Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.705
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(4): 933-946.e14, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32780992

RESUMO

Methanol, being electron rich and derivable from methane or CO2, is a potentially renewable one-carbon (C1) feedstock for microorganisms. Although the ribulose monophosphate (RuMP) cycle used by methylotrophs to assimilate methanol differs from the typical sugar metabolism by only three enzymes, turning a non-methylotrophic organism to a synthetic methylotroph that grows to a high cell density has been challenging. Here we reprogrammed E. coli using metabolic robustness criteria followed by laboratory evolution to establish a strain that can efficiently utilize methanol as the sole carbon source. This synthetic methylotroph alleviated a so far uncharacterized hurdle, DNA-protein crosslinking (DPC), by insertion sequence (IS)-mediated copy number variations (CNVs) and balanced the metabolic flux by mutations. Being capable of growing at a rate comparable with natural methylotrophs in a wide range of methanol concentrations, this synthetic methylotrophic strain illustrates genome editing and evolution for microbial tropism changes and expands the scope of biological C1 conversion.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica , Metanol/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico/genética , Variações do Número de Cópias de DNA , Evolução Molecular Direcionada , Escherichia coli/genética , Formaldeído/metabolismo , Glicólise , Mutagênese , Ribosemonofosfatos/metabolismo
2.
Nature ; 632(8027): 1131-1136, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048017

RESUMO

Methanogenesis mediated by archaea is the main source of methane, a strong greenhouse gas, and thus is critical for understanding Earth's climate dynamics. Recently, genes encoding diverse methanogenesis pathways have been discovered in metagenome-assembled genomes affiliated with several archaeal phyla1-7. However, all experimental studies on methanogens are at present restricted to cultured representatives of the Euryarchaeota. Here we show methanogenic growth by a member of the lineage Korarchaeia within the phylum Thermoproteota (TACK superphylum)5-7. Following enrichment cultivation of 'Candidatus Methanodesulfokora washburnenis' strain LCB3, we used measurements of metabolic activity and isotope tracer conversion to demonstrate methanol reduction to methane using hydrogen as an electron donor. Analysis of the archaeon's circular genome and transcriptome revealed unique modifications in the energy conservation pathways linked to methanogenesis, including enzyme complexes involved in hydrogen and sulfur metabolism. The cultivation and characterization of this new group of archaea is critical for a deeper evaluation of the diversity, physiology and biochemistry of methanogens.


Assuntos
Archaea , Metano , Archaea/classificação , Archaea/enzimologia , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Elétrons , Genoma Arqueal/genética , Hidrogênio/metabolismo , Metano/biossíntese , Metano/metabolismo , Metanol/metabolismo , Oxirredução , Filogenia , Enxofre/metabolismo , Transcriptoma
3.
Nature ; 629(8011): 363-369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547926

RESUMO

Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C-H functionalization remains a significant challenge3-5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C-H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C-H functionalization reactions with methanol as the sole side product. These C-H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.


Assuntos
Carbono , Cobre , Hidrogênio , Lactonas , Amidas/química , Amidas/metabolismo , Carbono/química , Catálise , Cobre/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Hidrogênio/química , Hidrogenação , Lactonas/química , Metanol/química , Oxidantes/química , Oxidantes/metabolismo , Oxirredução
4.
Nature ; 632(8027): 1124-1130, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048829

RESUMO

Methanogenic archaea are main contributors to methane emissions, and have a crucial role in carbon cycling and global warming. Until recently, methanogens were confined to Euryarchaeota, but metagenomic studies revealed the presence of genes encoding the methyl coenzyme M reductase complex in other archaeal clades1-4, thereby opening up the premise that methanogenesis is taxonomically more widespread. Nevertheless, laboratory cultivation of these non-euryarchaeal methanogens was lacking to corroborate their potential methanogenic ability and physiology. Here we report the isolation of a thermophilic archaeon LWZ-6 from an oil field. This archaeon belongs to the class Methanosuratincolia (originally affiliated with 'Candidatus Verstraetearchaeota') in the phylum Thermoproteota. Methanosuratincola petrocarbonis LWZ-6 is a strict hydrogen-dependent methylotrophic methanogen. Although previous metagenomic studies speculated on the fermentative potential of Methanosuratincolia members, strain LWZ-6 does not ferment sugars, peptides or amino acids. Its energy metabolism is linked only to methanogenesis, with methanol and monomethylamine as electron acceptors and hydrogen as an electron donor. Comparative (meta)genome analysis confirmed that hydrogen-dependent methylotrophic methanogenesis is a widespread trait among Methanosuratincolia. Our findings confirm that the diversity of methanogens expands beyond the classical Euryarchaeota and imply the importance of hydrogen-dependent methylotrophic methanogenesis in global methane emissions and carbon cycle.


Assuntos
Archaea , Euryarchaeota , Metano , Archaea/metabolismo , Archaea/genética , Archaea/classificação , Archaea/isolamento & purificação , Metabolismo Energético , Euryarchaeota/classificação , Euryarchaeota/metabolismo , Genoma Arqueal , Hidrogênio/metabolismo , Metano/biossíntese , Metano/metabolismo , Metanol/metabolismo , Campos de Petróleo e Gás/microbiologia , Oxirredução , Oxirredutases/metabolismo , Oxirredutases/genética , Filogenia , Ciclo do Carbono
5.
Chem Rev ; 124(3): 1288-1320, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305159

RESUMO

Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.


Assuntos
Cobre , Metano , Cobre/química , Ferro , Metanol , Oxigenases/metabolismo , Oxirredução , Oxigenases de Função Mista
6.
Proc Natl Acad Sci U S A ; 120(12): e2220816120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913588

RESUMO

Methanol is an ideal feedstock for chemical and biological manufacturing. Constructing an efficient cell factory is essential for producing complex compounds through methanol biotransformation, in which coordinating methanol use and product synthesis is often necessary. In methylotrophic yeast, methanol utilization mainly occurs in peroxisomes, which creates challenges in driving the metabolic flux toward product biosynthesis. Here, we observed that constructing the cytosolic biosynthesis pathway resulted in compromised fatty alcohol production in the methylotrophic yeast Ogataea polymorpha. Alternatively, peroxisomal coupling of fatty alcohol biosynthesis and methanol utilization significantly improved fatty alcohol production by 3.9-fold. Enhancing the supply of precursor fatty acyl-CoA and cofactor NADPH in the peroxisomes by global metabolic rewiring further improved fatty alcohol production by 2.5-fold and produced 3.6 g/L fatty alcohols from methanol under fed-batch fermentation. We demonstrated that peroxisome compartmentalization is helpful for coupling methanol utilization and product synthesis, and with this approach, constructing efficient microbial cell factories for methanol biotransformation is feasible.


Assuntos
Álcoois Graxos , Metanol , Álcoois Graxos/metabolismo , Metanol/metabolismo , Peroxissomos/metabolismo , Fermentação , Engenharia Metabólica/métodos
7.
RNA ; 29(10): 1610-1620, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491319

RESUMO

Structure probing combined with next-generation sequencing (NGS) has provided novel insights into RNA structure-function relationships. To date, such studies have focused largely on bacteria and eukaryotes, with little attention given to the third domain of life, archaea. Furthermore, functional RNAs have not been extensively studied in archaea, leaving open questions about RNA structure and function within this domain of life. With archaeal species being diverse and having many similarities to both bacteria and eukaryotes, the archaea domain has the potential to be an evolutionary bridge. In this study, we introduce a method for probing RNA structure in vivo in the archaea domain of life. We investigated the structure of ribosomal RNA (rRNA) from Methanosarcina acetivorans, a well-studied anaerobic archaeal species, grown with either methanol or acetate. After probing the RNA in vivo with dimethyl sulfate (DMS), Structure-seq2 libraries were generated, sequenced, and analyzed. We mapped the reactivity of DMS onto the secondary structure of the ribosome, which we determined independently with comparative analysis, and confirmed the accuracy of DMS probing in M. acetivorans Accessibility of the rRNA to DMS in the two carbon sources was found to be quite similar, although some differences were found. Overall, this study establishes the Structure-seq2 pipeline in the archaea domain of life and informs about ribosomal structure within M. acetivorans.


Assuntos
Archaea , RNA , Archaea/genética , Methanosarcina/genética , Metanol , Bactérias/genética , Ribossomos/genética
8.
Nature ; 575(7784): 639-642, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31776492

RESUMO

Electrochemical carbon dioxide (CO2) reduction can in principle convert carbon emissions to fuels and value-added chemicals, such as hydrocarbons and alcohols, using renewable energy, but the efficiency of the process is limited by its sluggish kinetics1,2. Molecular catalysts have well defined active sites and accurately tailorable structures that allow mechanism-based performance optimization, and transition-metal complexes have been extensively explored in this regard. However, these catalysts generally lack the ability to promote CO2 reduction beyond the two-electron process to generate more valuable products1,3. Here we show that when immobilized on carbon nanotubes, cobalt phthalocyanine-used previously to reduce CO2 to primarily CO-catalyses the six-electron reduction of CO2 to methanol with appreciable activity and selectivity. We find that the conversion, which proceeds via a distinct domino process with CO as an intermediate, generates methanol with a Faradaic efficiency higher than 40 per cent and a partial current density greater than 10 milliamperes per square centimetre at -0.94 volts with respect to the reversible hydrogen electrode in a near-neutral electrolyte. The catalytic activity decreases over time owing to the detrimental reduction of the phthalocyanine ligand, which can be suppressed by appending electron-donating amino substituents to the phthalocyanine ring. The improved molecule-based electrocatalyst converts CO2 to methanol with considerable activity and selectivity and with stable performance over at least 12 hours.


Assuntos
Dióxido de Carbono , Eletroquímica , Dióxido de Carbono/química , Catálise , Indóis/química , Metanol/síntese química , Nanotubos de Carbono/química , Compostos Organometálicos/química
9.
Nature ; 566(7742): 110-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675063

RESUMO

Small intestinal mononuclear cells that express CX3CR1 (CX3CR1+ cells) regulate immune responses1-5. CX3CR1+ cells take up luminal antigens by protruding their dendrites into the lumen1-4,6. However, it remains unclear how dendrite protrusion by CX3CR1+ cells is induced in the intestine. Here we show in mice that the bacterial metabolites pyruvic acid and lactic acid induce dendrite protrusion via GPR31 in CX3CR1+ cells. Mice that lack GPR31, which was highly and selectively expressed in intestinal CX3CR1+ cells, showed defective dendrite protrusions of CX3CR1+ cells in the small intestine. A methanol-soluble fraction of the small intestinal contents of specific-pathogen-free mice, but not germ-free mice, induced dendrite extension of intestinal CX3CR1+ cells in vitro. We purified a GPR31-activating fraction, and identified lactic acid. Both lactic acid and pyruvic acid induced dendrite extension of CX3CR1+ cells of wild-type mice, but not of Gpr31b-/- mice. Oral administration of lactate and pyruvate enhanced dendrite protrusion of CX3CR1+ cells in the small intestine of wild-type mice, but not in that of Gpr31b-/- mice. Furthermore, wild-type mice treated with lactate or pyruvate showed an enhanced immune response and high resistance to intestinal Salmonella infection. These findings demonstrate that lactate and pyruvate, which are produced in the intestinal lumen in a bacteria-dependent manner, contribute to enhanced immune responses by inducing GPR31-mediated dendrite protrusion of intestinal CX3CR1+ cells.


Assuntos
Bactérias/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Extensões da Superfície Celular/metabolismo , Intestino Delgado/citologia , Intestino Delgado/microbiologia , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bactérias/imunologia , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/imunologia , Feminino , Células HEK293 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Ácido Láctico/farmacologia , Lactobacillus helveticus/metabolismo , Masculino , Metanol , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ácido Pirúvico/farmacologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Salmonella/imunologia , Salmonella/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(29): e2201711119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858340

RESUMO

Methanol-based biorefinery is a promising strategy to achieve carbon neutrality goals by linking CO2 capture and solar energy storage. As a typical methylotroph, Pichia pastoris shows great potential in methanol biotransformation. However, challenges still remain in engineering methanol metabolism for chemical overproduction. Here, we present the global rewiring of the central metabolism for efficient production of free fatty acids (FFAs; 23.4 g/L) from methanol, with an enhanced supply of precursors and cofactors, as well as decreased accumulation of formaldehyde. Finally, metabolic transforming of the fatty acid cell factory enabled overproduction of fatty alcohols (2.0 g/L) from methanol. This study demonstrated that global metabolic rewiring released the great potential of P. pastoris for methanol biotransformation toward chemical overproduction.


Assuntos
Ácidos Graxos não Esterificados , Engenharia Metabólica , Metanol , Saccharomycetales , Reatores Biológicos , Biotransformação , Ácidos Graxos não Esterificados/biossíntese , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
11.
BMC Biol ; 22(1): 41, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369453

RESUMO

BACKGROUND: Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS: Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS: Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.


Assuntos
Elementos da Série dos Lantanídeos , Lantânio , Dióxido de Silício , Elementos da Série dos Lantanídeos/metabolismo , Metanol , Solo , Bactérias/genética , Fosfatos/metabolismo , Minerais/metabolismo
12.
J Bacteriol ; 206(4): e0008124, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38501746

RESUMO

Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.


Assuntos
Betaína , Paracoccus denitrificans , Betaína/metabolismo , Sarcosina/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Metanol , Colina/metabolismo , Glicina , Formaldeído , Formiatos , Metilaminas
13.
J Proteome Res ; 23(2): 596-608, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190553

RESUMO

Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. Bacillus subtilis (B. subtilis) is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles. The 60% EtOH protocol proved to be the easiest in sample processing and was more amenable to automation. Collectively, we annotated 505 and 484 metabolites and identified 1665 and 1562 proteins in B. subtilis vegetative cells and spores, respectively. We also show differences between vegetative cells and spores from a multi-omics perspective and demonstrate that an integrative multi-omics analysis can be implemented from one sample using the 60% EtOH protocol. The results obtained by the 60% EtOH protocol provide comprehensive insight into differences in the metabolic and protein makeup of B. subtilis vegetative cells and spores.


Assuntos
Bacillus subtilis , Proteômica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Metanol , Água/metabolismo , Etanol/metabolismo
14.
J Biol Chem ; 299(4): 103053, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813232

RESUMO

Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 ß-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.


Assuntos
Caenorhabditis elegans , beta-N-Acetil-Hexosaminidases , Animais , Acetilgalactosamina/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Caenorhabditis elegans/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Metanol , Polissacarídeos/metabolismo
15.
J Am Chem Soc ; 146(5): 3052-3064, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38279916

RESUMO

Fluorine NMR is a highly sensitive technique for delineating the conformational states of biomolecules and has shown great utility in drug screening and in understanding protein function. Current fluorinated protein tags leverage the intrinsic chemical shift sensitivity of the 19F nucleus to detect subtle changes in protein conformation and topology. This chemical shift sensitivity can be amplified by embedding the fluorine or trifluoromethyl reporter within a pyridone. Due to their polarizability and rapid tautomerization, pyridones exhibit a greater range of electron delocalization and correspondingly greater 19F NMR chemical shift dispersion. To assess the chemical shift sensitivity of these tautomeric probes to the local environment, 19F NMR spectra of all possible monofluorinated and trifluoromethyl-tagged versions of 2-pyridone were recorded in methanol/water mixtures ranging from 100% methanol to 100% water. 4-Fluoro-2-pyridone and 6-(trifluoromethyl)-2-pyridone (6-TFP) displayed the greatest sensitivity of the monofluorinated and trifluoromethylated pyridones, exceeding that of known conventional CF3 reporters. To evaluate the utility of tautomeric pyridone tags for 19F NMR of biomolecules, the alpha subunit of the stimulatory G protein (Gsα) and human serum albumin (HSA) were each labeled with a thiol-reactive derivative of 6-TFP and the spectra were recorded as a function of various adjuvants and drugs. The tautomeric tag outperformed the conventional tag, 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide through the improved resolution of several functional states.


Assuntos
Flúor , Metanol , Humanos , Flúor/química , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Água , Piridonas
16.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290992

RESUMO

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Assuntos
Asma , Células Caliciformes , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animais , Humanos , Camundongos , Células Caliciformes/metabolismo , Camundongos Endogâmicos C57BL , Asma/patologia , Epitélio/metabolismo , Fatores de Transcrição/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Alérgenos , Metanol
17.
Anal Chem ; 96(18): 7179-7186, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661266

RESUMO

This study uses real-time monitoring, at microsecond time scales, with a charge-sensing particle detector to investigate the evaporation and fission processes of methanol/micrometer-sized polystyrene beads (PS beads) droplets and bacterial particles droplets generated via electrospray ionization (ESI) under elevated temperatures. By incrementally raising capillary temperatures, the solvent, such as methanol on 0.75 µm PS beads, experiences partial evaporation. Further temperature increase induces fission, and methanol molecules continue to evaporate until PS ions are detected after this range. Similar partial evaporation is observed on 3 µm PS beads. However, the shorter period of the fission temperature range is necessary compared to 0.75 µm PS beads. For the spherical-shaped bacterium, Staphylococcus aureus, the desolvation process shows a similar fission period as compared to 0.75 µm PS beads. Comparably, the rod-shaped bacteria, Escherichia coli EC11303, and E. coli strain W have shorter fission periods than S. aureus. This research provides insights into the evaporation and fission mechanisms of ESI droplets containing different sizes and shapes of micrometer-sized particles, contributing to a better understanding of gaseous macroion formation.


Assuntos
Escherichia coli , Poliestirenos , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus , Poliestirenos/química , Escherichia coli/química , Tamanho da Partícula , Temperatura , Volatilização , Metanol/química , Microesferas
18.
Biochem Biophys Res Commun ; 703: 149684, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38367514

RESUMO

Malaria is a parasitic disease that remains a global concern and the subject of many studies. Metabolomics has emerged as an approach to better comprehend complex pathogens and discover possible drug targets, thus giving new insights that can aid in the development of antimalarial therapies. However, there is no standardized method to extract metabolites from in vitro Plasmodium falciparum intraerythrocytic parasites, the stage that causes malaria. Additionally, most methods are developed with either LC-MS or NMR analysis in mind, and have rarely been evaluated with both tools. In this work, three extraction methods frequently found in the literature were reproduced and samples were analyzed through both LC-MS and 1H NMR, and evaluated in order to reveal which is the most repeatable and consistent through an array of different tools, including chemometrics, peak detection and annotation. The most reliable method in this study proved to be a double extraction with methanol and methanol/water (80:20, v/v). Metabolomic studies in the field should move towards standardization of methodologies and the use of both LC-MS and 1H NMR in order to make data more comparable between studies and facilitate the achievement of biologically interpretable information.


Assuntos
Antimaláricos , Malária , Humanos , Plasmodium falciparum/metabolismo , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida/métodos , Espectroscopia de Prótons por Ressonância Magnética , Metanol/metabolismo , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos
19.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
20.
J Membr Biol ; 257(1-2): 131-142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206377

RESUMO

Understanding the interaction between ligands and membrane proteins is important for drug design and optimization. Although investigation using live cells is desirable, it is not feasible in some circumstances and cell fixation is performed to reduce cell motion and degradation. This study compared the effects of five fixatives, i.e., formaldehyde vapor (FV), paraformaldehyde (PFA), acetone, methanol, and ethanol, on kinetic measurements via the LigandTracer method. We found that all five fixatives exerted insignificant effects on lectin-glycan interaction. However, antibody-receptor interaction is markedly perturbed by coagulant fixatives. The acetone fixation changed the binding of the anti-human epidermal growth factor receptor 2 (HER2) antibody to HER2 on the cell membrane from a 1:2 to a 1:1 binding model, while methanol and ethanol abolished the antibody binding possibly by removal of the HER2 receptors on the cell membrane. The capability of binding was retained when methanol fixation was performed at lower temperatures, albeit with a binding model of 1:1 instead. Moreover, whereas cell morphology does not exert a substantial impact on lectin-glycan interaction, it can indeed modify the binding model of antibody-receptor interaction. Our results provided insights into the selection of fixatives for cell-based kinetic studies.


Assuntos
Acetona , Metanol , Fixadores/farmacologia , Cinética , Membrana Celular , Etanol/farmacologia , Lectinas , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa