Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(2): 226-234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424316

RESUMO

The use of insecticides in agricultural settings often exerts negative effects on nontarget species. Methomyl, a broad-spectrum carbamate insecticide, is recommended to manage a number of insect pests of the cotton crop. Recently, Musca domestica, which is a nontarget insect species in cotton fields, has shown resistance to methomyl in Pakistan. The present study tried to assess resistance-risk assessment, rapidity of resistance development to methomyl, cross-resistance potential to other insecticides, resistance heritability and to forecast the projected rate of resistance development under field conditions. For this purpose, a field strain of M. domestica with 186 fold resistance to methomyl was re-selected in the laboratory for eight consecutive generations. Consequently, LD50 values increased rapidly (126.64 ng/fly to 3112.79 ng/fly) compared to those before selection experiments. Similarly, RR values increased from 186 to 3113 fold as a result of the selection process. However, resistance to methomyl did not remain stable when the selected strain (Meth-SEL) reared for the next five generations in a pesticide free environment. The Meth-SEL strain also developed cross-resistance to permethrin. The realized heritability (h2) value for the Meth-SEL strain was 0.39 with 27% average mortality of M. domestica. Assuming the standard deviation (σp) value 0.27 and the h2 value 0.39 for eight generations of continuous exposure to methomyl, then five, seven, eight, ten and twelve generations at 90, 80, 70, 60 and 50% selection intensity, respectively, would be required for a tenfold increase in the LD50 value of methomyl. In conclusion, the Meth-SEL strain of M. domestica exhibited a high risk of resistance development to methomyl under continuous selection pressure. Resistance increased rapidly during selection experiments that reflect the probability of resistance development under field conditions if M. domestica receive exposures to methomyl during its applications for the management of target pest species.


Assuntos
Moscas Domésticas , Inseticidas , Animais , Moscas Domésticas/genética , Inseticidas/toxicidade , Metomil , Permetrina , Medição de Risco , Resistência a Inseticidas/genética
2.
Ecotoxicol Environ Saf ; 268: 115684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976935

RESUMO

The extensive use of carbamate pesticides has led to a range of environmental and health problems, such as surface and groundwater contamination, and endocrine disorders in organisms. In this study, we focused on examining the effects of toxic exposure to the carbamate pesticide methomyl on the hatching, morphology, immunity and developmental gene expression levels in zebrafish embryos. Four concentrations of methomyl (0, 2, 20, and 200 µg/L) were administered to zebrafish embryos for a period of 96 h. The study found that exposure to methomyl accelerated the hatching process of zebrafish embryos, with the strongest effect recorded at the concentration of 2 µg/L. Methomyl exposure also trigged significantly reductions in heart rate and caused abnormalities in larvae morphology, and it also stimulated the synthesis and release of several inflammatory factors such as IL-1ß, IL-6, TNF-α and INF-α, lowered the IgM contents, ultimately enhancing inflammatory response and interfering with immune function. All of these showed the significant effects on exposure time, concentration and their interaction (Time × Concentration). Furthermore, the body length of zebrafish exposed to methomyl for 96 h was significantly shorter, particularly at higher concentrations (200 µg/L). Methomyl also affected the expression levels of genes associated with development (down-regulated igf1, bmp2b, vasa, dazl and piwi genes), demonstrating strong developmental toxicity and disruption of the endocrine system, with the most observed at the concentration of 200 µg/L and 96 h exposure to methomyl. The results of this study provide valuable reference information on the potential damage of methomyl concentrations in the environment on fish embryo development, while also supplementing present research on the immunotoxicity of methomyl.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Metomil/metabolismo , Metomil/farmacologia , Embrião não Mamífero , Sistema Endócrino , Praguicidas/metabolismo , Carbamatos/metabolismo , Larva , Poluentes Químicos da Água/metabolismo
3.
Toxicol Ind Health ; 39(9): 481-490, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37409447

RESUMO

Methomyl is a carbamate insecticide with confirmed testicular toxicity. This study intended to observe the effect of methomyl on testicular cells and the protective effect of folic acid through in vitro experiments. The GC-1 spermatogonia, TM4 Sertoli cells, and TM3 Leydig cells were treated with methomyl (0, 250, 500, and 1000 µM) with or without folic acid (0, 10, 100, and 1000 nM) for 24 h. It was found that methomyl increased cytotoxicity to testicular cells in a dose-dependent manner. In spermatogonia, methomyl significantly inhibited the expression of proliferation genes Ki67 and PCNA at 1000 µM, and increased the expression of apoptosis genes Caspase3 and Bax at each dose. In Sertoli cells, methomyl dose-dependently inhibited the expression of blood-testis barrier function genes TJP1, Cx43, and N-cadherin, but did not affect Occludin and E-cadherin. In Leydig cells, methomyl inhibited the expression of steroid synthase P450scc, StAR, Hsd3b1 and down-regulated the level of testosterone, but did not affect Cyp17a1 and Hsd17b1. Further, folic acid could basically reduce the damage caused by methomyl. This study provided new insights into the toxicity of methomyl and the protective effect of folic acid.


Assuntos
Inseticidas , Masculino , Humanos , Inseticidas/farmacologia , Metomil/metabolismo , Metomil/farmacologia , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Testículo , Células de Sertoli , Células Intersticiais do Testículo/metabolismo
4.
J Environ Manage ; 346: 118989, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717393

RESUMO

Natural soil components, such as clays, have recently piqued interest because of their potential as pesticide adsorbents. This research work sheds light on the possibility of the application of natural Albanian clays as adsorbents for methomyl and dimethoate pesticides from aqueous solutions. Natural Albanian clays from the regions of Brari, Currila, Dardha, and Prrenjasi were employed in the study and were characterized by granulometric analysis and powder X-ray diffraction. Each clay's adsorption capacity and desorption behavior were investigated toward the chosen pesticides. Within 48 h of contact time, methomyl and dimethoate solutions with different concentrations were evaluated at 25 °C to see how the insecticide concentration affected the adsorption & desorption processes for each natural clay type. The experimental data were fitted to Freundlich, Temkin and Dubinin-Radushkevich isotherm like functions and the results showed the best correlation on Freundlich like adsorption isotherm for almost all cases. Brari clay performed better adsorptive properties toward dimethoate, followed by Dardha, Currila and Prrenjasi clays. The dimethoate adsorbed quantities varied from 0.250 mg/g for C = 0.200 g/L to 0.822 mg/g for C = 0.500 g/L. In comparison to Dardha and Prrenjasi clays, Brari and Currila clays exhibit longer saturation times and improved methomyl retention. In the first 2 h of contact, 96.5% of methomyl and 81% of dimethoate were desorbed from Brari clay. The adsorption process was also investigated employing pseudo first-order and pseudo second-order kinetic models, with the results indicating that all clay-pesticide systems studied demonstrated second-order kinetic behavior. Based on the studied desorption process, it is possible to impregnate clays with various insecticides in agriculture and completely control the quantities of the insecticide released.


Assuntos
Inseticidas , Praguicidas , Argila , Metomil , Dimetoato , Adsorção , Cinética
5.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050012

RESUMO

As resistance to the limited number of insecticides available for medical and veterinary pests becomes more widespread, there is an urgent need for new insecticides and synergists on the market. To address this need, we conducted a study to assess the toxicity of three monoterpenoids-carvone, menthone, and fenchone-in comparison to permethrin and methomyl against adults of two common pests: the yellow fever mosquito (Aedes aegypti) and the house fly (Musca domestica). We also examined the potential for these monoterpenoids to enhance the effectiveness of permethrin and methomyl when used together. Finally, we evaluated the ability of each monoterpenoid to inhibit acetylcholinesterase, comparing them to methomyl. While all three monoterpenoids performed relatively poorly as topical insecticides (LD50 > 4000 ng/mg on M. domestica; >6000 ng/mg on Ae. aegypti), they synergized both permethrin and methomyl as well as or better than piperonyl butoxide (PBO). Carvone and menthone yielded synergistic co-toxicity factors (23 and 29, respectively), which were each higher than PBO at 24 h. Currently, the mechanism of action is unknown. During preliminary testing, symptoms of acetylcholinesterase inhibition were identified, prompting further testing. Acetylcholinesterase inhibition did not appear to explain the toxic or synergistic effects of the three monoterpenoids, with IC50 values greater than 1 mM for all, compared to the 2.5 and 1.7 µM for methomyl on Aedes aegypti and Musca domestica, respectively. This study provides valuable monoterpenoid toxicity and synergism data on two pestiferous insects and highlights the potential for these chemistries in future pest control formulations.


Assuntos
Aedes , Moscas Domésticas , Inseticidas , Muscidae , Febre Amarela , Animais , Inseticidas/farmacologia , Permetrina/farmacologia , Acetilcolinesterase/farmacologia , Metomil , Monoterpenos/farmacologia
6.
Chem Res Toxicol ; 35(6): 1110-1116, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35559618

RESUMO

Oxime-type carbamate pesticides having an oxime moiety such as aldicarb, butocarboxim, methomyl, oxamyl, and thiofanox are widely used and have been detected in many fatal cases of accidental exposure or suicide. In forensic toxicology, the accurate determination of blood pesticide concentration is obligatory to prove death by oxime-type carbamate pesticide poisoning. However, the fatal pesticide concentration in blood at autopsy differs from that at the time of death. In this study, we found that oxime-type carbamate pesticides were decomposed by Hb in a temperature-dependent fashion. The mechanism underlying methomyl, aldicarb, oxamyl, and thiofanox decomposition involves the formation of adducts with the amino acids in Hb. With regard to butocarboxim, its decomposition involves the oxidation of the free form and the formation of adducts with the amino acids in Hb. The mass spectra obtained by liquid chromatography quadrupole time-of-flight mass spectrometry revealed that carbamylated amino acid adducts such as Wcar-adduct and Vcar-adduct were formed in Hb solution incubated with methomyl, aldicarb, oxamyl, and thiofanox, whereas alkylated amino acid adducts such as Walkyl-adduct were formed in Hb solution incubated with butocarboxim. These results indicate that aldicarb, butocarboxim, methomyl, oxamyl, and thiofanox are post-mortem changed by Hb.


Assuntos
Metomil , Praguicidas , Aldicarb , Aminoácidos , Autopsia , Carbamatos , Inibidores da Colinesterase , Hemoglobinas/análise , Humanos , Metomil/química , Oximas , Praguicidas/análise
7.
Environ Sci Technol ; 56(12): 8449-8462, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35575681

RESUMO

Owing to the importance of acetylcholine as a neurotransmitter, many insecticides target the cholinergic system. Across phyla, cholinergic signaling is essential for many neuro-developmental processes including axonal pathfinding and synaptogenesis. Consequently, early-life exposure to such insecticides can disturb these processes, resulting in an impaired nervous system. One test frequently used to assess developmental neurotoxicity is the zebrafish light-dark transition test, which measures larval locomotion as a response to light changes. However, it is only poorly understood which structural alterations cause insecticide-induced locomotion defects and how persistent these alterations are. Therefore, this study aimed to link locomotion defects with effects on neuromuscular structures, including motorneurons, synapses, and muscles, and to investigate the longevity of the effects. The cholinergic insecticides diazinon and dimethoate (organophosphates), methomyl and pirimicarb (carbamates), and imidacloprid and thiacloprid (neonicotinoids) were used to induce hypoactivity. Our analyses revealed that some insecticides did not alter any of the structures assessed, while others affected axon branching (methomyl, imidacloprid) or muscle integrity (methomyl, thiacloprid). The majority of effects, even structural, were reversible within 24 to 72 h. Overall, we find that both neurodevelopmental and non-neurodevelopmental effects of different longevity can account for the reduced locomotion. These findings provide unprecedented insights into the underpinnings of insecticide-induced hypoactivity.


Assuntos
Inseticidas , Animais , Colinérgicos/farmacologia , Inseticidas/toxicidade , Larva , Metomil/farmacologia , Neonicotinoides , Peixe-Zebra
8.
Environ Res ; 215(Pt 2): 114356, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150435

RESUMO

BACKGROUND: Prenatal pesticide exposure has been associated with poorer neurodevelopment during childhood, which could lead to greater risk-taking behaviors and delinquency in adolescence. This association may be augmented by adversity exposure. OBJECTIVES: Evaluate the relationship between prenatal pesticide exposure and risk-taking behavior in young adults at 18-years of age. Assess whether adversity exposure modifies these associations. METHODS: Participants included mother-child dyads (n = 467) enrolled in the Center for the Health Assessment of Mothers and Children Of Salinas (CHAMACOS) study, a longitudinal birth cohort set in the agricultural Salinas Valley of California. We estimated agricultural pesticide use within one km of maternal residences during pregnancy using a geographic information system, residential addresses, and California's Pesticide Use Reporting data. We used Bayesian hierarchical regression to evaluate associations of prenatal exposure to a mixture of 11 neurotoxic pesticides with self-reported police encounters, risk-taking behaviors, and unique types and frequency of delinquent acts. We also evaluated effect modification of these relationships by adversity exposure. RESULTS: We observed generally null associations of neurotoxic pesticide use with risk-taking behaviors. Prenatal residential proximity to chlorpyrifos use was associated with higher risk of a police encounter, a delinquent act, and higher incidence of both unique types of acts committed and total frequency of delinquent acts. Prenatal residential proximity to dimethoate use was associated with a higher incidence of police encounters and methomyl with a higher risk of committing a delinquent act. There were no consistent differences when stratified by the number of adverse childhood experiences. CONCLUSIONS: We observed mostly null associations between prenatal residential proximity to agricultural pesticide use and risk-taking behaviors at age 18, with little evidence of effect modification by childhood adversity. There were suggestive associations for chlorpyrifos use with having any police encounter and with all measures of delinquent acts that warrant confirmation in other studies.


Assuntos
Clorpirifos , Praguicidas , Efeitos Tardios da Exposição Pré-Natal , Adolescente , Teorema de Bayes , California/epidemiologia , Dimetoato , Exposição Ambiental , Feminino , Humanos , Metomil , Praguicidas/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Assunção de Riscos , Adulto Jovem
9.
Zygote ; 30(3): 358-364, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34676817

RESUMO

Methomyl is a broad-spectrum carbamate insecticide that has a variety of toxic effects on humans and animals. However, there have been no studies on the toxicity of methomyl in female mammalian oocytes. This study investigated the toxic effects of environmental oestrogen methomyl exposure on mouse oocyte maturation and its possible mechanisms. Our results indicated that methomyl exposure inhibited polar body extrusion in mouse oocytes. Compared with that in the control group, in the methomyl treatment group, superoxide anion free radicals in oocytes were significantly increased. In addition, the mitochondrial membrane potential of metaphase II stage oocytes in the methomyl treatment group was significantly decreased, resulting in reduced mouse oocyte quality. After 8.5 h of exposure to methomyl, metaphase I stage mouse oocytes displayed an abnormal spindle morphology. mRNA expression of the pro-apoptotic genes Bax and Caspase-3 in methomyl-treated oocytes increased, which confirmed the apoptosis. Collectively, our results indicated that mouse oocyte maturation is defective after methomyl treatment at least through disruption of spindle morphology, mitochondrial function and by induction of oxidative stress.


Assuntos
Metomil , Oócitos , Animais , Feminino , Mamíferos , Metáfase , Metomil/metabolismo , Metomil/farmacologia , Camundongos , Mitocôndrias , Oogênese
10.
Zygote ; 30(1): 57-64, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33966682

RESUMO

Methomyl is a widely used carbamate insecticide and environmental oestrogen that has adverse effects on the reproductive system. However, there have been no reports on the effect of methomyl on early embryos in mammals. In this study, we explored the effect of methomyl exposure on the quality of early embryonic development in mice and the possible mechanisms. During in vitro culture, different concentrations of methomyl (10, 20, 30 and 35 µM) were added to mouse zygote medium. The results showed that methomyl had an adverse effect on early embryonic development. Compared with the control group, the addition of 30 µM methomyl significantly reduced the rate of early embryo blastocyst formation. Methomyl exposure can increase oxidative stress and impair mitochondrial function, which may be the cause of blastocyst formation. In addition, we found that methomyl exposure promoted apoptosis and autophagy in mouse blastocysts. The toxic effect of methomyl on early embryos may be the result of oxidative stress induction. Taken together, our results indicate that methomyl can cause embryonic development defects in mice, thereby reducing the quality of early embryo development.


Assuntos
Desenvolvimento Embrionário , Metomil , Animais , Blastocisto/metabolismo , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Feminino , Metomil/metabolismo , Camundongos , Estresse Oxidativo , Gravidez
11.
Drug Chem Toxicol ; 45(2): 523-536, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32063051

RESUMO

The aim of the present study was to estimate the potential toxic effects of a subacute and a subchronic exposure to methomyl (MET) on some parts of the digestive system in male albino rats. Wistar rats were exposed daily by oral gavage to 4 mg/kg body weight (b.w.) of MET over 28 days in subacute experiments and to 1 mg/kg b.w. of MET for 90 consecutive days in subchronic exposure. Plasma levels of liver function indicators (ALT, AST, ALP and LDH) were significantly elevated after administration of MET to rats. MET had significant pro-oxidative effects on the intestines, as indicated by decreases in nonenzymatic (GSH) and enzymatic antioxidant (GPx, GST and CAT) parameters and significant increases in TBARS levels in both the duodenum and colon of rats. Microscopically, the duodenum and colon of rats exposed to MET showed severe pathological changes. It could be concluded that MET profoundly altered the structure and antioxidant status of intestinal rat tissue, which might lead to intestinal and digestive dysfunctions.


Assuntos
Metomil , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Intestinos , Fígado , Masculino , Metomil/metabolismo , Metomil/farmacologia , Ratos , Ratos Wistar
12.
Int J Mol Sci ; 24(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36613879

RESUMO

Methomyl is one of the most important carbamates that has caused potential hazardous effects on both human beings and the environment. Here, we systematically investigated the hydrolysis mechanism of methomyl catalyzed by esterase PestE using molecular dynamics simulations (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. The hydrolysis mechanism involves two elementary steps: (Ⅰ) serine-initiated nucleophilic attack and (Ⅱ) C-O bond cleavage. Our work elicits the atomic level details of the hydrolysis mechanism and free energy profiles along the reaction pathway. The Boltzmann-weighted average potential barriers are 19.1 kcal/mol and 7.5 kcal/mol for steps Ⅰ and Ⅱ, respectively. We identified serine-initiated nucleophilic attack as the rate determining-step. The deep learning-based kcat prediction model indicated that the barrier of the rate-determining step is 15.4 kcal/mol, which is in good agreement with the calculated results using Boltzmann-weighted average method. We have elucidated the importance of the protein-substrate interactions and the roles of the key active site residues during the hydrolysis process through noncovalent interactions analysis and electrostatic potential (ESP) analysis. The results provide practical value for achieving efficient degradation of carbamates by hydrolases.


Assuntos
Esterases , Simulação de Dinâmica Molecular , Humanos , Hidrólise , Metomil , Carbamatos , Teoria Quântica
13.
Bull Environ Contam Toxicol ; 108(5): 884-889, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34874464

RESUMO

Organism tolerance thresholds for emerging contaminants are vital to the development of water quality criteria. Acute (96-h) and chronic (10-day) effects thresholds for neonicotinoid pesticides clothianidin and thiamethoxam, and the carbamate pesticide methomyl were developed for the midge Chironomus dilutus to support criteria development using the UC Davis Method. Median lethal concentrations (LC50s) were calculated for acute and chronic exposures, and the 25% inhibition concentrations (IC25) were calculated for the chronic exposures based on confirmed chemical concentrations. Clothianidin effect concentrations were 4.89 µg/L, 2.11 µg/L and 1.15 µg/L for 96-h LC50, 10-day LC50 and 10-day IC25, respectively. Similarly, thiamethoxam concentrations were 56.4 µg/L, 32.3 µg/L and 19.6 µg/L, and methomyl concentrations were 244 µg/L, 266 µg/L and 92.1 µg/L. Neonicotinoid effect concentrations compared favorably to previously published 96-h and 14-day LC50 concentrations, and methomyl effect concentrations were within the acute survival range reported for Chironomus species and other organisms.


Assuntos
Chironomidae , Inseticidas , Poluentes Químicos da Água , Animais , Guanidinas/toxicidade , Inseticidas/toxicidade , Metomil , Neonicotinoides/toxicidade , Nitrocompostos , Tiametoxam/toxicidade , Tiazóis , Poluentes Químicos da Água/análise
14.
Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi ; 40(11): 865-866, 2022 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-36510725

RESUMO

Methomyl is a carbamate insecticide widely used in pesticides. Most of the poisoning methods are through digestive tract, respiratory tract and skin contact. At present, there is no report of poisoning caused by intramuscular injection. A case of poisoning caused by intramuscular injection of methomyl was analyzed retrospectively. About 4 minutes later, cholinergic crisis and central inhibition occurred. Venovenous-Extracorporeal Membrane Oxygenation (VV-ECMO) and atropine were given quickly. Finally, the patient was successfully rescued and had a good prognosis. After intramuscular injection of methomyl, cholinergic crisis can occur rapidly, and the onset rate is significantly faster than that of digestive tract, respiratory tract and skin contact.


Assuntos
Inseticidas , Praguicidas , Humanos , Estudos Retrospectivos , Metomil , Colinérgicos
15.
Chem Res Toxicol ; 34(1): 161-168, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33405899

RESUMO

Methomyl, (E,Z)-methyl N-{[(methylamino)carbonyl]oxy}ethanimidothioate, is a widely used pesticide that has been detected in many fatal cases of accidental exposure or suicide. Forensic toxicologists have been baffled that the blood methomyl concentration in persons who have died of methomyl poisoning is much lower than the expected concentration in blood. In this study, we speculated two mechanisms underlying the insufficient recovery of methomyl in blood. First, methomyl is decomposed by serum albumin as esterase. Second, methomyl is bound to a specific blood protein, resulting in insufficient recovery in the free form. However, human serum albumin does not show esterase activity for the decomposition of methomyl. On the contrary, specific methomyl hemoglobin adducts have been detected by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q/TOF-MS). The mass spectra indicated that methomyl was specifically bound to tryptophan (W), tyrosine (Y), and valine (V) residues in hemoglobin. The amounts of W- and V-adducts dose-dependently increased in vitro when the methomyl concentration was lower than the lethal concentration. In addition, the W-adduct was detected in blood sampled from an autopsied subject who died of intentional methomyl ingestion, suggesting that the W-adduct could be used as a biomarker of methomyl poisoning. We were able to estimate the amount of methomyl ingested on the basis of the amount of the W-adduct.


Assuntos
Toxicologia Forense , Hemoglobinas/análise , Metomil/sangue , Idoso de 80 Anos ou mais , Feminino , Humanos , Metomil/química , Metomil/intoxicação , Estrutura Molecular , Suicídio
16.
J Appl Toxicol ; 41(5): 832-846, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33427323

RESUMO

Pesticides have adverse effects on the cellular functionality, which may trigger myriad of health consequences. However, pesticides-mediated toxicity in the endothelial cells (ECs) is still elusive. Hence, in this study, we have used human umbilical vein endothelial cells (HUVECs) as a model to quantify the cytotoxicity and genotoxicity of four pesticides (methomyl, carbaryl, metalaxyl, and pendimethalin). In the MTT assay, HUVECs exposed to methomyl, carbaryl, metalaxyl, and pendimethalin demonstrated significant proliferation inhibition only at higher concentrations (500 and 1000 µM). Likewise, neutral red uptake (NRU) assay also showed proliferation inhibition of HUVECs at 500 and 1000 µM by the four pesticides, confirming lysosomal fragility. HUVECs exposed to the four pesticides significantly increased the level of intracellular reactive oxygen species (ROS). Comet assay and flow cytometric data exhibited DNA damage and apoptotic cell death in HUVECs after 24 h of exposure with methomyl, metalaxyl, carbaryl, and pendimethalin. This is a first study on HUVECs signifying the cytotoxic-genotoxic and apoptotic potential of carbamate insecticides (methomyl and carbaryl), fungicide (metalaxyl), and herbicide (pendimethalin). Overall, these pesticides may affect ECs functions and angiogenesis; nonetheless, mechanistic studies are warranted from the perspective of vascular biology using in vivo test models.


Assuntos
Alanina/análogos & derivados , Compostos de Anilina/toxicidade , Carbaril/toxicidade , Metomil/toxicidade , Praguicidas/toxicidade , Alanina/toxicidade , Ensaio Cometa , Dano ao DNA , Herbicidas , Células Endoteliais da Veia Umbilical Humana , Humanos , Inseticidas/toxicidade , Espécies Reativas de Oxigênio
17.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33097501

RESUMO

Methomyl {bis[1-methylthioacetaldehyde-O-(N-methylcarbamoyl)oximino]sulfide} is a highly toxic oxime carbamate insecticide. Several methomyl-degrading microorganisms have been reported so far, but the role of specific enzymes and genes in this process is still unexplored. In this study, a protein annotated as a carbamate C-N hydrolase was identified in the methomyl-degrading strain Aminobacter aminovorans MDW-2, and the encoding gene was termed ameH A comparative analysis between the mass fingerprints of AmeH and deduced proteins of the strain MDW-2 genome revealed AmeH to be a key enzyme of the detoxification step of methomyl degradation. The results also demonstrated that AmeH was a functional homodimer with a subunit molecular mass of approximately 34 kDa and shared the highest identity (27%) with the putative formamidase from Schizosaccharomyces pombe ATCC 24843. AmeH displayed maximal enzymatic activity at 50°C and pH 8.5. Km and kcat of AmeH for methomyl were 87.5 µM and 345.2 s-1, respectively, and catalytic efficiency (kcat/Km ) was 3.9 µM-1 s-1 Phylogenetic analysis revealed AmeH to be a member of the FmdA_AmdA superfamily. Additionally, five key amino acid residues (162, 164, 191, 193, and 207) of AmeH were identified by amino acid variations.IMPORTANCE Based on the structural characteristic, carbamate insecticides can be classified into oxime carbamates (methomyl, aldicarb, oxamyl, etc.) and N-methyl carbamates (carbaryl, carbofuran, isoprocarb, etc.). So far, research on the degradation of carbamate pesticides has mainly focused on the detoxification step and hydrolysis of their carbamate bond. Several genes, such as cehA, mcbA, cahA, and mcd, and their encoding enzymes have also been reported to be involved in the detoxification step. However, none of these enzymes can hydrolyze methomyl. In this study, a carbamate C-N hydrolase gene, ameH, responsible for the detoxification step of methomyl in strain MDW-2 was cloned and the key amino acid sites of AmeH were investigated. These findings provide insight into the microbial degradation mechanism of methomyl.


Assuntos
Hidrolases/metabolismo , Metomil/metabolismo , Phyllobacteriaceae/enzimologia , Biodegradação Ambiental , Inativação Metabólica , Análise de Sequência de Proteína
18.
Curr Microbiol ; 77(7): 1301-1307, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462223

RESUMO

The research study was about revealing the biochemical response of Gammarus pulex related to insecticide methomyl before and after bioremediation by two soil bacteria species, Ochrobactrum thiophenivorans and Sphingomonas melonis. Catalase (CAT), glutathione S-transferase.(GST), cytochrome. P4501A1 (CYP1A1) activities in G. Pulex related to methomyl solution were investigated in 24 h and 96 h. ELISA method was used for test studies. CAT enzyme was decreased in Gammarus pulex that was exposed to methomyl after all exposure period (P < 0.05). CAT activities were returned to control results after bioremediation assays. GST enzyme activity was decreased depending on methomyl exposure during 24 h but increased during 4 days (P < 0.05). After 8 days of bioremediation period, GST activity increased again during 24 h while decreased during 4 days (P < 0.05). CYP1A1 activity increased in Gammarus pulex that was exposed to methomyl after all exposure period (P > 0.05). After bioremediation, statistically significant changes were not revealed in CYP1A1 activities (P > 0.05). According to the results of our study, CYP1A1, CAT, and GST activities in G. pulex sanctioned the capability of Ochrobactrum thiophenivorans and Sphingomonas melonis in methomyl bioremediation. Isolated and enriched Ochrobactrum thiophenivorans and Sphingomonas melonis that were added to 2.5 ppb concentrations of methomyl for 8 days. Each day, chemical oxygen demand (COD) and biochemical oxygen demand (BOD5), pH and dissolved oxygen parameters were monitored. At the final phase of the bioremediation step, it was determined that these bacteria have efficient methomyl bioremediation properties in a mixed corsortia at a rate of 86%. These results show that these bacteria can be used for bioremediate the receiving environments that are polluted by these kinds of insecticides.


Assuntos
Inseticidas , Metomil , Ochrobactrum/metabolismo , Poluentes do Solo , Sphingomonas/metabolismo , Anfípodes/efeitos dos fármacos , Anfípodes/metabolismo , Animais , Antioxidantes/metabolismo , Biodegradação Ambiental , Inseticidas/metabolismo , Inseticidas/toxicidade , Metomil/metabolismo , Metomil/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
19.
J Enzyme Inhib Med Chem ; 35(1): 1923-1927, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33078633

RESUMO

Carbonic anhydrase (CA, EC 4.2.1.1) plays crucial physiological roles in many different organisms, such as in pH regulation, ion transport, and metabolic processes. CA was isolated from the European bee Apis mellifera (AmCA) spermatheca and inhibitory effects of pesticides belonging to various classes, such as carbamates, thiophosphates, and pyrethroids, were investigated herein. The inhibitory effects of methomyl, oxamyl, deltamethrin, cypermethrin, dichlorodiphenyltrichloroethane (DDT) and diazinon on AmCA were analysed. These pesticides showed effective in vitro inhibition of the enzyme, at sub-micromolar levels. The IC50 values for these pesticides ranged between of 0.0023 and 0.0385 µM. The CA inhibition mechanism with these compounds is unknown at the moment, but most of them contain ester functionalities which may be hydrolysed by the enzyme with the formation of intermediates that can either react with amino acid residues or bid to the zinc ion from the active site.


Assuntos
Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Praguicidas/química , Animais , Abelhas , Carbamatos/química , Carbamatos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Domínio Catalítico , DDT/química , DDT/farmacologia , Diazinon/química , Diazinon/farmacologia , Ésteres/química , Metomil/química , Metomil/farmacologia , Nitrilas/química , Nitrilas/farmacologia , Praguicidas/farmacologia , Fosfatos/química , Fosfatos/farmacologia , Ligação Proteica , Piretrinas/química , Piretrinas/farmacologia , Relação Estrutura-Atividade , Zinco/química
20.
Pestic Biochem Physiol ; 165: 104553, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359535

RESUMO

Thrips tabaci is a key pest of onions, especially in the Pacific Northwestern USA. Management of T. tabaci is dominated by the application of various insecticides. However, T. tabaci is known to develop insecticide resistance which possibly leads to control failures, crop loss, and environmental concern. Here, we evaluated resistance status of T. tabaci populations from conventional and organic commercial onion fields to three widely used insecticides: oxamyl, methomyl, and abamectin with on-field concentration-mortality bioassays. The biochemistry and molecular mechanisms underlying resistance to these insecticides were also investigated by using enzymatic assays and detecting resistance-associated mutations. Field-evolved resistance to oxamyl, methomyl and abamectin were detected in most of the T. tabaci populations collected from conventional onion farms. At the labeled field rate, all the tested insecticides, particularly methomyl and oxamyl, had significantly reduced efficacy. Enzymatic assays of insecticide target and detoxification enzymes indicated that T. tabaci populations in Western USA onions harbor multiple mechanisms of resistance including enhanced activities of detoxification enzymes and target site insensitivity. Our results provide new information in understanding the dynamics of T. tabaci adaptation to multiple insecticides, which will help to design sustainable insecticide resistance management strategies for T. tabaci. Furthermore, this study provides the foundation for future research in identifying the biochemical and molecular markers associated with insecticide resistance in T. tabaci.


Assuntos
Inseticidas , Tisanópteros , Animais , Resistência a Inseticidas , Metomil , Cebolas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa