Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.558
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 390(10): 900-910, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38446676

RESUMO

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging as a potential risk factor for cardiovascular disease in preclinical studies. Direct evidence that this risk extends to humans is lacking. METHODS: We conducted a prospective, multicenter, observational study involving patients who were undergoing carotid endarterectomy for asymptomatic carotid artery disease. The excised carotid plaque specimens were analyzed for the presence of MNPs with the use of pyrolysis-gas chromatography-mass spectrometry, stable isotope analysis, and electron microscopy. Inflammatory biomarkers were assessed with enzyme-linked immunosorbent assay and immunohistochemical assay. The primary end point was a composite of myocardial infarction, stroke, or death from any cause among patients who had evidence of MNPs in plaque as compared with patients with plaque that showed no evidence of MNPs. RESULTS: A total of 304 patients were enrolled in the study, and 257 completed a mean (±SD) follow-up of 33.7±6.9 months. Polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 21.7±24.5 µg per milligram of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 5.2±2.4 µg per milligram of plaque. Electron microscopy revealed visible, jagged-edged foreign particles among plaque macrophages and scattered in the external debris. Radiographic examination showed that some of these particles included chlorine. Patients in whom MNPs were detected within the atheroma were at higher risk for a primary end-point event than those in whom these substances were not detected (hazard ratio, 4.53; 95% confidence interval, 2.00 to 10.27; P<0.001). CONCLUSIONS: In this study, patients with carotid artery plaque in which MNPs were detected had a higher risk of a composite of myocardial infarction, stroke, or death from any cause at 34 months of follow-up than those in whom MNPs were not detected. (Funded by Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale and others; ClinicalTrials.gov number, NCT05900947.).


Assuntos
Doenças das Artérias Carótidas , Microplásticos , Placa Aterosclerótica , Humanos , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/etiologia , Estenose das Carótidas/patologia , Microplásticos/efeitos adversos , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/mortalidade , Placa Aterosclerótica/química , Placa Aterosclerótica/etiologia , Placa Aterosclerótica/mortalidade , Placa Aterosclerótica/patologia , Plásticos/efeitos adversos , Estudos Prospectivos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Fatores de Risco de Doenças Cardíacas , Endarterectomia das Carótidas , Doenças das Artérias Carótidas/etiologia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Seguimentos
2.
Proc Natl Acad Sci U S A ; 121(3): e2300582121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190543

RESUMO

Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 µm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.


Assuntos
Água Potável , Microscopia , Humanos , Microplásticos , Plásticos , Algoritmos
3.
Am J Respir Crit Care Med ; 209(4): 427-443, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971785

RESUMO

Rationale: Microplastics are a pressing global concern, and inhalation of microplastic fibers has been associated with interstitial and bronchial inflammation in flock workers. However, how microplastic fibers affect the lungs is unknown. Objectives: Our aim was to assess the effects of 12 × 31 µm nylon 6,6 (nylon) and 15 × 52 µm polyethylene terephthalate (polyester) textile microplastic fibers on lung epithelial growth and differentiation. Methods: We used human and murine alveolar and airway-type organoids as well as air-liquid interface cultures derived from primary lung epithelial progenitor cells and incubated these with either nylon or polyester fibers or nylon leachate. In addition, mice received one dose of nylon fibers or nylon leachate, and, 7 days later, organoid-forming capacity of isolated epithelial cells was investigated. Measurements and Main Results: We observed that nylon microfibers, more than polyester, inhibited developing airway organoids and not established ones. This effect was mediated by components leaching from nylon. Epithelial cells isolated from mice exposed to nylon fibers or leachate also formed fewer airway organoids, suggesting long-lasting effects of nylon components on epithelial cells. Part of these effects was recapitulated in human air-liquid interface cultures. Transcriptomic analysis revealed upregulation of Hoxa5 after exposure to nylon fibers. Inhibiting Hoxa5 during nylon exposure restored airway organoid formation, confirming Hoxa5's pivotal role in the effects of nylon. Conclusions: These results suggest that components leaching from nylon 6,6 may especially harm developing airways and/or airways undergoing repair, and we strongly encourage characterization in more detail of both the hazard of and the exposure to microplastic fibers.


Assuntos
Caprolactama/análogos & derivados , Microplásticos , Plásticos , Polímeros , Camundongos , Humanos , Animais , Nylons , Têxteis , Poliésteres
4.
Chem Soc Rev ; 53(12): 6445-6510, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38747901

RESUMO

Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.


Assuntos
Biocatálise , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Humanos , Microplásticos/química , Microplásticos/metabolismo , Plantas/metabolismo , Plantas/química , Engenharia de Proteínas
5.
Funct Integr Genomics ; 24(2): 46, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429576

RESUMO

Cyanobacteria are oxygenic photosynthetic organisms which are found across many ecosystems, including freshwater and marine habitats. They are also found on natural and artificial surfaces. In this study, we cultured and characterise a novel cyanobacterium from the surfaces of foam microplastics of tropical coastal waters. We study the chemical ecology of this cyanobacterium, Sphaerothrix gracilis gen. et sp. nov., together with its potential to form harmful cyanobacterial blooms and bioremediation applications to combat plastic pollution. The genome of S. gracilis spanned 6.7 Mbp, with identification of antibiotic resistance, nitrogen-fixation, plastic-degrading and genes involved in harmful metabolite production. The transport of potentially harmful S. gracilis in coastal environments could have severe implications on human health and food security, especially in times of a cyanobacterial bloom.


Assuntos
Cianobactérias , Ecossistema , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Fixação de Nitrogênio
6.
Environ Microbiol ; 26(4): e16618, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561820

RESUMO

Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.


Assuntos
Alphaproteobacteria , Burkholderiales , Humanos , Microplásticos , Plásticos , Transporte Biológico
7.
Environ Microbiol ; 26(1): e16563, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151777

RESUMO

Plastic substrates introduced to the environment during the Anthropocene have introduced new pathways for microbial selection and dispersal. Some plastic-colonising microorganisms have adapted phenotypes for plastic degradation (selection), while the spatial transport (dispersal) potential of plastic colonisers remains controlled by polymer-specific density, hydrography and currents. Plastic-degrading enzyme abundances have recently been correlated with concentrations of plastic debris in open ocean environments, making it critical to better understand colonisation of hydrocarbon degraders with plastic degradation potential in urbanised watersheds where plastic pollution often originates. We found that microbial colonisation by reputed hydrocarbon degraders on microplastics (MPs) correlated with a spatial contaminant gradient (New York City/Long Island waterways), polymer types, temporal scales, microbial domains and putative cell activity (DNA vs. RNA). Hydrocarbon-degrading taxa enriched on polyethylene and polyvinyl chloride substrates relative to other polymers and were more commonly recovered in samples proximal to New York City. These differences in MP colonisation could indicate phenotypic adaptation processes resulting from increased exposure to urban plastic runoff as well as differences in carbon bioavailability across polymer types. Shifts in MP community potential across urban coastal contaminant gradients and polymer types improve our understanding of environmental plastic discharge impacts toward biogeochemical cycling across the global ocean.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluição Ambiental , Polietileno , Hidrocarbonetos , Monitoramento Ambiental
8.
Environ Microbiol ; 26(2): e16549, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196372

RESUMO

Microplastics affect soil functions depending on drought conditions. However, how their combined effect influences soil fungi and their linkages with ecosystem functions is still unknown. To address this, we used rhizosphere soil from a previous experiment in which we employed microplastic fibres addition and drought in a factorial design, and evaluated their effects on soil fungal communities. Microplastics decreased soil fungal richness under well-watered conditions, likely linked to microplastics leaching toxic substances into the soil, and microplastic effects on root fineness. Under drought, by contrast, microplastics increased pathogen and total fungal richness, likely related to microplastic positive effects on soil properties, such as water holding capacity, porosity or aggregation. Soil fungal richness was the attribute most affected by microplastics and drought. Microplastics altered the relationships between soil fungi and ecosystem functions to the point that many of them flipped from positive to negative or disappeared. The combined effect of microplastics and drought on fungal richness mitigated their individual negative effect (antagonism), suggesting that changes in soil water conditions may alter the action mode of microplastics in soil. Microplastic leaching of harmful substances can be mitigated under drought, while the improvement of soil properties by microplastics may alleviate such drought conditions.


Assuntos
Ecossistema , Micobioma , Microplásticos , Plásticos , Solo , Secas , Microbiologia do Solo , Água/análise
9.
Anal Chem ; 96(12): 4978-4986, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471057

RESUMO

Bioaccumulation of nanoplastic particles has drawn increasing attention regarding environmental sustainability and biosafety. How nanoplastic particles interact with the cellular milieu still remains elusive. Herein, we exemplify a general approach to profile the composition of a "protein corona" interacting with nanoparticles via the photocatalytic protein proximity labeling method. To enable photocatalytic proximity labeling of the proteome interacting with particles, iodine-substituted BODIPY (I-BODIPY) is selected as the photosensitizer and covalently conjugated onto amino-polystyrene nanoparticles as a model system. Next, selective proximity labeling of interacting proteins is demonstrated using I-BODIPY-labeled nanoplastic particles in both Escherichia coli lysate and live alpha mouse liver 12 cells. Mechanistic studies reveal that the covalent modifications of proteins by an aminoalkyne substrate are conducted via a reactive oxygen species photosensitization pathway. Further proteomic analysis uncovers that mitochondria-related proteins are intensively involved in the protein corona, indicating substantial interactions between nanoplastic particles and mitochondria. In addition, proteostasis network components are also identified, accompanied by consequent cellular proteome aggregation confirmed by fluorescence imaging. Together, this work exemplifies a general strategy to interrogate the composition of the protein corona of nanomaterials by endowing them with photooxidation properties to enable photocatalytic protein proximity labeling function.


Assuntos
Compostos de Boro , Nanopartículas , Coroa de Proteína , Animais , Camundongos , Microplásticos , Proteoma , Proteômica , Poliestirenos
10.
Anal Chem ; 96(11): 4343-4358, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452774

RESUMO

Microplastics are increasingly reported, not only in the environment but also in a wide range of food commodities. While studies on microplastics in food abound, the current state of science is limited in its application to regulatory risk assessment by a continued lack of standardized definitions, reference materials, sample collection and preparation procedures, fit-for purpose analytical methods for real-world and environmentally relevant plastic mixtures, and appropriate quality controls. This is particularly the case for nanoplastics. These methodological challenges hinder robust, quantitative exposure assessments of microplastic and nanoplastic mixtures from food consumption. Furthermore, limited toxicological studies on whether microplastics and nanoplastics adversely impact human health are also impeded by methodology challenges. Food safety regulatory agencies must consider both the exposure and the risk of contaminants of emerging concern to ascertain potential harm. Foundational to this effort is access to and application of analytical methods with the capability to quantify and characterize micro- and nanoscale sized polymers in complex food matrices. However, the early stages of method development and application of early stage methods to study the distribution and potential health effects of microplastics and nanoplastics in food have largely been done without consideration of the stringent requirements of methods to inform regulatory activities. We provide regulatory science perspectives on the state of knowledge regarding the occurrence of microplastics and nanoplastics in food and present our general approach for developing, validating, and implementing analytical methods for regulatory purposes.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos/análise , Poluentes Químicos da Água/análise , Inocuidade dos Alimentos
11.
Anal Chem ; 96(18): 7155-7162, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652710

RESUMO

Microplastics (MPs) can act as carriers of environmental arsenic species into the stomach with food and release arsenic species during digestion, which threatens human health. Herein, an integrated dynamic stomach model (DSM)-capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS) is developed for online monitoring of the release and transformation behaviors of arsenic species loaded on MPs (As-MPs) in the simulated human stomach. The 3D-printed DSM with a soft stomach chamber enables the behaviors of gastric peristalsis, gastric and salivary fluid addition, pH adjustment, and gastric emptying (GE) to be controlled by a self-written program after oral ingestion of food with As-MPs. The gastric extract during digestion is introduced into the spiral channel to remove the large particulate impurity and online filtered to obtain the clarified arsenic-containing solution for subsequent speciation analysis of arsenic by CE-ICPMS. The digestion conditions and pretreatment processes of DSM are tracked and validated, and the release rates of As-MPs digested by DSM are compared with those digested by the static stomach model and DSM without GE. The release rate of inorganic arsenic on MPs is higher than that of organic arsenic throughout the gastric digestion process, and 8% of As(V) is reduced to As(III). The detection limits for As(III), DMA, MMA, and As(V) are 0.5-0.9 µg L-1 using DSM-CE-ICPMS, along with precisions of ≤8%. This present method provides an integrated and convenient tool for evaluating the release and transformation of As-MPs during human gastric digestion and provides a reference for exploring the interactions between MPs and metals/metalloids in the human body.


Assuntos
Arsênio , Eletroforese Capilar , Espectrometria de Massas , Microplásticos , Estômago , Arsênio/análise , Humanos , Espectrometria de Massas/métodos , Eletroforese Capilar/métodos , Microplásticos/análise , Estômago/química , Digestão , Modelos Biológicos
12.
Anal Chem ; 96(23): 9416-9423, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38809415

RESUMO

A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.


Assuntos
Ciclídeos , Microplásticos , Muco , Polipropilenos , Animais , Microplásticos/análise , Polipropilenos/química , Ciclídeos/metabolismo , Muco/metabolismo , Muco/química , Epiderme/metabolismo , Epiderme/química , Espectrometria de Massas por Ionização por Electrospray
13.
BMC Plant Biol ; 24(1): 608, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926861

RESUMO

Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.


Assuntos
Amaranthus , Cádmio , Carvão Vegetal , Microplásticos , Amaranthus/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Amaranthus/metabolismo , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Germinação/efeitos dos fármacos , Nutrientes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo
14.
Small ; 20(14): e2308753, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37988678

RESUMO

Environmental plastic wastes are potential health hazards due to their prevalence as well as their versatility in initiating physical, chemical, and biological interactions and transformations. Indeed, recent research has implicated the adverse effects of micro- and nano-plastics, including their neurotoxicity, yet how plastic particulates may impact the aggregation pathway and toxicity of amyloid proteins pertinent to the pathologies of neurological diseases remains unknown. Here, electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) is employed to reveal the polymorphic oligomerization of NACore, a surrogate of alpha-synuclein that is associated with the pathogenesis of Parkinson's disease. These data indicate that the production rate and population of the NACore oligomers are modulated by their exposure to a polystyrene nanoplastic, and these cellular assays further reveal an elevated NACore toxicity in microglial cells elicited by the nanoplastic. These simulations confirm that the nanoplastic-NACore association is promoted by their hydrophobic interactions. These findings are corroborated by an impairment in zebrafish hatching, survival, and development in vivo upon their embryonic exposure to the nanoplastic. Together, this study has uncovered the dynamics and mechanism of amyloidogenesis elevated by a nanoplastic trigger, shedding a new light on the neurological burden of plastic pollution.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Microplásticos , Peixe-Zebra/metabolismo , Poliestirenos
15.
Small ; 20(10): e2302907, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899301

RESUMO

Exposure to plastic nanoparticles has dramatically increased in the last 50 years, and there is evidence that plastic nanoparticles can be absorbed by organisms and cross the blood-brain-barrier (BBB). However, their toxic effects, especially on the nervous system, have not yet been extensively investigated, and most of the knowledge is based on studies using different conditions and systems, thus hard to compare. In this work, physicochemical properties of non-modified polystyrene (PS) and amine-functionalized PS (PS-NH2 ) nanoparticles are initially characterized. Advantage of a multisystemic approach is then taken to compare plastic nanoparticles effects in vitro, through cytotoxic readouts in mammalian cell culture, and in vivo, through behavioral readouts in the nematode Caenorhabditis elegans (C. elegans), a powerful 3R-complying model organism for toxicology studies. In vitro experiments in neuroblastoma cells indicate a specific cytotoxic effect of PS-NH2 particles, including a decreased neuronal differentiation and an increased Amyloid ß (Aß) secretion, a sensitive readout correlating with Alzheimer's disease pathology. In parallel, only in vivo treatments with PS-NH2 particles affect C. elegans development, decrease lifespan, and reveal higher sensitivity of animals expressing human Aß compared to wild-type animals. In summary, the multisystemic approach discloses a neurotoxic effect induced by aminated polystyrene nanoparticles.


Assuntos
Nanopartículas , Poliestirenos , Animais , Humanos , Poliestirenos/toxicidade , Peptídeos beta-Amiloides/toxicidade , Caenorhabditis elegans , Microplásticos/farmacologia , Nanopartículas/toxicidade , Nanopartículas/química , Mamíferos
16.
Small ; 20(23): e2309369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175859

RESUMO

Secondary nanoplastics (NPs) caused by degradation and aging due to environmental factors are the main source of human exposure, and alterations in the physicochemical and biological properties of NPs induced by environmental factors cannot be overlooked. In this study, pristine polystyrene (PS) NPs to obtain ultraviolet (UV)-aged PS NPs (aPS NPs) as secondary NPs is artificially aged. In a mouse oral exposure model, the nephrotoxicity of PS NPs and aPS NPs is compared, and the results showed that aPS NPs exposure induced more serious destruction of kidney tissue structure and function, along with characteristic changes in ferroptosis. Subsequent in vitro experiments revealed that aPS NPs-induced cell death in human renal tubular epithelial cells involved ferroptosis, which is supported by the use of ferrostatin-1, a ferroptosis inhibitor. Notably, it is discovered that aPS NPs can enhance the binding of serum transferrin (TF) to its receptor on the cell membrane by forming an aPS-TF complex, leading to an increase in intracellular Fe2+ and then exacerbation of oxidative stress and lipid peroxidation, which render cells more sensitive to ferroptosis. These findings indicated that UV irradiation can alter the physicochemical and biological properties of NPs, enhancing their kidney biological toxicity risk by inducing ferroptosis.


Assuntos
Ferroptose , Rim , Poliestirenos , Transferrina , Raios Ultravioleta , Poliestirenos/química , Ferroptose/efeitos dos fármacos , Animais , Rim/patologia , Rim/efeitos dos fármacos , Humanos , Transferrina/metabolismo , Camundongos , Adsorção , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Microplásticos/toxicidade
17.
Small ; 20(5): e2305094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786309

RESUMO

Plastic waste is ubiquitously present across the world, and its nano/sub-micron analogues (plastic nanoparticles, PNPs), raise severe environmental concerns affecting organisms' health. Considering the direct and indirect toxic implications of PNPs, their biological impacts are actively being studied; lately, with special emphasis on cellular and molecular mechanistic intricacies. Combinatorial OMICS studies identified proteins as major regulators of PNP mediated cellular toxicity via activation of oxidative enzymes and generation of ROS. Alteration of protein function by PNPs results in DNA damage, organellar dysfunction, and autophagy, thus resulting in inflammation/cell death. The molecular mechanistic basis of these cellular toxic endeavors is fine-tuned at the level of structural alterations in proteins of physiological relevance. Detailed biophysical studies on such protein-PNP interactions evidenced prominent modifications in their structural architecture and conformational energy landscape. Another essential aspect of the protein-PNP interactions includes bioenzymatic plastic degradation perspective, as the interactive units of plastics are essentially nano-sized. Combining all these attributes of protein-PNP interactions, the current review comprehensively documented the contemporary understanding of the concerned interactions in the light of cellular, molecular, kinetic/thermodynamic details. Additionally, the applicatory, economical facet of these interactions, PNP biogeochemical cycle and enzymatic advances pertaining to plastic degradation has also been discussed.


Assuntos
Microplásticos , Fagocitose
18.
Biol Reprod ; 110(1): 211-218, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37724921

RESUMO

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 µm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.


Assuntos
Microplásticos , Plásticos , Gravidez , Feminino , Humanos , Animais , Camundongos , Poliestirenos/toxicidade , Placenta/irrigação sanguínea , Desenvolvimento Fetal
19.
Appl Environ Microbiol ; 90(2): e0201623, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214515

RESUMO

Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.


Assuntos
Microbiota , Poluentes Químicos da Água , Plásticos , Microplásticos/química , Microplásticos/farmacologia , Polietileno/análise , Polietileno/farmacologia , Ecossistema , Temperatura , Poluentes Químicos da Água/análise , Sedimentos Geológicos/microbiologia , Poliésteres , Metaboloma , Monitoramento Ambiental
20.
Glob Chang Biol ; 30(7): e17415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005227

RESUMO

Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.


Assuntos
Microplásticos , Microbiologia do Solo , Microplásticos/análise , Solo/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Poluentes do Solo/análise , Microbiota/efeitos dos fármacos , Biomassa , Carbono/análise , Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa