Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 42: 249-269, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283901

RESUMO

In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.


Assuntos
Doenças do Sistema Nervoso/virologia , Infecção por Zika virus/fisiopatologia , Adulto , Animais , Encéfalo/embriologia , Encéfalo/patologia , Encéfalo/virologia , Células Cultivadas , Doenças Transmissíveis Emergentes , Surtos de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Interações entre Hospedeiro e Microrganismos , Humanos , Recém-Nascido , Macaca mulatta , Camundongos , Microbiota , Microcefalia/embriologia , Microcefalia/etiologia , Microcefalia/virologia , Microglia/fisiologia , Modelos Animais , Doenças do Sistema Nervoso/fisiopatologia , Neurogênese , Gravidez , Complicações Infecciosas na Gravidez/fisiopatologia , Receptores Virais/fisiologia , Estudos em Gêmeos como Assunto , Vacinas Virais , Zika virus/imunologia , Zika virus/isolamento & purificação , Zika virus/patogenicidade , Zika virus/fisiologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/veterinária
2.
Immunity ; 46(3): 446-456, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28314593

RESUMO

Zika virus (ZIKV) has become a public health threat due to its global transmission and link to severe congenital disorders. The host immune responses to ZIKV infection have not been fully elucidated, and effective therapeutics are not currently available. Herein, we demonstrated that cholesterol-25-hydroxylase (CH25H) was induced in response to ZIKV infection and that its enzymatic product, 25-hydroxycholesterol (25HC), was a critical mediator of host protection against ZIKV. Synthetic 25HC addition inhibited ZIKV infection in vitro by blocking viral entry, and treatment with 25HC reduced viremia and conferred protection against ZIKV in mice and rhesus macaques. 25HC suppressed ZIKV infection and reduced tissue damage in human cortical organoids and the embryonic brain of the ZIKV-induced mouse microcephaly model. Our findings highlight the protective role of CH25H during ZIKV infection and the potential use of 25HC as a natural antiviral agent to combat ZIKV infection and prevent ZIKV-associated outcomes, such as microcephaly.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Humanos , Macaca mulatta , Camundongos , Microscopia Confocal , Internalização do Vírus/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Zika virus/fisiologia
3.
Genes Dev ; 31(9): 849-861, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566536

RESUMO

The re-emergence of Zika virus (ZIKV), a mosquito-borne and sexually transmitted flavivirus circulating in >70 countries and territories, poses a significant global threat to public health due to its ability to cause severe developmental defects in the human brain, such as microcephaly. Since the World Health Organization declared the ZIKV outbreak a Public Health Emergency of International Concern, remarkable progress has been made to gain insight into cellular targets, pathogenesis, and underlying biological mechanisms of ZIKV infection. Here we review the current knowledge and progress in understanding the impact of ZIKV exposure on the mammalian brain development and discuss potential underlying mechanisms.


Assuntos
Microcefalia/virologia , Infecção por Zika virus/complicações , Zika virus/fisiologia , Animais , Surtos de Doenças , Humanos , Microcefalia/patologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
4.
BMC Pediatr ; 24(1): 286, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685089

RESUMO

OBJECTIVE: To describe the feeding characteristics and growth of children with prenatal exposure to Zika virus (ZIKV) from birth to 48 months. DESIGN: Using data from the prospective Microcephaly Epidemic Research Group Pediatric Cohort (MERG-PC), children without microcephaly born to mothers with evidence of ZIKV infection during pregnancy (ZIKV-exposed children without microcephaly) and children with Zika-related microcephaly were compared using repeated cross-sectional analyses within the following age strata: birth; 1 to 12; 13 to 24; 25 to 36; and 37 to 48 months. The groups were compared in relation to prematurity, birth weight, breastfeeding, alternative feeding routes, dysphagia and anthropometric profiles based on the World Health Organization Anthro z-scores (weight-length/height, weight-age, length/height-age and BMI-age). RESULTS: The first assessment included 248 children, 77 (31.05%) with microcephaly and 171 (68.95%) without microcephaly. The final assessment was performed on 86 children. Prematurity was 2.35 times higher and low birth weight was 3.49 times higher in children with microcephaly. The frequency of breastfeeding was high (> 80%) in both groups. On discharge from the maternity hospital, the frequency of children requiring alternative feeding route in both groups was less than 5%. After 12 months of age, children with microcephaly required alternative feeding route more often than children without microcephaly. In children with microcephaly, the z-score of all growth indicators was lower than in children without microcephaly. CONCLUSIONS: Children with Zika-related microcephaly were more frequently premature and low birth weight and remained with nutritional parameters, i.e., weight-for-age, weight-for-length/height and length/height-for-age below those of the children without microcephaly.


Assuntos
Aleitamento Materno , Microcefalia , Complicações Infecciosas na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Infecção por Zika virus , Humanos , Microcefalia/epidemiologia , Microcefalia/etiologia , Microcefalia/virologia , Infecção por Zika virus/complicações , Infecção por Zika virus/epidemiologia , Feminino , Gravidez , Recém-Nascido , Lactente , Masculino , Complicações Infecciosas na Gravidez/epidemiologia , Pré-Escolar , Estudos Transversais , Estudos Prospectivos , Desenvolvimento Infantil , Brasil/epidemiologia
5.
J Virol ; 96(9): e0033322, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412344

RESUMO

Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5'-kinase 3'-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015-2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA , Mitose , Células-Tronco Neurais , Fosfotransferases (Aceptor do Grupo Álcool) , Infecção por Zika virus , Enzimas Reparadoras do DNA/genética , Humanos , Microcefalia/virologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Zika virus , Infecção por Zika virus/patologia
6.
Nature ; 546(7658): 406-410, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28538727

RESUMO

Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.


Assuntos
Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , América/epidemiologia , Número Básico de Reprodução , Brasil/epidemiologia , Variação Genética , Genoma Viral/genética , Humanos , Microcefalia/epidemiologia , Microcefalia/virologia , Epidemiologia Molecular , Filogeografia , Análise Espaço-Temporal , Zika virus/genética , Infecção por Zika virus/epidemiologia
7.
Proc Natl Acad Sci U S A ; 117(38): 23869-23878, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907937

RESUMO

Mounting evidence has associated Zika virus (ZIKV) infection with congenital malformations, including microcephaly, which raises global alarm. Nonetheless, mechanisms by which ZIKV disrupts neurogenesis and causes microcephaly are far from being understood. In this study, we discovered direct effects of ZIKV on neural progenitor cell development by inducing caspase-1- and gasdermin D (GSDMD)-mediated pyroptotic cell death, linking ZIKV infection with the development of microcephaly. Importantly, caspase-1 depletion or its inhibitor VX-765 treatment reduced ZIKV-induced inflammatory responses and pyroptosis, and substantially attenuated neuropathology and brain atrophy in vivo. Collectively, our data identify caspase-1- and GSDMD-mediated pyroptosis in neural progenitor cells as a previously unrecognized mechanism for ZIKV-related pathological effects during neural development, and also provide treatment options for ZIKV-associated diseases.


Assuntos
Encefalopatias , Células-Tronco Neurais , Piroptose/fisiologia , Infecção por Zika virus , Zika virus , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/virologia , Encefalopatias/metabolismo , Encefalopatias/virologia , Células Cultivadas , Humanos , Camundongos , Microcefalia/metabolismo , Microcefalia/virologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
8.
PLoS Pathog ; 16(5): e1008204, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32357162

RESUMO

Zika virus (ZIKV) can infect and cause microcephaly and Zika-associated neurological complications in the developing fetal and adult brains. In terms of pathogenesis, a critical question is how ZIKV overcomes the barriers separating the brain from the circulation and gains access to the central nervous system (CNS). Despite the importance of ZIKV pathogenesis, the route ZIKV utilizes to cross CNS barriers remains unclear. Here we show that in mouse models, ZIKV-infected cells initially appeared in the periventricular regions of the brain, including the choroid plexus and the meninges, prior to infection of the cortex. The appearance of ZIKV in cerebrospinal fluid (CSF) preceded infection of the brain parenchyma. Further the brain infection was significantly attenuated by neutralization of the virus in the CSF, indicating that ZIKV in the CSF at the early stage of infection might be responsible for establishing a lethal infection of the brain. We show that cells infected by ZIKV in the choroid plexus were pericytes. Using in vitro systems, we highlight the possibility that ZIKV crosses the blood-CSF barrier by disrupting the choroid plexus epithelial layer. Taken together, our results suggest that ZIKV might exploit the blood-CSF barrier rather than the blood-brain barrier to invade the CNS.


Assuntos
Plexo Corióideo/patologia , Pericitos/patologia , Infecção por Zika virus/patologia , Animais , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sistema Nervoso Central/patologia , Chlorocebus aethiops , Plexo Corióideo/metabolismo , Plexo Corióideo/virologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcefalia/complicações , Microcefalia/virologia , Doenças do Sistema Nervoso , Pericitos/metabolismo , Pericitos/virologia , Cultura Primária de Células , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/virologia
9.
PLoS Pathog ; 16(12): e1008689, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301527

RESUMO

The neurodevelopmental defects associated with ZIKV infections early in pregnancy are well documented, however the potential defects and long-term consequences associated with milder infections in late pregnancy and perinatal period are less well understood. To model these, we challenged 1 day old (P1) immunocompetent C57BL/6 mice with ZIKV. The animals developed a transient neurological syndrome including unsteady gait, kinetic tremors, severe ataxia and seizures 10-15 days post-infection (dpi) but symptoms subsided after a week, and most animals survived. Despite apparent recovery, MRI of convalescent mice show reduced cerebellar volume that correlates with altered coordination and motor function as well as hyperactivity and impulsivity. Persistent mRNA levels of pro-inflammatory genes including Cd80, Il-1α, and Ifn-γ together with Cd3, Cd8 and perforin (PrfA), suggested persistence of low-grade inflammation. Surprisingly, the brain parenchyma of convalescent mice harbor multiple small discrete foci with viral antigen, active apoptotic processes in neurons, and cellular infiltrates, surrounded by activated astrocytes and microglia as late as 1-year post-infection. Detection of negative-sense strand viral RNA and isolation of infectious virus derived from these convalescent mice by blinded passage in Vero cells confirmed long-term persistence of replicating ZIKV in CNS of convalescent mice. Although the infection appears to persist in defined reservoirs within CNS, the resulting inflammation could increase the risk of neurodegenerative disorders. This raises concern regarding possible long-term effects in asymptomatic children exposed to the virus and suggests that long-term neurological and behavioral monitoring as well as anti-viral treatment to clear virus from the CNS may be useful in patients exposed to ZIKV at an early age.


Assuntos
Inflamação/fisiopatologia , Infecção por Zika virus/complicações , Infecção por Zika virus/fisiopatologia , Animais , Encéfalo/virologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Microcefalia/complicações , Microcefalia/virologia , Neurônios/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Células Vero , Zika virus/imunologia , Zika virus/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/virologia
10.
PLoS Pathog ; 16(5): e1008521, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392268

RESUMO

Zika virus (ZIKV) infection may lead to congenital microcephaly and pregnancy loss in pregnant women. In the context of pregnancy, folic acid (FA) supplementation may reduce the risk of abnormal pregnancy outcomes. Intriguingly, FA may have a beneficial effect on the adverse pregnancy outcomes associated with ZIKV infection. Here, we show that FA inhibits ZIKV replication in human umbilical vein endothelial cells (HUVECs) and a cell culture model of blood-placental barrier (BPB). The inhibitory effect of FA against ZIKV infection is associated with FRα-AMPK signaling. Furthermore, treatment with FA reduces pathological features in the placenta, number of fetal resorptions, and stillbirths in two mouse models of in utero ZIKV transmission. Mice with FA treatment showed lower viral burden and better prognostic profiles in the placenta including reduced inflammatory response, and enhanced integrity of BPB. Overall, our findings suggest the preventive role of FA supplementation in ZIKV-associated abnormal pregnancy and warrant nutritional surveillance to evaluate maternal FA status in areas with active ZIKV transmission.


Assuntos
Ácido Fólico/farmacologia , Placenta , Complicações Infecciosas na Gravidez , Infecção por Zika virus/prevenção & controle , Zika virus/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Microcefalia/metabolismo , Microcefalia/patologia , Microcefalia/prevenção & controle , Microcefalia/virologia , Placenta/metabolismo , Placenta/patologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/prevenção & controle , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
11.
Nature ; 534(7606): 267-71, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279226

RESUMO

Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys. Until the twentieth century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the Yap Island in Micronesia. Patients experienced fever, skin rash, arthralgia and conjunctivitis. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKV(BR)) strain causes birth defects remains absent. Here we demonstrate that ZIKV(BR) infects fetuses, causing intrauterine growth restriction, including signs of microcephaly, in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. We also report that the infection of human brain organoids results in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKV(BR) crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, and impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKV(BR) outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKV(BR) in human neurodevelopment.


Assuntos
Modelos Animais de Doenças , Microcefalia/virologia , Zika virus/patogenicidade , Animais , Apoptose , Autofagia , Encéfalo/patologia , Encéfalo/virologia , Brasil/epidemiologia , Proliferação de Células , Feminino , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/virologia , Feto/virologia , Camundongos , Microcefalia/epidemiologia , Microcefalia/etiologia , Microcefalia/patologia , Células-Tronco Neurais/patologia , Células-Tronco Neurais/virologia , Organoides/patologia , Organoides/virologia , Placenta/virologia , Gravidez , Infecção por Zika virus/complicações , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia
12.
Nature ; 536(7617): 474-8, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27355570

RESUMO

Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.


Assuntos
Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Zika virus/imunologia , Transferência Adotiva , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Brasil , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Deleção de Genes , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Camundongos , Microcefalia/complicações , Microcefalia/virologia , Vacinas de DNA/química , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/química , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Zika virus/química , Zika virus/genética , Infecção por Zika virus/complicações , Infecção por Zika virus/imunologia
13.
Cereb Cortex ; 31(5): 2309-2321, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33341889

RESUMO

Zika virus is a teratogen similar to other neurotropic viruses, notably cytomegalovirus and rubella. The goal of these studies was to address the direct impact of Zika virus on fetal development by inoculating early gestation fetal rhesus monkeys using an ultrasound-guided approach (intraperitoneal vs. intraventricular). Growth and development were monitored across gestation, maternal samples collected, and fetal tissues obtained in the second trimester or near term. Although normal growth and anatomical development were observed, significant morphologic changes were noted in the cerebral cortex at 3-weeks post-Zika virus inoculation including massive alterations in the distribution, density, number, and morphology of microglial cells in proliferative regions of the fetal cerebral cortex; an altered distribution of Tbr2+ neural precursor cells; increased diameter and volume of blood vessels in the cortical proliferative zones; and a thinner cortical plate. At 3-months postinoculation, alterations in morphology, distribution, and density of microglial cells were also observed with an increase in blood vessel volume; and a thinner cortical plate. Only transient maternal viremia was observed but sustained maternal immune activation was detected. Overall, these studies suggest persistent changes in cortical structure result from early gestation Zika virus exposure with durable effects on microglial cells.


Assuntos
Células-Tronco Neurais/virologia , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Animais , Desenvolvimento Fetal/fisiologia , Feto/virologia , Macaca mulatta/virologia , Microcefalia/virologia , Neurogênese/fisiologia
14.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163212

RESUMO

Cell death by apoptosis is a major cellular response in the control of tissue homeostasis and as a defense mechanism in the case of cellular aggression such as an infection. Cell self-destruction is part of antiviral responses, aimed at limiting the spread of a virus. Although it may contribute to the deleterious effects in infectious pathology, apoptosis remains a key mechanism for viral clearance and the resolution of infection. The control mechanisms of cell death processes by viruses have been extensively studied. Apoptosis can be triggered by different viral determinants through different pathways as a result of virally induced cell stresses and innate immune responses. Zika virus (ZIKV) induces Zika disease in humans, which has caused severe neurological forms, birth defects, and microcephaly in newborns during the last epidemics. ZIKV also surprised by revealing an ability to persist in the genital tract and in semen, thus being sexually transmitted. Mechanisms of diverting antiviral responses such as the interferon response, the role of cytopathic effects and apoptosis in the etiology of the disease have been widely studied and debated. In this review, we examined the interplay between ZIKV infection of different cell types and apoptosis and how the virus deals with this cellular response. We illustrate a duality in the effects of ZIKV-controlled apoptosis, depending on whether it occurs too early or too late, respectively, in neuropathogenesis, or in long-term viral persistence. We further discuss a prospective role for apoptosis in ZIKV-related therapies, and the use of ZIKV as an oncolytic agent.


Assuntos
Apoptose/fisiologia , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Animais , Antivirais/uso terapêutico , Morte Celular/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Interferons/uso terapêutico , Microcefalia/virologia , Fenômenos Fisiológicos Virais/imunologia , Replicação Viral/fisiologia , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/virologia
15.
J Infect Dis ; 223(3): 435-440, 2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32614431

RESUMO

The recent increase in babies born with brain and eye malformations in Brazil is associated with Zika virus (ZIKV) infection in utero. ZIKV alters host DNA methylation in vitro. Using genome-wide DNA methylation profiling we compared 18 babies born with congenital ZIKV microcephaly with 20 controls. We found ZIKV-associated alteration of host methylation patterns, notably at RABGAP1L which is important in brain development, at viral host immunity genes MX1 and ISG15, and in an epigenetic module containing the causal microcephaly gene MCPH1. Our data support the hypothesis that clinical signs of congenital ZIKV are associated with changes in DNA methylation.


Assuntos
Metilação de DNA , Imunidade/genética , Microcefalia/virologia , Neurogênese/genética , Infecção por Zika virus , Encéfalo/crescimento & desenvolvimento , Encéfalo/virologia , Brasil , Proteínas de Ciclo Celular/genética , Pré-Escolar , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Lactente , Masculino , Gravidez , Complicações Infecciosas na Gravidez/virologia , Zika virus/imunologia
16.
Trop Med Int Health ; 26(2): 133-145, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33164278

RESUMO

OBJECTIVES: Zika virus is linked to several adverse pregnancy outcomes. We assessed whether Zika infection during pregnancy is associated with increased risk of foetal death (miscarriage, stillbirth, abortion) and whether there is incomplete reporting of such deaths. METHODS: We searched PubMed, Embase, CINAHL, Web of Science and LILACS for studies reporting Zika-affected completed pregnancies (ending in foetal death or live birth), excluding studies whose aim required live birth. Studies 'allowed' foetal death if their populations were defined to encompass both live births and foetal deaths, regardless of whether deaths were actually found. Two authors independently extracted data and assessed study quality. Foetal death absolute and relative risks in Zika-affected vs. unaffected pregnancies were calculated. RESULTS: We found 108 reports including 24 699 completed, Zika-affected pregnancies. The median absolute risk in 37 studies of completed, Zika-affected pregnancies was 6.3% (IQR 3.2%, 10.6%) for foetal death and 5.9% (IQR 0%, 29.1%) for non-fatal adverse outcomes (e.g. microcephaly). More studies allowed non-fatal adverse outcomes (95%) than foetal death (58%). Of studies which allowed them, 94% found at least one foetal death. In 37% of reports, it was unknown whether foetal deaths were allowed. Only one study had sufficient data to estimate a foetal death relative risk (11.05, 95% CI 3.43, 35.55). CONCLUSIONS: Evidence was insufficient to determine whether foetal death risk is higher in Zika-affected pregnancies, but suggests quality of foetal death reporting should be improved, including stating whether foetal deaths were found, how many, and at what gestational ages, or justifying their exclusion.


OBJECTIFS: Le virus Zika est lié à plusieurs issues défavorables de la grossesse. Nous avons évalué si l'infection à Zika pendant la grossesse était associée à un risque accru de mort fœtale (fausse couche, mortinaissance, avortement) et s'il y avait une déclaration incomplète de ces décès. MÉTHODES: Nous avons recherché dans PubMed, EMBASE, Cinahl, Web of Science et LILACS des études rapportant des grossesses terminées touchées par le virus Zika (se terminant par une mort fœtale ou une naissance vivante), à l'exclusion des études dont l'objectif nécessitait une naissance vivante. Les études «autorisaient¼ la mort fœtale si leur population était définie comme englobant à la fois les naissances vivantes et les décès fœtaux, indépendamment du fait que des décès aient été effectivement constatés. Deux auteurs ont indépendamment extrait les données et évalué la qualité des études. Les risques absolus et relatifs de mortalité fœtale dans les grossesses affectées par Zika par rapport aux grossesses non affectées ont été calculés. RÉSULTATS: Nous avons trouvé 108 reports dont 24.699 grossesses terminées et affectées par le virus Zika. Le risque médian absolu dans 37 études portant sur des grossesses terminées affectées par Zika était de 6,3% (IQR 3,2%, 10,6%) pour la mort fœtale et de 5,9% (IQR 0%, 29,1%) pour les issues indésirables non mortelles (par exemple microcéphalie). Plus d'études ont «autorisé¼ des résultats indésirables non mortels (95%) que la mort fœtale (58%). Parmi les études qui les ont «autorisé¼, 94% ont trouvé au moins un décès fœtal. Dans 37% des rapports, il n'est pas indiqué si la mort fœtale avait été «autorisée¼. Une seule étude contenait des données suffisantes pour estimer un risque relatif de mort fœtale (11,05 ; IC95%: 3,43, 35,55). CONCLUSIONS: Les données étaient insuffisantes pour déterminer si le risque de mort fœtale est plus élevé dans les grossesses touchées par le virus Zika, mais suggèrent que la qualité des reports sur les décès fœtaux devrait être améliorée, notamment en indiquant si des décès fœtaux ont été constatés, combien et à quel âge gestationnel, ou justifiant leur exclusion.


Assuntos
Complicações Infecciosas na Gravidez/epidemiologia , Natimorto/epidemiologia , Infecção por Zika virus/epidemiologia , Zika virus , Aborto Espontâneo/epidemiologia , Aborto Espontâneo/virologia , Feminino , Humanos , Microcefalia/epidemiologia , Microcefalia/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Resultado da Gravidez , Infecção por Zika virus/virologia
17.
BMC Pregnancy Childbirth ; 21(1): 214, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731027

RESUMO

BACKGROUND: Prevalence of neonatal microcephaly in populations without Zika-epidemics is sparse. The study aimed to report baseline prevalence of congenital microcephaly and its relationship with prenatal factors in an area at risk of Zika outbreak. METHODS: This study included singletons born after 24 gestational weeks in 2017-2018 at four hospitals in Guangzhou, China. Microcephaly was defined as a head circumference at birth >3SD below the mean for sex and gestational age. Prevalence of microcephaly was estimated by binomial exact method. Multivariable logistic regression was used to examine the associations of microcephaly with prenatal factors. The population attributable fraction (PAF) for associated risk factors was calculated. RESULTS: Of 46,610 live births included, 154 (3.3, 95% CI 2.8-3.9 per 1000 live births) microcephalies were identified. Maternal hepatitis B virus carriers (HBV, OR 1.80, 95% CI 1.05-3.10) and primipara (OR 2.68, 95% CI 1.89-3.81) had higher risk of having a microcephalic baby. Higher prevalence of microcephaly was observed in women who had premature labor (OR 1.98, 95% CI 1.17-3.34) and had a baby with fetal growth restriction (OR 16.38, 95% CI 11.81-22.71). Four identified factors (HBV, primiparity, preterm labor, and fetal growth restriction) contributed to 66.4% of the risk of microcephaly. CONCLUSIONS: The prevalence of microcephaly in Guangzhou was higher than expected. This study identified four prenatal risk factors that, together, contributed to two-thirds of the increased risk of microcephaly. This is the first reported association between maternal HBV carrier status and microcephaly.


Assuntos
Hepatite B/epidemiologia , Doenças do Recém-Nascido , Microcefalia , Complicações Infecciosas na Gravidez , Infecção por Zika virus/epidemiologia , Adulto , China/epidemiologia , Feminino , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/epidemiologia , Idade Gestacional , Humanos , Recém-Nascido , Doenças do Recém-Nascido/diagnóstico , Doenças do Recém-Nascido/epidemiologia , Doenças do Recém-Nascido/etiologia , Microcefalia/diagnóstico , Microcefalia/epidemiologia , Microcefalia/virologia , Paridade , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Nascimento Prematuro/diagnóstico , Nascimento Prematuro/epidemiologia , Prevalência , Medição de Risco , Fatores de Risco , Zika virus/isolamento & purificação , Zika virus/patogenicidade
18.
Bioessays ; 41(6): e1800239, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31106880

RESUMO

Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.


Assuntos
Síndrome de Guillain-Barré/patologia , Síndrome de Guillain-Barré/virologia , Edição de RNA , Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Adenosina Desaminase/genética , Adulto , Biomarcadores , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Lactente , Recém-Nascido , Microcefalia/virologia , Teste Pré-Natal não Invasivo , Gravidez , Proteínas de Ligação a RNA/genética
19.
Development ; 144(6): 952-957, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28292840

RESUMO

Technologies to differentiate human pluripotent stem cells into three-dimensional organized structures that resemble in vivo organs are pushing the frontiers of human disease modeling and drug development. In response to the global health emergency posed by the Zika virus (ZIKV) outbreak, brain organoids engineered to mimic the developing human fetal brain have been employed to model ZIKV-induced microcephaly. Here, we discuss the advantages of brain organoids over other model systems to study development and highlight recent advances in understanding ZIKV pathophysiology and its underlying pathogenesis mechanisms. We further discuss perspectives on overcoming limitations of current organoid systems for their future use in ZIKV research.


Assuntos
Encéfalo/patologia , Microcefalia/virologia , Organoides/patologia , Zika virus/fisiologia , Animais , Humanos , Microcefalia/patologia , Infecção por Zika virus/virologia
20.
J Pediatr ; 222: 112-119.e3, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32417080

RESUMO

OBJECTIVE: To estimate the prevalence of microcephaly and central nervous system (CNS) defects during the Zika virus (ZIKV) epidemic in Colombia and proportion attributable to congenital ZIKV infection. STUDY DESIGN: Clinical and laboratory data for cases of microcephaly and/or CNS defects reported to national surveillance between 2015 and 2017 were reviewed and classified by a panel of clinical subject matter experts. Maternal and fetal/infant biologic specimens were tested for congenital infection and chromosomal abnormalities. Infants/fetuses with microcephaly and/or CNS defects (cases) were classified into broad etiologic categories (teratogenic, genetic, multifactorial, and unknown). Cases classified as potentially attributable to congenital ZIKV infection were stratified by strength of evidence for ZIKV etiology (strong, moderate, or limited) using a novel strategy considering birth defects unique or specific to ZIKV or other infections and laboratory evidence. RESULTS: Among 858 reported cases with sufficient information supporting a diagnosis of microcephaly or CNS defects, 503 were classified as potentially attributable to congenital ZIKV infection. Of these, the strength of evidence was considered strong in 124 (24.7%) cases; moderate in 232 (46.1%) cases; and limited in 147 (29.2%). Of the remaining, 355 (41.4%) were attributed to etiologies other than ZIKV infection (syphilis, toxoplasmosis, rubella, cytomegalovirus, herpes 1 and herpes 2 viruses only, n = 32 [3.7%]; genetic, n = 16 [1.9%]; multifactorial, n = 42 [4.9%]; unknown, n = 265 [30.9%]). CONCLUSIONS: Fifty-eight percent of cases of microcephaly and/or CNS defects were potentially attributable to congenital ZIKV infection; however, the strength of evidence varied considerably. This surveillance protocol might serve as a model approach for investigation and etiologic classification of complex congenital conditions.


Assuntos
Sistema Nervoso Central/anormalidades , Microcefalia/epidemiologia , Microcefalia/virologia , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/congênito , Infecção por Zika virus/epidemiologia , Colômbia/epidemiologia , Anormalidades Congênitas/epidemiologia , Anormalidades Congênitas/virologia , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Prevalência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa