage in patients receiving angiography with iodine-based contrast agents. This study investigated the potential protective effects of berberine (BBR) against CIN and its underlying mechanisms. The researchers conducted both in vivo and in vitro experiments to explore BBR's renal protective effects. In the in vivo experiments, SD rats were used to create a CIN model, and different groups were established. The results showed that CIN model group exhibited impaired renal function, severe damage to renal tubular cells and increased apoptosis and ferroptosis. However, BBR treatment group demonstrated improved renal function, decreased apoptosis and ferroptosis. Similar results were observed in the in vitro experiments using HK-2 cells. BBR reduced ioversol-induced apoptosis and ferroptosis, and exerted its protective effects through Akt/Foxo3a/Nrf2 signalling pathway. BBR administration increased the expression of Foxo3a and Nrf2 while decreasing the levels of p-Akt and p-Foxo3a. In conclusion, this study revealed that BBR effectively inhibited ioversol-induced apoptosis and ferroptosis in vivo and in vitro. The protective effects of BBR were mediated through the modulation of Akt/Foxo3a/Nrf2 signalling pathway, leading to the alleviation of CIN. These findings suggest that BBR may have therapeutic potential for protecting against CIN in patients undergoing angiography with iodine-based contrast agents.


Assuntos
Berberina , Iodo , Nefropatias , Ácidos Tri-Iodobenzoicos , Humanos , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt , Berberina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Meios de Contraste/efeitos adversos , Ratos Sprague-Dawley , Nefropatias/tratamento farmacológico , Iodo/efeitos adversos , Apoptose
16.
Neuroimage ; 291: 120571, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518829

RESUMO

DCE-MRI provides information about vascular permeability and tissue perfusion through the acquisition of pharmacokinetic parameters. However, traditional methods for estimating these pharmacokinetic parameters involve fitting tracer kinetic models, which often suffer from computational complexity and low accuracy due to noisy arterial input function (AIF) measurements. Although some deep learning approaches have been proposed to tackle these challenges, most existing methods rely on supervised learning that requires paired input DCE-MRI and labeled pharmacokinetic parameter maps. This dependency on labeled data introduces significant time and resource constraints and potential noise in the labels, making supervised learning methods often impractical. To address these limitations, we present a novel unpaired deep learning method for estimating pharmacokinetic parameters and the AIF using a physics-driven CycleGAN approach. Our proposed CycleGAN framework is designed based on the underlying physics model, resulting in a simpler architecture with a single generator and discriminator pair. Crucially, our experimental results indicate that our method does not necessitate separate AIF measurements and produces more reliable pharmacokinetic parameters than other techniques.


Assuntos
Meios de Contraste , Aprendizado Profundo , Humanos , Meios de Contraste/farmacocinética , Simulação por Computador , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Reprodutibilidade dos Testes
17.
J Am Chem Soc ; 146(1): 134-144, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38152996

RESUMO

Gd-L1 is a macrocyclic Gd-HPDO3A derivative functionalized with a short spacer to a trisulfonated pyrene. When compared to Gd-HPDO3A, the increased relaxivity appears to be determined by both the higher molecular weight and the occurrence of an intramolecularly catalyzed prototropic exchange of the coordinated OH moiety. In water, Gd-L1 displayed a relaxivity of 7.1 mM-1 s-1 (at 298 K and 0.5 T), slightly increasing with the concentration likely due to the onset of intermolecular aggregation. A remarkably high and concentration-dependent relaxivity was measured in human serum (up to 26.5 mM-1 s-1 at the lowest tested concentration of 0.005 mM). The acquisition of 1H-nuclear magnetic relaxation dispersion (NMRD) and 17O-R2 vs T profiles allowed to get an in-depth characterization of the system. In vitro experiments in the presence of human serum albumin, γ-globulins, and polylysine, as well as using media mimicking the extracellular matrix, provided strong support to the view that the trisulfonated pyrene fosters binding interactions with the exposed positive groups on the surface of proteins, responsible for a remarkable in vivo hyperintensity in T1w MR images. The in vivo MR images of the liver, kidneys, and spleen showed a marked contrast enhancement in the first 10 min after the i.v. injection of Gd-L1, which was 2-6-fold higher than that for Gd-HPDO3A, while maintaining a very similar excretion behavior. These findings may pave the way to an improved design of MRI GBCAs, for the first time, based on the setup of weak and dynamic interactions with abundant positive groups on serum and ECM proteins.


Assuntos
Meios de Contraste , Compostos Heterocíclicos , Compostos Organometálicos , Humanos , Meios de Contraste/química , Eletricidade Estática , Imageamento por Ressonância Magnética/métodos , Compostos Organometálicos/química , Pirenos , Gadolínio
18.
Breast Cancer Res ; 26(1): 77, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745321

RESUMO

BACKGROUND: Early prediction of pathological complete response (pCR) is important for deciding appropriate treatment strategies for patients. In this study, we aimed to quantify the dynamic characteristics of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) and investigate its value to improve pCR prediction as well as its association with tumor heterogeneity in breast cancer patients. METHODS: The DCE-MRI, clinicopathologic record, and full transcriptomic data of 785 breast cancer patients receiving neoadjuvant chemotherapy were retrospectively included from a public dataset. Dynamic features of DCE-MRI were computed from extracted phase-varying radiomic feature series using 22 CAnonical Time-sereis CHaracteristics. Dynamic model and radiomic model were developed by logistic regression using dynamic features and traditional radiomic features respectively. Various combined models with clinical factors were also developed to find the optimal combination and the significance of each components was evaluated. All the models were evaluated in independent test set in terms of area under receiver operating characteristic curve (AUC). To explore the potential underlying biological mechanisms, radiogenomic analysis was implemented on patient subgroups stratified by dynamic model to identify differentially expressed genes (DEGs) and enriched pathways. RESULTS: A 10-feature dynamic model and a 4-feature radiomic model were developed (AUC = 0.688, 95%CI: 0.635-0.741 and AUC = 0.650, 95%CI: 0.595-0.705) and tested (AUC = 0.686, 95%CI: 0.594-0.778 and AUC = 0.626, 95%CI: 0.529-0.722), with the dynamic model showing slightly higher AUC (train p = 0.181, test p = 0.222). The combined model of clinical, radiomic, and dynamic achieved the highest AUC in pCR prediction (train: 0.769, 95%CI: 0.722-0.816 and test: 0.762, 95%CI: 0.679-0.845). Compared with clinical-radiomic combined model (train AUC = 0.716, 95%CI: 0.665-0.767 and test AUC = 0.695, 95%CI: 0.656-0.714), adding the dynamic component brought significant improvement in model performance (train p < 0.001 and test p = 0.005). Radiogenomic analysis identified 297 DEGs, including CXCL9, CCL18, and HLA-DPB1 which are known to be associated with breast cancer prognosis or angiogenesis. Gene set enrichment analysis further revealed enrichment of gene ontology terms and pathways related to immune system. CONCLUSION: Dynamic characteristics of DCE-MRI were quantified and used to develop dynamic model for improving pCR prediction in breast cancer patients. The dynamic model was associated with tumor heterogeniety in prognostic-related gene expression and immune-related pathways.


Assuntos
Neoplasias da Mama , Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Terapia Neoadjuvante , Prognóstico , Curva ROC , Transcriptoma , Idoso , Resultado do Tratamento
19.
J Hepatol ; 80(1): 62-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865273

RESUMO

BACKGROUND & AIMS: Nephrotoxicity of intravenous iodinated contrast media (ICM) in cirrhosis is still a debated issue, due to scarce, low-quality and conflicting evidence. This study aims to evaluate the incidence and predisposing factors of acute kidney injury (AKI) in patients with cirrhosis undergoing contrast-enhanced computed tomography (CECT). METHODS: We performed a prospective, multicenter, cohort study including 444 inpatients, 148 with cirrhosis (cohort 1) and 163 without cirrhosis (cohort 3) undergoing CECT and 133 with cirrhosis (cohort 2) unexposed to ICM. Kidney function parameters were assessed at T0, 48-72 h (T1), 5 and 7 days after CECT/enrollment. Urinary neutrophil gelatinase-associated lipocalin (U-NGAL) was measured in 50 consecutive patients from cohort 1 and 50 from cohort 2 as an early biomarker of tubular damage. RESULTS: AKI incidence was not significantly increased in patients with cirrhosis undergoing CECT (4.8%, 1.5%, 2.5% in cohorts 1, 2, 3 respectively, p = n.s.). Most AKI cases were mild and transient. The presence of concomitant infections was the only independent predictive factor of contrast-induced AKI (odds ratio 22.18; 95% CI 2.87-171.22; p = 0.003). No significant modifications of U-NGAL between T0 and T1 were detected, neither in cohort 1 nor in cohort 2 (median ΔU-NGAL: +0.2 [-7.6 to +5.5] ng/ml, +0.0 [-6.8 to +9.5] ng/ml, respectively [p = 0.682]). CONCLUSIONS: AKI risk after CECT in cirrhosis is low and not significantly different from that of the general population or of the cirrhotic population unexposed to ICM. It mostly consists of mild and rapidly resolving episodes of renal dysfunction and it is not associated with tubular kidney injury. Patients with ongoing infections appear to be the only ones at higher risk of AKI. IMPACT AND IMPLICATIONS: Nephrotoxicity due to intravenous iodinated contrast media (ICM) in patients with cirrhosis is still a debated issue, as the available evidence is limited and based on very heterogeneous studies, often conducted on small and retrospective cohorts. In this prospective three-cohort study we found that intravenous administration of ICM was associated with a low risk of AKI, similar to that of the general population and to that of patients with cirrhosis unexposed to ICM. Patients with ongoing infections were the only ones to have a significantly increased risk of contrast-induced AKI. Therefore, the actual recommendations of performing contrast imaging studies cautiously in cirrhosis do not seem to be reasonable anymore, with the exception of infected patients, who have a significantly higher risk of contrast-induced AKI.


Assuntos
Injúria Renal Aguda , Meios de Contraste , Humanos , Lipocalina-2 , Estudos de Coortes , Meios de Contraste/efeitos adversos , Estudos Retrospectivos , Estudos Prospectivos , Cirrose Hepática/complicações , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Biomarcadores
20.
Anal Chem ; 96(11): 4394-4401, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451935

RESUMO

Noninvasive monitoring of cancer metastasis is essential to improving clinical outcomes. Molecular MRI (mMRI) is a special implementation of noninvasive molecular imaging that promises to offer a powerful means for early detection and analysis of pathological states of cancer by tracking molecular markers. However, this is often hindered by the challenging issue of obtaining transformable mMRI contrast agents with high sensitivity, specificity, and broad applicability, given the high tumor heterogeneity and complex metastatic features. Herein, we present a dual-receptor targeted, multivalent recognition strategy and report a new class of mMRI probes for enhanced imaging of metastatic cancer. This probe is designed by covalently conjugating Gd-chelate with phenylboronic acid and an aptamer via an affordable polymerization chemistry to concurrently target two different cell-membrane receptors that are commonly overexpressed and highly implicated in both tumorigenesis and metastasis. Moreover, the polymerization chemistry allows the probe to contain a bunch of targeting ligands and signal reporters in a single chain, which not only leads to more than 2-fold enhancement in T1 relaxivity at 1.5 T compared to the commercial contrast agent but also enables it to actively target tumor cells in a multivalent recognition manner, contributing to a much higher imaging contrast than single-receptor targeted probes and the commercial agent in mouse models with lung metastases, yet without inducing systemic side effects. We expect this study to offer a useful molecular tool to promote transformable applications of mMRI and a better understanding of molecular mechanisms involved in cancer development.


Assuntos
Meios de Contraste , Neoplasias , Camundongos , Animais , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa