Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.529
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2220922120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307477

RESUMO

Honey bees (Apis mellifera) are critical agricultural pollinators as well as model organisms for research on development, behavior, memory, and learning. The parasite Nosema ceranae, a common cause of honey bee colony collapse, has developed resistance to small-molecule therapeutics. An alternative long-term strategy to combat Nosema infection is therefore urgently needed, with synthetic biology offering a potential solution. Honey bees harbor specialized bacterial gut symbionts that are transmitted within hives. Previously, these have been engineered to inhibit ectoparasitic mites by expressing double-stranded RNA (dsRNA) targeting essential mite genes, via activation of the mite RNA interference (RNAi) pathway. In this study, we engineered a honey bee gut symbiont to express dsRNA targeting essential genes of N. ceranae via the parasite's own RNAi machinery. The engineered symbiont sharply reduced Nosema proliferation and improved bee survival following the parasite challenge. This protection was observed in both newly emerged and older forager bees. Furthermore, engineered symbionts were transmitted among cohoused bees, suggesting that introducing engineered symbionts to hives could result in colony-level protection.


Assuntos
Mel , Parasitos , Urticária , Abelhas , Animais , Agricultura , Genes Essenciais , RNA de Cadeia Dupla
2.
Annu Rev Entomol ; 69: 439-453, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270983

RESUMO

In Africa, humans evolved as honey hunters of honey bee subspecies adapted to diverse geographical regions. Beekeeping today is practiced much as it was when Africans moved from honey hunting to beekeeping nearly 5,000 years ago, with beekeepers relying on seasonally available wild bees. Research suggests that populations are resilient, able to resist diseases and novel parasites. Distinct biomes, as well as environmental pressures, shaped the behavior and biology of these bees and in turn influenced how indigenous beekeeping developed. It appears that passive beekeeping practices that enabled free-living populations contributed to the overall resilience and health of the bee. There is clearly a need for research aimed at a deeper understanding of bee biology and the ecosystems from which they benefit and on which humans depend, as well as a growing realization that the management of these bees requires an indigenous approach that reflects a broader knowledge base and the economics of local communities and markets.


Assuntos
Ecossistema , Mel , Abelhas , Humanos , Animais , Criação de Abelhas , África , Ecologia
3.
Anal Chem ; 96(40): 16027-16035, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39325964

RESUMO

The detection of endogenous phenolic compounds (EPs) in food is of great significance in elucidating their bioactivity and health effects. Here, a novel bifunctional vanillic acid-Cu (VA-Cu) nanozyme with peroxidase-like and laccase-like activities was successfully prepared. The peroxidase mimic behavior of VA-Cu nanozyme can catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to generate oxidized TMB (oxTMB). Owing to the high reducing power of EPs, this process can be inhibited, and the degree of inhibition increases with the increase of reaction time. Additionally, owing to the outstanding laccase mimic behavior of the VA-Cu, it can facilitate the oxidation of various EPs, resulting in the formation of colored quinone imines, and the degree of catalysis increases with the increase of reaction time. Based on the interesting experimental phenomena mentioned above, a six-channel nanozyme sensor array (2 enzyme-mimic activities × 3 time points = 6 sensing channels) was constructed, successfully achieving discriminant analysis of nine EPs. In addition, the combination of artificial neural network (ANN) algorithms and sensor arrays has successfully achieved accurate identification and prediction of nine EPs in black tea, honey, and grape juice. Finally, a portable method for identifying EPs in food has been proposed by combining it with a smartphone.


Assuntos
Cobre , Sucos de Frutas e Vegetais , Aprendizado de Máquina , Fenóis , Fenóis/análise , Fenóis/química , Cobre/química , Cobre/análise , Sucos de Frutas e Vegetais/análise , Mel/análise , Chá/química , Ácido Vanílico/análise , Redes Neurais de Computação , Nariz Eletrônico , Análise de Alimentos/métodos , Lacase/metabolismo , Lacase/química , Nanoestruturas/química , Benzidinas/química , Peroxidase/metabolismo , Peroxidase/química
4.
Yeast ; 41(9): 537-548, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39032089

RESUMO

With the steady rise in antifungal resistance amongst clinically important yeasts, antifungal drug discovery remains of the utmost importance. To determine the potential of some honeys as alternative antifungal agents, we quantified the antifungal activity of 12 Western Australian honey samples, two Manuka honey samples and an artificial honey against 10 yeast isolates including clinical and reference strains. Results showed that the tested honeys varied in activity, and yeasts species also differed in susceptibility, with minimum inhibitory concentrations (MICs) determined by broth microdilution ranging from 8% to >44% w/v honey. Honeys with the highest overall activity were derived from Blackbutt (Eucalyptus patens), Jarrah (E. marginata), and Karri (E. diversicolor). The optical density of each MIC microtitre plate was determined after incubation and showed that at relatively low concentrations of honey the growth of all yeasts was enhanced compared to the untreated control, whereas at and above approximately 12% w/v, honeys exerted a dose-dependent growth inhibitory effect, the extent of which varied by honey type. Time-kill studies with 64% w/v honey showed that all eight of the natural honeys tested had greater fungicidal activity than the comparator artificial honey. Our findings suggest that the specific nectar-derived phytochemicals present within each honey play an important role in antifungal activity, and support the notion that activity is due to a combination of factors including osmotic activity, hydrogen peroxide and phytochemical compounds. These data indicate that honey is worthy of further investigation as a potential therapeutic agent for superficial yeast infections.


Assuntos
Antifúngicos , Mel , Testes de Sensibilidade Microbiana , Leveduras , Mel/análise , Antifúngicos/farmacologia , Leveduras/efeitos dos fármacos , Leveduras/isolamento & purificação , Austrália Ocidental , Austrália , Humanos
5.
J Nutr ; 154(3): 866-874, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38219862

RESUMO

BACKGROUND: Bifidobacterium animalis ssp. lactis DN-173 010/CNCM I-2494 (B. animalis) is a probiotic strain commonly added to yogurt. Yogurt and honey are a popular culinary pairing. Honey improves bifidobacteria survival in vitro. However, probiotic survival in yogurt with honey during in vitro digestion has not been investigated. OBJECTIVES: The study aimed to evaluate the effects of different honey varietals and concentrations on B. animalis survivability in yogurt through in vitro digestion. METHODS: Yogurt with honey or control-treated samples underwent in vitro simulated oral, gastric, and intestinal digestion. B. animalis cells were enumerated on de Man Rogosa and Sharpe (MRS) medium followed by an overlay with a modified selective MRS medium; all underwent anaerobic incubation. B. animalis were enumerated predigestion and after oral, gastric, and intestinal digestion. There were 2 study phases: Phase 1 tested 4 honey varietals at 20% wt/wt per 170 g yogurt, and Phase 2 tested 7 dosages of clover honey (20, 14, 10, 9, 8, 6, and 4% wt/wt) per 170 g yogurt. RESULTS: Similar B. animalis counts were observed between all treatments after oral and gastric digestion (<1 Log colony forming units (CFU)/g probiotic reduction). Higher B. animalis survivability was observed in yogurt with clover honey after exposure to simulated intestinal fluids (∼3.5 Log CFU/g reduction; P < 0.05) compared to all control treatments (∼5.5 Log CFU/g reduction; P < 0.05). Yogurt with 10-20% wt/wt clover honey increased B. animalis survivability after simulated in vitro digestion (≤ ∼4.7 Log CFU/g survival; P < 0.05). CONCLUSIONS: Yogurt with added honey improves probiotic survivability during in vitro digestion. The effective dose of clover honey in yogurt was 10-20% wt/wt per serving (1-2 tablespoons per 170 g yogurt) for increased probiotic survivability during in vitro digestion.


Assuntos
Bifidobacterium animalis , Mel , Probióticos , Humanos , Iogurte/microbiologia , Bifidobacterium , Probióticos/uso terapêutico , Digestão
6.
J Nutr ; 154(8): 2396-2410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830472

RESUMO

BACKGROUND: Honey improves probiotic survival in vitro. However, if this effect translates to humans has not been investigated. OBJECTIVES: We aimed to determine effects of honey plus yogurt containing the probiotic Bifidobacterium animalis subsp. lactis DN-173 010/CNCM I-2494 (B. animalis) on intestinal transit time, probiotic enrichment, digestive health, mood, and cognition in adults. METHODS: Sixty-six healthy adults (34 female; 33.6 ± 9.8 y; 24.6 ± 3.0 kg/m2) in a crossover trial were randomly assigned to 2-wk yogurt conditions in a counterbalanced order with ≥4-wk washout: 1) Honey (HON): yogurt plus honey and 2) Negative Control (NC): heat-treated yogurt plus sugar. Of the participants, n = 62 completed the trial, and n = 37 (17 female; 32.0 ± 8.3 y; 25.0 ± 2.9 kg/m2) elected to enroll in a third condition (a nonrandomized study extension) after ≥4-wk washout with a reference Positive Control (PC): yogurt plus sugar. At baseline and end of each of the 3 conditions, intestinal transit time was measured with dye capsules; probiotic abundance with fecal DNA 16S sequencing; digestive health with symptom/function records, Bristol stool consistency, Gastrointestinal Tolerability, and Gastrointestinal Quality of Life Index; mood with Positive and Negative Affect Schedule-Short Form, Depression Anxiety Stress Scales-42, Patient-Reported Outcomes Measurement Information System questionnaires, and an emotional image task; and cognition with a spatial reconstruction task. Data were analyzed using linear mixed-effects models (LMMs) with significance at P ≤ 0.05. Baseline and end data were included in the LMM, with fixed effects being treatment, time, treatment by time interaction, and baseline covariate, and the random effect being the participant. RESULTS: B. animalis was enriched in HON (d = 3.54; P = 0.0002) compared to controls with linear discriminant analysis effect size. Intestinal transit time, gastrointestinal health, mood, and cognition did not differ between conditions (LMM: Ps > 0.05). CONCLUSIONS: Yogurt + honey enriched B. animalis but did not reduce intestinal transit time or have other functional gastrointestinal, mood, or cognitive effects in adults. This trial was registered at www. CLINICALTRIALS: gov as NCT04187950 and NCT04901390.


Assuntos
Bifidobacterium animalis , Estudos Cross-Over , Trânsito Gastrointestinal , Mel , Probióticos , Iogurte , Humanos , Iogurte/microbiologia , Probióticos/administração & dosagem , Feminino , Adulto , Masculino , Cognição , Adulto Jovem , Afeto
7.
Arch Microbiol ; 206(1): 54, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180520

RESUMO

Pseudomonas aeruginosa is an opportunistic bacterium that can form a biofilm with the ability to colonize different surfaces and for increasing resistance to antibiotics. An alternative to solve this problem may be the use of non-glucose/mannose glycosylated proteins from Melipona beecheii honey, which are capable of inhibiting the growth of this pathogen. In this work, the antibiofilm activity of the conA-unbound protein fraction (F1) from M. beecheii was evaluated. The crude protein extract (CPE) and the F1 fraction inhibited the P. aeruginosa biofilm growth above 80% at 4 and 1.3 µg/mL, respectively. These proteins affected the structure of the biofilm, as well as fleQ and fleR gene expressions involved in the formation and regulation of the P. aeruginosa biofilm. The results demonstrated that the F1 fraction proteins of M. beecheii honey inhibit and affect the formation of the P. aeruginosa biofilm.


Assuntos
Mel , Infecções por Pseudomonas , Abelhas , Animais , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Biofilmes , Concanavalina A
8.
Artigo em Inglês | MEDLINE | ID: mdl-38180000

RESUMO

Five isolates of a xerophilic Talaromyces species were obtained from honey in Japan. Molecular phylogenetic analysis based on a combined dataset for four regions (rRNA internal transcribed spacer, ß-tubulin, calmodulin and RNA polymerase II second largest subunit) revealed that the strains formed an independent clade in section Trachyspermi, which is sister to Talaromyces affinitatimellis, Talaromyces basipetosporus and Talaromyces speluncarum. The strains and their relatives have different growth on creatine agar, yeast extract sucrose agar and dichloran 18 % glycerol agar, different branching patterns (mostly monoverticillate or biverticillate, less frequently divaricate or terverticillate), and different sizes and surface structures of conidia. Xerotolerance tests were also conducted using media adjusted to five different sucrose concentrations (0, 20, 40, 60 and 80 %). The colony diameters of the strains were larger than those of T. affinitatimellis, T. basipetosporus and T. speluncarum at each sucrose concentration. Altogether, the obtained morphological, molecular and physiological data allowed the proposal of Talaromyces mellisjaponici sp. nov. for this novel species, with NBRC 116048T as the type strain.


Assuntos
Mel , Talaromyces , Japão , Ágar , Filogenia , Talaromyces/genética , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Sacarose
9.
Med Mycol ; 62(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38936838

RESUMO

Candida auris is an emerging fungal pathogen responsible for healthcare-associated infections and outbreaks with high mortality around the world. It readily colonizes the skin, nares, respiratory and urinary tract of hospitalized patients, and such colonization may lead to invasive Candida infection in susceptible patients. However, there is no recommended decolonization protocol for C. auris by international health authorities. The aim of this study is to evaluate the susceptibility of C. auris to commonly used synthetic and natural antiseptic products using an in vitro, broth microdilution assay. Synthetic antiseptics including chlorhexidine, povidone-iodine, and nystatin were shown to be fungicidal against C. auris. Among the natural antiseptics tested, tea tree oil and manuka oil were both fungicidal against C. auris at concentrations less than or equal to 1.25% (v/v). Manuka honey inhibited C. auris at 25% (v/v) concentrations. Among the commercial products tested, manuka body wash and mouthwash were fungicidal against C. auris at concentrations less than or equal to 0.39% (w/v) and 6.25% (v/v) of products as supplied for use, respectively, while tea tree body wash and MedihoneyTM wound gel demonstrated fungistatic properties. In conclusion, this study demonstrated good in vitro antifungal efficacy of tea tree oil, manuka oil, manuka honey, and commercially available antiseptic products containing these active ingredients. Future studies are warranted to evaluate the effectiveness of these antiseptic products in clinical settings.


Candida auris is an emerging superbug fungus that poses a serious threat to global public health. The excellent antifungal efficacy of natural antiseptics and their commercial hygiene products provide new insights into the development of an alternative decolonization regimen against C. auris.


Assuntos
Anti-Infecciosos Locais , Antifúngicos , Candida auris , Testes de Sensibilidade Microbiana , Anti-Infecciosos Locais/farmacologia , Antifúngicos/farmacologia , Humanos , Candida auris/efeitos dos fármacos , Óleo de Melaleuca/farmacologia , Mel , Clorexidina/farmacologia , Leptospermum/química
10.
Microb Ecol ; 87(1): 100, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080099

RESUMO

Microbiota, the communities of microbes on and in organisms or organic matter, are essential for the functioning of ecosystems. How microbes are shared and transmitted delineates the formation of a microbiota. As pollinators forage, they offer a route to transfer microbes among the flowering plants, themselves, and their nests. To assess how the two components of the microbiota, bacteria and fungi, in pollination communities are shared and transferred, we focused on the honey bee Apis mellifera and collected honey bee, honey (representing the hive microbiota), and flower samples three times during the summer in Finland. We identified the bacteria and fungi by DNA metabarcoding. To determine the impact of honey bees' flower choices on the honey bee and hive microbiota, we identified also plant DNA in honey. The bacterial communities of honey bees, honey, and flowers all differ greatly from each other, while the fungal communities of honey bees and honey are very similar, yet different from flowers. The time of the summer and the sampling area influence all these microbiota. For flowers, the plant identity impacts both bacterial and fungal communities' composition the most. For the dispersal pathways of bacteria to honey bees, they are acquired directly from the honey and indirectly from flowers through the honey, while fungi are directly transmitted to honey bees from flowers. Overall, the distinctiveness of the microbiota of honey bees, honey, and the surrounding flowers suggests the sharing of microbes among them occurs but plays a minor role for the established microbiota.


Assuntos
Bactérias , Flores , Fungos , Mel , Microbiota , Abelhas/microbiologia , Animais , Flores/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Mel/microbiologia , Mel/análise , Finlândia , Polinização , Código de Barras de DNA Taxonômico , Estações do Ano
11.
Naturwissenschaften ; 111(2): 14, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446166

RESUMO

The impacts of temperature increase are a concern for honey bees, which are major pollinators of crops and wild plants. Swarming is the reproductive behavior of honey bees that increases colony numbers. Honey bee colonies sometimes swarm multiple times, with each swarming termed a "swarming event" and a series of these events called a "swarming cycle." The number of swarming events per swarming cycle varies widely depending on climatic conditions and subspecies, and the recent temperature increase due to global warming might be affecting the number of swarming events per swarming cycle of native honey bees. We clarified long-term changes in the number of swarming events per swarming cycle of Japanese honey bees (Apis cerana japonica) by collecting beekeepers' swarming logbooks. The survey showed that between 2000 and 2022, Japanese honey bees swarmed 1 to 8 times per swarming cycle. Generalized linear model analysis indicated that year had a significant positive effect (coefficient, 0.03; 95% CI, 0.01-0.04); that is, the number of swarming events per swarming cycle showed a moderate increase over time. In addition, we found that colonies swarmed more often in a cycle when the swarming process began in early spring, especially in March. Considering the notably strong trend in Japan of warmer temperatures in March, the number of swarming events per swarming cycle may be increasing because reproduction is beginning earlier in the year. Further analyses are needed to verify the causal relationship of temperature increase on the number of swarming events per swarming cycle.


Assuntos
Mel , Abelhas , Animais , Japão , Modelos Lineares , Reprodução , Estações do Ano
12.
Inorg Chem ; 63(42): 19652-19664, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39370726

RESUMO

Quantitative detection of tetracycline (TC) and nitrofurantoin (NFT) in food and water is of importance for food safety and environmental protection. Herein, Zn2+ was introduced into a europium metal-organic framework Eu-bpdc (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) to prepare a composite of Zn2+@Eu-bpdc, which was developed as a fluorescence sensor for TC and NFT. The fluorescence mechanism concerns with bpdc2- ligand-to-Eu(III) charge transfer, and the detection mechanism is the inner filter effect. Zn2+@Eu-bpdc is a ratiometric fluorescence sensor for TC with the linear fitting equation of I520/I618 = 1.94 × 104 M-1CTC, whose limit of detection (LOD) is 0.148 µmol·L-1 (µM); it is also a fluorescence "turn-off" sensor for NFT with the fitting equation of (I0-I)/I = 3.62 × 104 M-1CNFT and LOD = 0.0792 µM. Zn2+@Eu-bpdc can detect TC or NFT in lake water, honey, and milk with high accuracy. The emission color changes of paper-based Zn2+@Eu-bpdc depending on CTC or CNFT reveal the visualization detections of TC and NFT. With the red and green values as input signals, smartphone-assisted on-site detection is utilized to recognize the antibiotic residuals of TC and NFT by a self-programmed APP. Zn2+@Eu-bpdc is promising in a smartphone-assisted intelligent platform for on-site detection of TC and NFT.


Assuntos
Európio , Estruturas Metalorgânicas , Leite , Nitrofurantoína , Tetraciclina , Zinco , Zinco/análise , Zinco/química , Nitrofurantoína/análise , Nitrofurantoína/química , Estruturas Metalorgânicas/química , Európio/química , Tetraciclina/análise , Leite/química , Poluentes Químicos da Água/análise , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Contaminação de Alimentos/análise , Mel/análise , Animais , Antibacterianos/análise , Antibacterianos/química , Limite de Detecção , Fluorescência
13.
Anal Bioanal Chem ; 416(11): 2859-2870, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459967

RESUMO

Microwave-induced combustion (MIC) was proposed in this study for honey decomposition aiming for As, Cd, Hg, and Pb determination by inductively coupled plasma mass spectrometry (ICP-MS). Sample mass (up to 1.0 g), absorbing solution (0.5 to 14.4 mol L-1 HNO3, and H2O), heating program, and combustion aids were evaluated. The Eurachem guidelines were used for method validation. The proposed method enabled combustion of a high sample mass (0.8 g of honey, with 0.4 g of microcrystalline cellulose and 100 µL of 6 mol L-1 NH4NO3) using 6 mL of an absorbing solution consisting of 1 mol L-1 HNO3, which resulted in low residual carbon in solution (< 25 mg L-1). Honey samples from different geographical origins were analyzed. Results showed no significant difference in comparison to other two microwave decomposition methods, based on microwave-assisted wet digestion with single reaction chamber (MAWD-SRC) and microwave-assisted wet digestion (MAWD). Standard addition experiments resulted in recoveries higher than 98%. The limits of detection ranged from 1.10 (As) to 4.60 ng g-1 (Pb). In addition to using only diluted reagents and resulting in digests virtually free of interferences, the proposed method was faster (< 30 min) than most of those presented in the literature.


Assuntos
Mel , Micro-Ondas , Espectrometria de Massas/métodos , Chumbo , Análise Espectral
14.
Anal Bioanal Chem ; 416(2): 397-405, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946035

RESUMO

In this study, an electrochemical smartphone-based aptasensor for the determination of fipronil was developed by modifying a screen-printed carbon electrode (SPCE). Fipronil is a broad-spectrum insecticide that has been widely used in various applications such as agriculture, veterinary, and household pest control. Recently, its use has raised concerns over the potential impact on the environment and human health. The absence of effective methods for this purpose poses a significant obstacle. To tackle this problem, we have developed a cutting-edge aptamer-based portable sensor capable of rapidly and conveniently detecting fipronil in situ. Considering that the detection of small molecules, such as fipronil, can be a challenging task, a competitive replacement assay was set up based on the aptamer's preference for the free form of fipronil over the immobilized one on the electrode. The analytical performance provided by the sensor on standard solutions of a known fipronil content made it possible to estimate a limit of detection (LOD) equal to 1.07 µg kg-1 and a limit of quantification (LOQ) of 3.21 µg kg-1. Selectivity tests were conducted using atrazine as a possible interferent. The use and performance of the developed portable aptasensor was assessed on honey samples, which were simultaneously analyzed using an HPLC-MS method. This aptasensor could be an affordable and effective tool for accurately quantifying fipronil not only in honey samples but also in other food products.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Mel , Inseticidas , Humanos , Mel/análise , Smartphone , Inseticidas/análise , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas , Ouro
15.
Mol Biol Rep ; 51(1): 344, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400882

RESUMO

BACKGROUND: There is increasing evidence that honey has anti-inflammatory, antioxidant, and anti-cancer effects. This study aims to assess and contrast the cytotoxic, anti-metastatic, and apoptotic effects of Ziziphus jujube honey and commercial honey on MCF7 cells. METHODS AND RESULTS: Two honey samples, Ziziphus jujube (JH) and commercial honey (CH), were categorized into high and low groups based on their phenolic content, antioxidant capacity, and diastase activity (PAD score). The viability and migration ability of MCF-7 cells treated with JH and CH were evaluated. Also, quantitative polymerase chain reaction (Q-PCR) was performed to assess the effect of the two honey samples on the expression of Bax, p53, p21 and Bcl-2 genes. JH had a total phenolic content of 606.4 ± 0.1 µg gallic acid equivalent/mg, while CH had a value of 112.1 ± 0.09 µg gallic acid equivalent/mg. The total antioxidant capacity of the two samples was compared. It was 203.5 ± 10.5µM/l in JH and 4.6 ± 10.5 µM/l in CH. In addition, JH had a diastatic activity of 524.1 ± 0.25 U/l, while CH had a value of 209.7 ± 0.56 U/l. According to the results, JH had a high PAD value, while CH had a low PAD value. Cell viability was measured using the results of the MTT assay. The results showed that JH inhibited the growth of MCF-7 cells more strongly (IC50 of 170 ± 4.2 µg/ml) than CH (IC50 of 385.3 ± 4.5 µg/l). The scratch assay showed that treatment with JH decreased the migration rate of MCF-7 cells in a dose-dependent manner compared to the CH and control groups. In addition, the results of q-PCR analysis showed significant upregulation of Bax, p53 and p21 genes and downregulation of Bcl-2 gene in the JH-treated group compared to the CH and control groups. CONCLUSION: These results showed that honey with an increased content of phenolic compounds, antioxidant capacity, and diastatic activity has anticancer properties by effectively suppressing tumor development. This suppression occurs via several mechanisms, including suppression of proliferation and metastasis, and promotion of apoptosis.


Assuntos
Neoplasias da Mama , Mel , Ziziphus , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/tratamento farmacológico , Antioxidantes/farmacologia , Proteína X Associada a bcl-2/genética , Mel/análise , Proteína Supressora de Tumor p53/genética , Fenóis/farmacologia , Fenóis/análise , Ácido Gálico
16.
Eur J Nutr ; 63(5): 1435-1451, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38492022

RESUMO

High (free) sugar intakes can increase self-reported energy intake and are associated with unfavourable cardiometabolic health. However, sugar source may modulate the effects of sugars due to several mechanisms including the food matrix. The aim of this review was to assess the current state of evidence in relation to food source effects on the physiological responses to dietary sugars in humans relevant to cardiometabolic health. An additional aim was to review potential mechanisms by which food sources may influence such responses. Evidence from meta-analyses of controlled intervention trials was used to establish the balance of evidence relating to the addition of sugars to the diet from sugar-sweetened beverages, fruit juice, honey and whole fruit on cardiometabolic outcomes. Subsequently, studies which have directly compared whole fruit with fruit juices, or variants of fruit juices, were discussed. In summary, the sources of sugars can impact physiological responses, with differences in glycaemic control, blood pressure, inflammation, and acute appetite. Longer-term effects and mechanisms require further work, but initial evidence implicates physical structure, energy density, fibre, potassium and polyphenol content, as explanations for some of the observed responses.


Assuntos
Sucos de Frutas e Vegetais , Frutas , Humanos , Açúcares da Dieta/administração & dosagem , Mel/análise , Dieta/métodos , Pressão Sanguínea/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Bebidas Adoçadas com Açúcar , Apetite/fisiologia , Apetite/efeitos dos fármacos , Inflamação , Controle Glicêmico/métodos
17.
J Chem Ecol ; 50(7-8): 397-408, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38760625

RESUMO

Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.


Assuntos
Mel , Piretrinas , Animais , Abelhas/efeitos dos fármacos , Mel/análise , Piretrinas/toxicidade , Piretrinas/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Inseticidas/toxicidade , Inseticidas/análise , Dose Letal Mediana , Néctar de Plantas/química , Robinia/química
18.
Environ Res ; 249: 118306, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307184

RESUMO

Argentina is a leading honey producer and honey bees are also critical for pollination services and wild plants. At the same time, it is a major crop producer with significant use of insecticides, posing risks to bees. Therefore, the presence of the highly toxic insecticide chlorpyrifos, and forbidden contaminants (organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs)) was investigated in honey bee, beebread, wax and honey samples in apiaries from three contrasting regions of Argentina. Chlorpyrifos was detected in all samples with higher levels during period 1 (spring) in contrast to period 2 (fall), agreeing with its season-wise use in different crops, reaching 3.05 ng/g in honey bees. A subsequent first-tier pesticide hazard analysis revealed that it was relevant to honey bee health, mainly due to the high concentrations found in wax samples from two sites, reaching 132.4 ng/g. In addition, wax was found to be the most contaminated matrix with a prevalence of OCPs (∑OCPs 58.23-172.99 ng/g). Beebread samples showed the highest concentrations and diversity of pesticide residues during period 1 (higher temperatures). A predominance of the endosulfan group was registered in most samples, consistent with its intensive past use, especially in Central Patagonia before its prohibition. Among the industrial compounds, lighter PCB congeners dominated, suggesting the importance of atmospheric transport. The spatio-temporal distribution of pesticides shows a congruence with the environmental characteristics of the areas where the fields are located (i.e., land use, type of productive activities and climatic conditions). Sustained monitoring of different pollutants in beekeeping matrices is recommended to characterize chemical risks, assess the health status of honey bee hives and the pollution levels of different agroecosystems. This knowledge will set a precedent for South America and be helpful for actions focused on the conservation of pollination services, apiculture and ecosystems in Argentina.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Mel , Abelhas , Argentina , Animais , Mel/análise , Poluentes Ambientais/análise , Bifenilos Policlorados/análise , Ceras/análise , Ceras/química , Éteres Difenil Halogenados/análise , Praguicidas/análise , Estações do Ano , Clorpirifos/análise
19.
J Sep Sci ; 47(1): e2300588, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37942863

RESUMO

Metabolomics is the study of metabolites present in a living system. It is a rapidly growing field aimed at discovering novel compounds, studying biological processes, diagnosing diseases, and ensuring the quality of food products. Recently, the analysis of natural samples has become important to explore novel bioactive compounds and to study how environment and genetics affect living systems. Various metabolomics techniques, databases, and data analysis tools are available for natural sample metabolomics. However, choosing the right method can be a daunting exercise because natural samples are heterogeneous and require untargeted approaches. This tutorial review aims to compile the latest technologies to guide an early-career scientist on natural sample metabolomics. First, different extraction methods and their pros and cons are reviewed. Second, currently available metabolomics databases and data analysis tools are summarized. Next, recent research on metabolomics of milk, honey, and microbial samples is reviewed. Finally, after reviewing the latest trends in technologies, a checklist is presented to guide an early-career researcher on how to design a metabolomics project. In conclusion, this review is a comprehensive resource for a researcher planning to conduct their first metabolomics analysis. It is also useful for experienced researchers to update themselves on the latest trends in metabolomics.


Assuntos
Mel , Metabolômica , Metabolômica/métodos , Bases de Dados Factuais
20.
Biofouling ; 40(3-4): 235-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584359

RESUMO

The association between dysbiotic microbiota biofilm and colon cancer has recently begun to attract attention. In the study, the apitherapeutic effects of bee products (honey, bee venom, royal jelly, pollen, perga and propolis) obtained from the endemic Yigilca ecotype of Apis mellifera anatoliaca were investigated. Antibiofilm activity were performed by microplate assay using crystal violet staining to measure adherent biofilm biomass of Escherichia coli capable of forming biofilms. Bee venom showed the highest inhibition effect (73.98%) at 50% concentration. Honey, perga and royal jelly reduced biofilm formation by >50% at all concentrations. The antiproliferation effect on the HCT116 colon cancer cell line was investigated with the water­soluble tetrazolium salt­1 assay. After 48 h of honey application at 50% concentration, cell proliferation decreased by 86.51%. The high cytotoxic effects of royal jelly and bee venom are also remarkable. Additionally, apoptotic pathway analysis was performed by ELISA using caspase 3, 8 and 9 enzyme-linked immunosorbent assay kits. All bee products induced a higher expression of caspase 9 compared with caspase 8. Natural products that upregulate caspase proteins are promising therapeutic targets for proliferative diseases.


Assuntos
Antineoplásicos , Venenos de Abelha , Biofilmes , Neoplasias do Colo , Escherichia coli , Ácidos Graxos , Própole , Biofilmes/efeitos dos fármacos , Humanos , Animais , Venenos de Abelha/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Neoplasias do Colo/tratamento farmacológico , Abelhas/efeitos dos fármacos , Células HCT116 , Própole/farmacologia , Própole/química , Ácidos Graxos/farmacologia , Antineoplásicos/farmacologia , Mel , Proliferação de Células/efeitos dos fármacos , Pólen/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa