Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Chem Soc Rev ; 53(12): 6445-6510, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38747901

RESUMO

Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.


Assuntos
Biocatálise , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Humanos , Microplásticos/química , Microplásticos/metabolismo , Plantas/metabolismo , Plantas/química , Engenharia de Proteínas
2.
Appl Environ Microbiol ; 90(2): e0201623, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38214515

RESUMO

Global warming has led to a high incidence of extreme heat events, and the frequent occurrence of extreme heat events has had extensive and far-reaching impacts on wetland ecosystems. The widespread distribution of plastics in the environment, including polyethylene (PE), polylactic acid (PLA), and tire particles (TPs), has caused various environmental problems. Here, high-throughput sequencing techniques and metabolomics were used for the first time to investigate the effects of three popular microplastic types: PE, PLA, and TP, on the sediment microbiome and the metabolome at both temperatures. The microplastics were incorporated into the sediment at a concentration of 3% by weight of the dry sediment (wt/wt), to reflect environmentally relevant conditions. Sediment enzymatic activity and physicochemical properties were co-regulated by both temperatures and microplastics producing significant differences compared to controls. PE and PLA particles inhibited bacterial diversity at low temperatures and promoted bacterial diversity at high temperatures, and TP particles promoted both at both temperatures. For bacterial richness, only PLA showed inhibition at low temperature; all other treatments showed promotion. PE, PLA, and TP microplastics changed the community structure of sediment bacteria, forming two clusters at low and high temperatures. Furthermore, PE, PLA, and TP changed the sediment metabolic profiles, producing differential metabolites such as lipids and molecules, organic heterocyclic compounds, and organic acids and their derivatives, especially TP had the most significant effect. These findings contribute to a more comprehensive understanding of the potential impact of microplastic contamination.IMPORTANCEIn this study, we added 3% (wt/wt) microplastic particles, including polyethylene, polylactic acid, and tire particles, to natural sediments under simulated laboratory conditions. Subsequently, we simulated the sediment microbial and ecosystem responses under different temperature conditions by incubating them for 60 days at 15°C and 35°C, respectively. After synthesizing these results, our study strongly suggests that the presence of microplastics in sediment ecosystems and exposure under different temperature conditions may have profound effects on soil microbial communities, enzyme activities, and metabolite profiles. This is important for understanding the potential hazards of microplastic contamination on terrestrial ecosystems and for developing relevant environmental management strategies.


Assuntos
Microbiota , Poluentes Químicos da Água , Plásticos , Microplásticos/química , Microplásticos/farmacologia , Polietileno/análise , Polietileno/farmacologia , Ecossistema , Temperatura , Poluentes Químicos da Água/análise , Sedimentos Geológicos/microbiologia , Poliésteres , Metaboloma , Monitoramento Ambiental
3.
Environ Sci Technol ; 58(17): 7588-7599, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38624040

RESUMO

Adsorption of biomacromolecules onto polymer surfaces, including microplastics (MPs), occurs in multiple environmental compartments, forming an ecocorona. Environmental DNA (eDNA), genetic material shed from organisms, can adsorb onto MPs which can potentially either (1) promote long-range transport of antibiotic resistant genes or (2) serve to gain insights into the transport pathways and origins of MPs by analyzing DNA sequences on MPs. However, little is known about the capacity of MPs to adsorb eDNA or the factors that influence sorption, such as polymer and water chemistries. Here we investigated the adsorption of extracellular linear DNA onto a variety of model MP fragments composed of three of the most environmentally prevalent polymers (polyethylene, polyethylene terephthalate, and polystyrene) in their pristine and photochemically weathered states. Batch adsorption experiments in a variety of water chemistries were complemented with nonlinear modeling to quantify the rate and extent of eDNA sorption. Ionic strength was shown to strongly impact DNA adsorption by reducing or inhibiting electrostatic repulsion. Polyethylene terephthalate exhibited the highest adsorption capacity when normalizing for MP specific surface area, likely due to the presence of ester groups. Kinetics experiments showed fast adsorption (majority adsorbed under 30 min) before eventually reaching equilibrium after 1-2 h. Overall, we demonstrated that DNA quickly binds to MPs, with pseudo-first- and -second-order models describing adsorption kinetics and the Freundlich model describing adsorption isotherms most accurately. These insights into DNA sorption onto MPs show that there is potential for MPs to act as vectors for genetic material of interest, especially considering that particle-bound DNA typically persists longer in the environment than dissolved DNA.


Assuntos
Microplásticos , Adsorção , Microplásticos/química , DNA Ambiental , Polímeros/química , Água/química , DNA/química
4.
Environ Sci Technol ; 58(23): 10334-10346, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38805726

RESUMO

Microplastics (MPs)-derived dissolved organic matter (MPs-DOM) is becoming a non-negligible source of DOM pools in aquatic systems, but there is limited understanding about the photoreactivity of different MPs-DOM. Herein, MPs-DOM from polystyrene (PS), polyethylene terephthalate (PET), poly(butylene adipate-co-terephthalate) (PBAT), PE, and polypropylene (PP), representing aromatic, biodegradable, and aliphatic plastics, were prepared to examine their photoreactivity. Spectral and high-resolution mass spectrometry analyses revealed that PS/PET/PBAT-DOM contained more unsaturated aromatic components, whereas PE/PP-DOM was richer in saturated aliphatic components. Photodegradation experiments observed that unsaturated aromatic molecules were prone to be degraded compared to saturated aliphatic molecules, leading to a higher degradation of PS/PET/PBAT-DOM than PE/PP-DOM. PS/PET/PBAT-DOM was mainly degraded by hydroxyl (•OH) via attacking unsaturated aromatic structures, whereas PE/PP-DOM by singlet oxygen (1O2) through oxidizing aliphatic side chains. The [•OH]ss was 1.21-1.60 × 10-4 M in PS/PET/PBAT-DOM and 0.97-1.14 × 10-4 M in PE/PP-DOM, while the [1O2]ss was 0.90-1.35 × 10-12 and 0.33-0.44 × 10-12 M, respectively. This contributes to the stronger photoreactivity of PS/PET/PBAT-DOM with a higher unsaturated aromatic degree than PE/PP-DOM. The photodegradation of MPs-DOM reflected a decreasing tendency from aromatic-unsaturated molecules to aliphatic-saturated molecules. Special attention should be paid to the photoreactivity and environmental impacts associated with MPs-DOM containing highly unsaturated aromatic compounds.


Assuntos
Espectrometria de Massas , Microplásticos , Espécies Reativas de Oxigênio , Microplásticos/química , Espécies Reativas de Oxigênio/química , Poluentes Químicos da Água/química , Fotólise
5.
Environ Res ; 252(Pt 2): 118975, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649018

RESUMO

Understanding the impact of various agricultural chemical components on the fate and transport of microplastics (MPs) in the subsurface is essential. In this study, column experiments on saturated porous media were conducted to explore the influence of the coexistence environment of pesticide adjuvants (surfactants) and active ingredients (neonicotinoids) on the transport of polyethylene (PE) and polypropylene (PP) MPs. An anionic surfactant (sodium dodecyl sulfate (SDS)), a nonionic surfactant (nonylphenol ethoxylate (NP-40)), and three neonicotinoid insecticides (acetamiprid, dinotefuran, and nitenpyram) could independently increase MP migration by 9.31%-61.01% by improving the hydrophilicity. Acetamiprid or dinotefuran reduced the adhesion work of the binary system by competing with SDS for adsorption sites, thereby inhibiting PE mobility. However, nitenpyram in the mixture was not easily adsorbed on the surface of PE MPs together with SDS because of nitenpyram's high hydrophilicity. Neonicotinoid molecules could not reduce the hydrophilic modification of SDS on PP MPs by competing for adsorption sites. Owing to their weak charge and adhesion work of nonionic surfactants (-4.80 mV and 28.45 kT for PE and -8.21 mV and 17.64 kT for PP), neonicotinoids tended to occupy the adsorption sites originally belonging to NP-40. The long molecular chain of NP-40 made it difficult for high-concentration neonicotinoids to affect the adhesion on MPs. In addition, NP-40 was harder to peel off from the MP surface than SDS, leading to a larger MP transport ability in the sand column.


Assuntos
Microplásticos , Polietileno , Polipropilenos , Tensoativos , Polipropilenos/química , Polietileno/química , Microplásticos/química , Tensoativos/química , Adsorção , Praguicidas/química , Neonicotinoides/química , Agroquímicos/química , Inseticidas/química , Poluentes Químicos da Água/química
6.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34326264

RESUMO

Estimated millions of tons of plastic are dumped annually into oceans. Plastic has been produced only for 70 y, but the exponential rise of mass production leads to its widespread proliferation in all environments. As a consequence of their large abundance globally, microplastics are also found in many living organisms including humans. While the health impact of digested microplastics on living organisms is debatable, we reveal a physical mechanism of mechanical stretching of model cell lipid membranes induced by adsorbed micrometer-sized microplastic particles most commonly found in oceans. Combining experimental and theoretical approaches, we demonstrate that microplastic particles adsorbed on lipid membranes considerably increase membrane tension even at low particle concentrations. Each particle adsorbed at the membrane consumes surface area that is proportional to the contact area between particle and the membrane. Although lipid membranes are liquid and able to accommodate mechanical stress, the relaxation time is much slower than the rate of adsorption; thus, the cumulative effect from arriving microplastic particles to the membrane leads to the global reduction of the membrane area and increase of membrane tension. This, in turn, leads to a strong reduction of membrane lifetime. The effect of mechanical stretching of microplastics on living cells membranes was demonstrated by using the aspiration micropipette technique on red blood cells. The described mechanical stretching mechanism on lipid bilayers may provide better understanding of the impact of microplastic particles in living systems.


Assuntos
Lipídeos/química , Fenômenos Mecânicos , Membranas Artificiais , Microplásticos/química , Tamanho da Partícula , Polietileno/química , Polimetil Metacrilato/química , Poliestirenos/química
7.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846251

RESUMO

Plastic pollution is one of the most pressing environmental and social issues of the 21st century. Recent work has highlighted the atmosphere's role in transporting microplastics to remote locations [S. Allen et al., Nat. Geosci. 12, 339 (2019) and J. Brahney, M. Hallerud, E. Heim, M. Hahnenberger, S. Sukumaran, Science 368, 1257-1260 (2020)]. Here, we use in situ observations of microplastic deposition combined with an atmospheric transport model and optimal estimation techniques to test hypotheses of the most likely sources of atmospheric plastic. Results suggest that atmospheric microplastics in the western United States are primarily derived from secondary re-emission sources including roads (84%), the ocean (11%), and agricultural soil dust (5%). Using our best estimate of plastic sources and modeled transport pathways, most continents were net importers of plastics from the marine environment, underscoring the cumulative role of legacy pollution in the atmospheric burden of plastic. This effort uses high-resolution spatial and temporal deposition data along with several hypothesized emission sources to constrain atmospheric plastic. Akin to global biogeochemical cycles, plastics now spiral around the globe with distinct atmospheric, oceanic, cryospheric, and terrestrial residence times. Though advancements have been made in the manufacture of biodegradable polymers, our data suggest that extant nonbiodegradable polymers will continue to cycle through the earth's systems. Due to limited observations and understanding of the source processes, there remain large uncertainties in the transport, deposition, and source attribution of microplastics. Thus, we prioritize future research directions for understanding the plastic cycle.


Assuntos
Atmosfera/química , Monitoramento Ambiental/métodos , Microplásticos/efeitos adversos , Atmosfera/análise , Poeira , Poluição Ambiental/análise , Microplásticos/química , Material Particulado/análise , Plásticos/análise , Plásticos/química , Polímeros , Solo
8.
Ecotoxicol Environ Saf ; 272: 116066, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325269

RESUMO

Microplastics (MPs) and pesticides are two categories contaminants with proposed negative impacts to aqueous ecosystems, and adsorption of pesticides on MPs may result in their long-range transport and compound combination effects. Florpyrauxifen-benzyl, a novel pyridine-2-carboxylate auxin herbicide has been widely used to control weeds in paddy field, but the insights of which are extremely limited. Therefore, adsorption and desorption behaviors of florpyrauxifen-benzyl on polyvinyl chloride (PVC), polyethylene (PE) and disposable face masks (DFMs) in five water environment were investigated. The impacts of various environmental factors on adsorption capacity were evaluated, as well as adsorption mechanisms. The results revealed significant variations in adsorption capacity of florpyrauxifen-benzyl on three MPs, with approximately order of DFMs > PE > PVC. The discrepancy can be attributed to differences in structural and physicochemical properties, as evidenced by various characterization analysis. The kinetics and isotherm of florpyrauxifen-benzyl on three MPs were suitable for different models, wherein physical force predominantly governed adsorption process. Thermodynamic analysis revealed that both high and low temperatures weakened PE and DFMs adsorption, whereas temperature exhibited negligible impact on PVC adsorption. The adsorption capacity was significantly influenced by most environmental factors, particularly pH, cations and coexisting herbicide. This study provides valuable insights into the fate of florpyrauxifen-benzyl in presence of MPs, suggesting that PVC, PE and DFMs can serve as carriers of florpyrauxifen-benzyl in aquatic environment.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/química , Plásticos/química , Adsorção , Ecossistema , Água , Polietileno/química , Praguicidas/análise , Herbicidas/análise , Poluentes Químicos da Água/análise
9.
Ecotoxicol Environ Saf ; 281: 116600, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896901

RESUMO

Arsenic pollution control technology in water was important to ensure environmental health and quality safety of agricultural products. Therefore, the adsorption performance of three adsorbents for chitosan, sepiolite, and Zeolitic Imidazolate Framework-8 (ZIF-8) were investigated in arsenate contaminated water. The results revealed that the adsorption capacity of ZIF-8 was higher than that of chitosan and sepiolite. The analysis of adsorption isotherm models showed that the behavior of ZIF-8 was more consistent with the Langmuir model. Furthermore, the adsorption mechanisms of three adsorbents for arsenate were investigated by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis of FTIR showed that ZIF-8 maintained the stability of the interaction with arsenate by forming As-O chemical bonds. However, the effect of chitosan and sepiolite with arsenate was mainly physical adsorption. The analysis of XPS showed that the absorption of ZIF-8 with arsenate involved metal sites and nitrogen through the characteristic peak and the change of the binding energy. Furthermore, the impact of microplastics as a widespread coexistence pollutant in the water on adsorbent performance was investigated. The results indicated that the adsorption capacity of ZIF-8 was almost not affected by microplastics. The maximum adsorption amount of arsenate was changed from 73.45 mg/g to 81.89 mg/g. However, the maximum adsorption amount of chitosan and sepiolite decreased by 31.4 % and 11.6 %, respectively. The analysis of FTIR and XPS revealed that ZIF-8 enhances arsenate adsorption by forming N-O-As bonds in the presence of microplastics. This study provides scientific evidence for the management of arsenate pollution in water bodies, especially in complex water bodies containing microplastics.


Assuntos
Arseniatos , Quitosana , Microplásticos , Poluentes Químicos da Água , Adsorção , Arseniatos/química , Poluentes Químicos da Água/química , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Microplásticos/química , Silicatos de Magnésio/química , Espectroscopia Fotoeletrônica , Zeolitas/química , Purificação da Água/métodos
10.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791107

RESUMO

The present study employs X-ray photoelectron spectroscopy (XPS) to analyze plastic samples subjected to degradation processes with the aim to gain insight on the relevant chemical processes and disclose fragmentation mechanisms. Two model plastics, namely polystyrene (PS) and polyethylene (PE), are selected and analyzed before and after artificial UV radiation-triggered weathering, under simulated environmental hydrodynamic conditions, in fresh and marine water for different time intervals. The object of the study is to identify and quantify chemical groups possibly evidencing the occurrence of hydrolysis and oxidation reactions, which are the basis of degradation processes in the environment, determining macroplastic fragmentation. Artificially weathered plastic samples are analyzed also by Raman and FT-IR spectroscopy. Changes in surface chemistry with weathering are revealed by XPS, involving the increase in chemical moieties (hydroxyl, carbonyl, and carboxyl functionalities) which can be correlated with the degradation processes responsible for macroplastic fragmentation. On the other hand, the absence of significant modifications upon plastics weathering evidenced by Raman and FT-IR spectroscopy confirms the importance of investigating plastics surface, which represents the very first part of the materials exposed to degradation agents, thus revealing the power of XPS studies for this purpose. The XPS data on experimentally weathered particles are compared with ones obtained on microplastics collected from real marine environment for investigating the occurring degradation processes.


Assuntos
Espectroscopia Fotoeletrônica , Plásticos , Polietileno , Espectroscopia Fotoeletrônica/métodos , Plásticos/química , Polietileno/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Poliestirenos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Água do Mar/química , Microplásticos/química , Oxirredução
11.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000151

RESUMO

Plastic particles, particularly micro- and nanoparticles, are emerging pollutants due to the ever-growing amount of plastics produced across a wide variety of sectors. When plastic particles enter a biological medium, they become surrounded by a corona, giving them their biological identity and determining their interactions in the living environment and their biological effects. Here, we studied the interactions of microstructured plastics with hemoglobin (Hb). Virgin polyethylene microparticles (PEMPs) and polypropylene microparticles (PPMPs) as well as heat- or irradiation-aged microparticles (ag-PEMPs and ag-PPMPs) were used to quantify Hb adsorption. Polypropylene filters (PP-filters) were used to measure the oxygenation of adsorbed Hb. Microstructured plastics were characterized using optical microscopy, SAXS, ATR-FTIR, XPS, and Raman spectroscopy. Adsorption isotherms showed that the Hb corona thickness is larger on PPMPs than on PEMPs and Hb has a higher affinity for PPMPs than for PEMPs. Hb had a lower affinity for ag-PEMPs and ag-PPMPs, but they can be adsorbed in larger amounts. The presence of partial charges on the plastic surface and the oxidation rate of microplastics may explain these differences. Tonometry experiments using an original method, the diffuse reflection of light, showed that adsorbed Hb on PP-filters retains its cooperativity, but its affinity for O2 decreases significantly.


Assuntos
Hemoglobinas , Oxigênio , Plásticos , Polipropilenos , Hemoglobinas/química , Hemoglobinas/metabolismo , Adsorção , Oxigênio/química , Oxigênio/metabolismo , Plásticos/química , Polipropilenos/química , Polietileno/química , Microplásticos/química , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Water Sci Technol ; 89(8): 1981-1995, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678403

RESUMO

Biochar (BC) was used to remove trichloroethylene (TCE) from soil and water phases, and BC modification changed the sorption behavior of pollutants. Microplastics are emerging pollutants in the soil and water phases. Whether microplastics can affect the sorption of TCE by modified BC is not clear. Thus, batch sorption kinetics and isotherm experiments were conducted to elucidate the sorption of TCE on BC, and BC combined with polyethylene (PE) or polystyrene (PS). The results showed that HCl and NaOH modification increased TCE sorption on BC, while HNO3 modification inhibited TCE sorption on BC. When PE/PS and BC coexisted, the TCE sorption capacity decreased significantly on BC-CK + PE, BC-HCl + PE, BC-HNO3 + PE, BC-NaOH + PE, and BC-NaOH + PS, which was likely due to the preferential sorption of PE/PS on BC samples. We concluded that microplastics can change TCE sorption behavior and inhibit TCE sorption on BC samples. Thus, the interaction of BC and microplastics should be considered when BC is used for TCE removal in soil and water remediation.


Assuntos
Carvão Vegetal , Microplásticos , Tricloroetileno , Tricloroetileno/química , Carvão Vegetal/química , Adsorção , Microplásticos/química , Poluentes Químicos da Água/química , Cinética , Polietileno/química
13.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695908

RESUMO

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Assuntos
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Adsorção , Shewanella/efeitos dos fármacos , Microplásticos/toxicidade , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
14.
Langmuir ; 39(12): 4291-4303, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930733

RESUMO

Microparticles of polyethylene and polypropylene are largely found in aquatic environments because they are the most produced and persistent plastic materials. Once in biological media, they are covered by a layer of molecules, the so-called corona, mostly composed of proteins. A yeast protein extract from Saccharomyces cerevisiae was used as a protein system to observe interactions in complex biological media. Proteins, acting as surfactants and providing hydrophilic surfaces, allow the dispersion of highly hydrophobic particles in water and stabilize them. After 24 h, the microplastic quantity was up to 1 × 1011 particles per liter, whereas without protein, no particles remained in solution. Label-free imaging of the protein corona by synchrotron radiation deep UV fluorescence microscopy (SR-DUV) was performed. In situ images of the protein corona were obtained, and the adsorbed protein quantity, the coverage rate, and the corona heterogeneity were determined. The stability kinetics of the microplastic suspensions were measured by light transmission using a Turbiscan analyzer. Together, the microscopic and kinetics results demonstrate that the protein corona can very efficiently stabilize microplastics in solution provided that the protein corona quality is sufficient. Microplastic stability depends on different parameters such as the particle's intrinsic properties (size, density, hydrophobicity) and the protein corona formation that changes the particle wettability, electrostatic charge, and steric hindrance. By controlling these parameters with proteins, it becomes possible to keep microplastics in and out of solution, paving the way for applications in the field of microplastic pollution control and remediation.


Assuntos
Coroa de Proteína , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Coroa de Proteína/química , Polipropilenos , Água , Poluentes Químicos da Água/química
15.
Langmuir ; 39(14): 4959-4966, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988268

RESUMO

Wettability of microplastics may change due to chemical or physical transformations at their surface. In this work, we studied the adsorption of spherical nucleic acids (SNAs) with a gold nanoparticle core and linear DNA of the same sequence to probe the wettability of microplastics. Soaking microplastics in water at room temperature for 3 months resulted in the enhancement of SNA adsorption capacity and affinity, whereas linear DNA adsorption was the same on the fresh and soaked microplastics. Drying of the soaked microplastics followed by rehydration decreased the adsorption of the SNA, suggesting that the effect of soaking was reversible and related to physical changes instead of chemical changes of the microplastics. Raman spectroscopy data also revealed no chemical transformations of the soaked microplastics. Heating of microplastics over a short period induced a similar effect to long-term soaking. We propose that soaking or heating removes air entrapped in the nanosized pores at the water-plastic interface, increasing the contact surface area of the SNA to afford stronger adsorption. However, such wetted porosity would not change the adsorption of linear DNA because of its much smaller size.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Molhabilidade , Ouro/química , Nanopartículas Metálicas/química , DNA , Água , Adsorção , Poluentes Químicos da Água/química
16.
Proc Natl Acad Sci U S A ; 117(18): 9699-9705, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32300006

RESUMO

A ubiquitous structural feature in biological systems is texture in extracellular matrix that gains functions when hardened, for example, cell walls, insect scales, and diatom tests. Here, we develop patterned liquid crystal elastomer (LCE) particles by recapitulating the biophysical patterning mechanism that forms pollen grain surfaces. In pollen grains, a phase separation of extracellular material into a pattern of condensed and fluid-like phases induces undulations in the underlying elastic cell membrane to form patterns on the cell surface. In this work, LCE particles with variable surface patterns were created through a phase separation of liquid crystal oligomers (LCOs) droplet coupled to homeotropic anchoring at the droplet interface, analogously to the pollen grain wall formation. Specifically, nematically ordered polydisperse LCOs and isotropic organic solvent (dichloromethane) phase-separate at the surface of oil-in-water droplets, while, different LCO chain lengths segregate to different surface curvatures simultaneously. This phase separation, which creates a distortion in the director field, is in competition with homeotropic anchoring induced by sodium dodecyl sulfate (SDS). By tuning the polymer chemistry of the system, we are able to influence this separation process and tune the types of surface patterns in these pollen-like microparticles. Our study reveals that the energetically favorable biological mechanism can be leveraged to offer simple yet versatile approaches to synthesize microparticles for mechanosensing, tissue engineering, drug delivery, energy storage, and displays.


Assuntos
Elastômeros/química , Cristais Líquidos/química , Microplásticos/química , Pólen/química , Biofísica/métodos , Matriz Extracelular/química , Cloreto de Metileno/química , Dodecilsulfato de Sódio/química , Propriedades de Superfície
17.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139049

RESUMO

Microplastics (MPs) are emerging pollutants and pose a significant threat to marine ecosystems. Although previous studies have documented the mechanisms and toxic effects of aging MPs in various environments, the impact of the marine environment on MPs remains unclear. In the present study, the aging process of polystyrene (PS) in seawater was simulated and the changes in its physicochemical properties were investigated. Our results showed that the surface of the PS eroded in the seawater, which was accompanied by the release of aged MPs with a smaller size. In situ optical photothermal infrared microspectroscopy revealed that the mechanism of PS aging was related to the opening of the carbonyl group and breaking of the bond between carbon and benzene removal. To verify the toxic effects of aged PS, Caenorhabditis elegans was exposed to PS. Aged PS resulted in a greater reduction in locomotion, vitality, and reproduction than virgin PS. Mechanistically, aged PS led to oxidative stress, high glutathione s-transferase activity, and high total glutathione in worms. Together, our findings provided novel information regarding the accelerated aging of PS in seawater and the increased toxicity of aged PS, which could improve our understanding of MPs' ecotoxicity in the marine environment.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliestirenos/química , Plásticos , Caenorhabditis elegans , Ecossistema , Microplásticos/química , Envelhecimento , Água do Mar/química
18.
J Environ Manage ; 344: 118472, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37384995

RESUMO

Microplastics (MPs) have gained a serious attention as an emerging contaminant throughout the world because of their persistence and possible risks to aquatic ecosystems and human well-being. However, knowledge on MPs contamination from sub-tropical coastal systems is limited, and no study has been conducted on the MPs contamination in sediment from one of the highest sediment-laden estuaries, Meghna River, in the world. This is the first study to examine the quantity, morpho-chemical characteristics and contamination risk level of MPs from this large scale river. MPs were extracted from the sediment samples of 10 stations along the banks of the estuary by density separation, and then characterized using a stereomicroscope and Fourier Transform Infrared (FTIR) spectroscopy. The incidence of MPs varied from 12.5 to 55 item/kg dry sediment with an average of 28.67 ± 10.80 item/kg. The majority (78.5%) of the MPs were under 0.5 mm in size, with fibers being the most (74.1%) prevalent MPs type. Polypropylene (PP) was found to be the predominant polymer (53.4%), followed by polyethylene (PE, 20%), polystyrene (PS, 13.3%), and polyvinyl chloride (PVC, 13.3%). The highest occurrence of PP indicted the MPs in the estuary might be originated from clothing and dying industries, fishing nets, food packages, and pulp industries. The sampling stations were contaminated with MPs as shown by the contamination factor (CF) values and pollutant load index (PLI), both of which were >1. This study exposed new insights on the status of MPs in the sediments of the Meghna River, laying the groundwork for future research. The findings will contribute to estimate the global share of MPs to the marine environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/química , Plásticos , Estuários , Ecossistema , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polipropilenos/análise
19.
J Environ Manage ; 348: 119363, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931434

RESUMO

Worldwide, environmental concerns about MPs pollution have increased. Microplastic contamination that pollutes the ocean is mostly caused by terrestrial transfer from close proximity locations. A study of MPs pollution near coastal locations becomes necessary to address the MPs transit, fate, and mitigation. In the current study MPs pollution in the surface water and sediment of the Mahanadi River estuary was assessed during Pre-MS and MS. The size, shape, and colour of the MPs were determined using a stereomicroscope, and the MPs polymer composition was identified by Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The mean concentration of MPs that were potentially discovered in water was 16.6 ± 5.2 and sediments 197.3 ± 5.4 during Pre-MS. In the MS observed mean abundance of MPs was 15.1 ± 5.4 in water and 164.6 ± 76.9 in sediments. The highest abundant size was smaller than 1 mm; the most prevalent shape were fibers followed by film and fragments; black and white was a prominent colour in water and sediments respectively. Polyesters (PEs), polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), polyamide (PA), Polystyrene (PS), and Polycarbonates (PC) were found in the analysis of the chemical composition of MPs in water and sediments samples. The calculated PLI value shows pollution load at category I, with polymer hazard levels at categories III, IV, and V, indicating very high risk. The current research results show that river inflows and fishing-related actions are probably the main causes of MPs pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Microplásticos/química , Plásticos/química , Água/análise , Rios/química , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polímeros , Índia
20.
Water Sci Technol ; 87(1): 115-129, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36640027

RESUMO

Microplastics (MPs) are an issue of prime environmental concern globally. The abundance of MP particles in the informal open solid waste landfill soil was evaluated showing 180-1120 MP particles per kg of soil. Moisture content (MC), electrical conductivity (EC) and pH of the MP-contaminated soil compared to the baseline showed 2.96% MC, 187-441 µS/cm EC and 6.94 pH. Morphology of extracted MPs in SEM showed particle fragmentation as film fragments (13.7%), fragments (56.1%), fibres (26.4%) and foam (3.8%). EDS results showed Carbon 71.8% and 24.5% oxygen with traces of Na, Al, Si and Cl-. FTIR of field obtained MPs identified were polyethylene and polypropylene. The association of MP particles with COD and chloride was discovered. MP particles of Low-density Polyethylene of size of 1 mm × 1 mm and thickness 25 µm up to 20 numbers showed no effect adding to the COD values. The COD values increased with increase in MP particle numbers. Similarly, chloride associations with MP particles showed an increase in MP particles reducing chloride values by 31% in landfill runoff water. It is interpreted that MP particle disintegration into nano-sized plastics (NPs) in the soil/runoff water can greatly increase the COD values and impair the salt mass balance.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Cloretos , Resíduos Sólidos , Solo , Poluentes Químicos da Água/análise , Polietileno/análise , Água , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa