Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.541
Filtrar
1.
Small ; 20(23): e2309369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175859

RESUMO

Secondary nanoplastics (NPs) caused by degradation and aging due to environmental factors are the main source of human exposure, and alterations in the physicochemical and biological properties of NPs induced by environmental factors cannot be overlooked. In this study, pristine polystyrene (PS) NPs to obtain ultraviolet (UV)-aged PS NPs (aPS NPs) as secondary NPs is artificially aged. In a mouse oral exposure model, the nephrotoxicity of PS NPs and aPS NPs is compared, and the results showed that aPS NPs exposure induced more serious destruction of kidney tissue structure and function, along with characteristic changes in ferroptosis. Subsequent in vitro experiments revealed that aPS NPs-induced cell death in human renal tubular epithelial cells involved ferroptosis, which is supported by the use of ferrostatin-1, a ferroptosis inhibitor. Notably, it is discovered that aPS NPs can enhance the binding of serum transferrin (TF) to its receptor on the cell membrane by forming an aPS-TF complex, leading to an increase in intracellular Fe2+ and then exacerbation of oxidative stress and lipid peroxidation, which render cells more sensitive to ferroptosis. These findings indicated that UV irradiation can alter the physicochemical and biological properties of NPs, enhancing their kidney biological toxicity risk by inducing ferroptosis.


Assuntos
Ferroptose , Rim , Poliestirenos , Transferrina , Raios Ultravioleta , Poliestirenos/química , Ferroptose/efeitos dos fármacos , Animais , Rim/patologia , Rim/efeitos dos fármacos , Humanos , Transferrina/metabolismo , Camundongos , Adsorção , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Microplásticos/toxicidade
2.
Glob Chang Biol ; 30(8): e17470, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39149882

RESUMO

Micro/nanoplastic (MNP) pollution in soil ecosystems has become a growing environmental concern globally. However, the comprehensive impacts of MNPs on soil health have not yet been explored. We conducted a hierarchical meta-analysis of over 5000 observations from 228 articles to assess the broad impacts of MNPs on soil health parameters (represented by 20 indicators relevant to crop growth, animal health, greenhouse gas emissions, microbial diversity, and pollutant transfer) and whether the impacts depended on MNP properties. We found that MNP exposure significantly inhibited crop biomass and germination, and reduced earthworm growth and survival rate. Under MNP exposure, the emissions of soil greenhouse gases (CO2, N2O, and CH4) were significantly increased. MNP exposure caused a decrease in soil bacteria diversity. Importantly, the magnitude of impact of the soil-based parameters was dependent on MNP dose and size; however, there is no significant difference in MNP type (biodegradable and conventional MNPs). Moreover, MNPs significantly reduced As uptake by plants, but promoted plant Cd accumulation. Using an analytical hierarchy process, we quantified the negative impacts of MNP exposure on soil health as a mean value of -10.2% (-17.5% to -2.57%). Overall, this analysis provides new insights for assessing potential risks of MNP pollution to soil ecosystem functions.


Assuntos
Oligoquetos , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/efeitos adversos , Animais , Solo/química , Microplásticos/análise , Microplásticos/toxicidade , Gases de Efeito Estufa/análise , Nanopartículas/análise , Produtos Agrícolas/crescimento & desenvolvimento
3.
PLoS Biol ; 19(3): e3001131, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784292

RESUMO

A new collection of evidence-based commentaries explores critical challenges facing scientists and policymakers working to address the potential environmental and health harms of microplastics. The commentaries reveal a pressing need to develop robust methods to detect, evaluate, and mitigate the impacts of this emerging contaminant, most recently found in human placentas.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Plásticos/toxicidade , Recuperação e Remediação Ambiental/métodos , Humanos , Microplásticos/toxicidade , Saúde Pública
4.
PLoS Biol ; 19(3): e3001130, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784293

RESUMO

Microplastics (MPs), plastic particles <5 mm, are found in environments, including terrestrial ecosystems, planetwide. Most research so far has focused on ecotoxicology, examining effects on performance of soil biota in controlled settings. As research pivots to a more ecosystem and global change perspective, questions about soil-borne biogeochemical cycles become important. MPs can affect the carbon cycle in numerous ways, for example, by being carbon themselves and by influencing soil microbial processes, plant growth, or litter decomposition. Great uncertainty surrounds nano-sized plastic particles, an expected by-product of further fragmentation of MPs. A major concerted effort is required to understand the pervasive effects of MPs on the functioning of soils and terrestrial ecosystems; importantly, such research needs to capture the immense diversity of these particles in terms of chemistry, aging, size, and shape.


Assuntos
Ciclo do Carbono/efeitos dos fármacos , Microplásticos/análise , Microplásticos/toxicidade , Solo/química , Carbono/metabolismo , Ecossistema , Microbiologia do Solo
5.
J Theor Biol ; 580: 111733, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38224853

RESUMO

Microplastics pose a severe threat to marine ecosystems; however, relevant mathematical modeling and analysis are lacking. This paper formulates two stoichiometric producer-grazer models to investigate the interactive effects of microplastics, nutrients, and light on population dynamics under different settings. One model incorporates optimal microplastic uptake and foraging behavior based on nutrient availability for natural settings, while the other model does not include foraging in laboratory settings. We establish the well-posedness of the models and examine their long-term behaviors. Our results reveal that in natural environments, producers and grazers exhibit higher sensitivity to microplastics, and the system may demonstrate bistability or tristability. Moreover, the influences of microplastics, nutrients, and light intensity are highly intertwined. The presence of microplastics amplifies the constraints on grazer growth related to food quality and quantity imposed by extreme light intensities, while elevated phosphorus input enhances the system's resistance to intense light conditions. Furthermore, higher environmental microplastic levels do not always imply elevated microplastic body burdens in organisms, as organisms are also influenced by nutrients and light. We also find that grazers are more vulnerable to microplastics, compared to producers. If producers can utilize microplastics for growth, the system displays significantly greater resilience to microplastics.


Assuntos
Ecossistema , Poluentes Químicos da Água , Microplásticos/toxicidade , Plásticos , Modelos Teóricos , Luz , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental
6.
Fish Shellfish Immunol ; 150: 109619, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735599

RESUMO

Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.


Assuntos
Peixes , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixes/imunologia , Imunidade Inata/efeitos dos fármacos
7.
J Toxicol Environ Health B Crit Rev ; 27(4): 153-187, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38517360

RESUMO

The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Transporte Biológico , Modelos Teóricos
8.
Environ Sci Technol ; 58(24): 10445-10457, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38830620

RESUMO

Microplastics are routinely ingested and inhaled by humans and other organisms. Despite the frequency of plastic exposure, little is known about its health consequences. Of particular concern are plastic additives─chemical compounds that are intentionally or unintentionally added to plastics to improve functionality or as residual components of plastic production. Additives are often loosely bound to the plastic polymer and may be released during plastic exposures. To better understand the health effects of plastic additives, we performed a comprehensive literature search to compile a list of 2,712 known plastic additives. Then, we performed an integrated toxicogenomic analysis of these additives, utilizing cancer classifications and carcinogenic expression pathways as a primary focus. Screening these substances across two chemical databases revealed two key observations: (1) over 150 plastic additives have known carcinogenicity and (2) the majority (∼90%) of plastic additives lack data on carcinogenic end points. Analyses of additive usage patterns pinpointed specific polymers, functions, and products in which carcinogenic additives reside. Based on published chemical-gene interactions, both carcinogenic additives and additives with unknown carcinogenicity impacted similar biological pathways. The predominant pathways involved DNA damage, apoptosis, the immune response, viral diseases, and cancer. This study underscores the urgent need for a systematic and comprehensive carcinogenicity assessment of plastic additives and regulatory responses to mitigate the potential health risks of plastic exposure.


Assuntos
Carcinógenos , Plásticos , Plásticos/toxicidade , Carcinógenos/toxicidade , Humanos , Microplásticos/toxicidade
9.
Environ Sci Technol ; 58(13): 5974-5986, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512049

RESUMO

Fish gills are highly sensitive organs for microplastic (MP) and nanoplastic (NP) invasions, but the cellular heterogeneity of fish gills to MPs and NPs remains largely unknown. We employed single-cell RNA sequencing to investigate the responses of individual cell populations in tilapia Oreochromis niloticus gills to MP and NP exposure at an environmentally relevant concentration. Based on the detected differentially expressed gene (DEG) numbers, the most affected immune cells by MP exposure were macrophages, while the stimulus of NPs primarily targeted T cells. In response to MPs and NPs, H+-ATPase-rich cells exhibited distinct changes as compared with Na+/K+-ATPase-rich cells and pavement cells. Fibroblasts were identified as a potential sensitive cell-type biomarker for MP interaction with O. niloticus gills, as evidenced by the largely reduced cell counts and the mostly detected DEGs among the 12 identified cell populations. The most MP-sensitive fibroblast subpopulation in O. niloticus gills was lipofibroblasts. Cell-cell communications between fibroblasts and H+-ATPase-rich cells, neurons, macrophages, neuroepithelial cells, and Na+/K+-ATPase-rich cells in O. niloticus gills were significantly inhibited by MP exposure. Collectively, our study demonstrated the cellular heterogeneity of O. niloticus gills to MPs and NPs and provided sensitive markers for their toxicological mechanisms at single-cell resolution.


Assuntos
Microplásticos , Plásticos , Animais , Microplásticos/toxicidade , Brânquias , ATPases Translocadoras de Prótons , Análise de Sequência de RNA
10.
Environ Sci Technol ; 58(10): 4510-4521, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38426442

RESUMO

Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 µm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.


Assuntos
Chironomidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Larva , Poliestirenos/toxicidade , Chironomidae/metabolismo , Plásticos/toxicidade , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 58(27): 11887-11900, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38885123

RESUMO

The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.


Assuntos
Insetos , Microplásticos , Animais , Microplásticos/toxicidade , Insetos/efeitos dos fármacos , Plásticos/toxicidade , Ecossistema , Monitoramento Ambiental
12.
Environ Sci Technol ; 58(24): 10482-10493, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829656

RESUMO

Microplastics (MPs) are ubiquitous in global ecosystems and may pose a potential risk to human health. However, critical information on MP exposure and risk to female reproductive health is still lacking. In this study, we characterized MPs in human endometrium and investigated their size-dependent entry mode as well as potential reproductive toxicity. Endometrial tissues of 22 female patients were examined, revealing that human endometrium was contaminated with MPs, mainly polyamide (PA), polyurethane (PU), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyethylene (PE), ranging from 2-200 µm in size. Experiments conducted in mice demonstrated that the invasion of the uterus by MPs was modulated either through diet-blood circulation (micrometer-sized particles) or via the vagina-uterine lacuna mode (larger particles reaching a size of 100 µm. Intravenous exposure to MPs resulted in reduced fertility and abnormal sex ratio in mouse offspring (P < 0.05). After 3.5 months of intragastric exposure, there was a significant inflammatory response in the endometrium (P < 0.05), confirmed by embryo transfer as a uterine factor leading to decreased fertility. Furthermore, human endometrial organoids cultured with MPs in vitro exhibited significantly apoptotic responses and disrupted growth patterns (P < 0.01). These findings raise significant concerns regarding MP contamination in the human uterus and its potential effects on reproductive health.


Assuntos
Microplásticos , Saúde Reprodutiva , Útero , Humanos , Feminino , Microplásticos/toxicidade , Útero/efeitos dos fármacos , Animais , Camundongos
13.
BJOG ; 131(5): 675-683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287142

RESUMO

BACKGROUND: Microplastics, produced through degradation of environmental plastic pollution, have been detected in human tissues including placenta and fetal meconium. Cell culture and animal studies have demonstrated potential reproductive toxicity of these particles; however, their association with adverse fertility or pregnancy outcomes in humans is not known. OBJECTIVES: To synthesise evidence for the presence of microplastics in human reproductive tissue and their associations with environmental exposures and reproductive outcomes. SEARCH STRATEGY: MEDLINE, Embase, Emcare, CINAHL, ClinicalTrials.gov and ICTRP were searched from inception to 03/02/2023. SELECTION CRITERIA: Studies of human participants, assessing presence of microplastics in reproductive tissues, environmental exposures to microplastics, and fertility- or pregnancy-related outcomes. DATA COLLECTION AND ANALYSIS: Two independent reviewers selected studies and extracted data on study characteristics, microplastics detected, environmental exposures and reproductive outcomes. Narrative synthesis was performed due to methodological heterogeneity. MAIN RESULTS: Of 1094 citations, seven studies were included, covering 96 participants. Microplastics composed of 16 different polymer types were detected in both placental and meconium samples. Two studies reported associations between lifestyle factors (daily water intake, use of scrub cleanser or toothpaste, bottled water and takeaway food) and placental microplastics. One study reported associations between meconium microplastics and reduced microbiota diversity. One reported placental microplastic levels correlated with reduced birthweights and 1-minute Apgar scores. CONCLUSIONS: There is a need for high-quality observational studies to assess the effects of microplastics on human reproductive health.


Assuntos
Microplásticos , Plásticos , Feminino , Humanos , Gravidez , Microplásticos/toxicidade , Placenta , Plásticos/toxicidade , Resultado da Gravidez , Cuidado Pré-Natal
14.
Environ Res ; 242: 117787, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040179

RESUMO

Microplastic (MP) pollution raises urgent concerns about the environmental well-being and the safety of the food supply for humans. Mussels are essential filter-feeding organisms that may be highly susceptible to MPs uptake due to their global distribution and sedentary lifestyle. There is also a knowledge gap regarding MP levels in commercially-farmed and wild-sourced mussels for human consumption, creating gaps in risk identification for food safety. This study aims to fill this gap in understanding by (a) investigating the presence and abundance of MPs in both wild and aquacultured mussels collected from six different stations in the Sea of Marmara, (b) comparing the levels of MPs between aquacultured and wild mussels, and (c) evaluating the potential health risks associated with the consumption of these contaminated mussels. Polymer types were verified by ATR-FTIR (Attenuated Total Reflectance Fourier Transform- Infrared Spectroscopy), and 6 different polymers have been identified. Among the total 753 identified MPs, the majority (79.8%) were fibers, with the predominant size range (42.4%) falling between 0.1 and 0.5 mm. Consuming wild mussels was associated with a 187.6% higher risk of MP intake compared to aquaculture. A consumer can potentially be exposed to 133.11 to 844.86 MP particles when consuming a 100 g serving of mussels, with risks becoming more significant as portion sizes increase, as is the case in some countries where portions reach 225 g. In this study, detailed information is presented on MP pollution in both wild and aquacultured mussels from Sea of Marmara, providing valuable insights for ensuring food safety, effective management and control of MP pollution in this region.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/toxicidade , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
15.
Environ Res ; 251(Pt 2): 118535, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460665

RESUMO

Plastics are used all over the world. Unfortunately, due to limited biodegradation, plastics cause a significant level of environmental pollution. The smallest recognized to date are termed nanoplastics (1 nm [nm] up to 1 µm [µm]) and microplastics (1 µm-5 mm). These nano- and microplastics can enter the human body through the respiratory system via inhalation, the digestive tract via consumption of contaminated food and water, or penetration through the skin via cosmetics and clothes contact. Bioaccumulation of plastics in the human body can potentially lead to a range of health issues, including respiratory disorders like lung cancer, asthma and hypersensitivity pneumonitis, neurological symptoms such as fatigue and dizziness, inflammatory bowel disease and even disturbances in gut microbiota. Most studies to date have confirmed that nano- and microplastics can induce apoptosis in cells and have genotoxic and cytotoxic effects. Understanding the cellular and molecular mechanisms of plastics' actions may help extrapolate the risks to humans. The article provides a comprehensive review of articles in databases regarding the impact of nano- and microplastics on human health. The review included retrospective studies and case reports of people exposed to nanoplastics and microplastics. This research highlights the need for further research to fully understand the extent of the impact of plastics on human health.


Assuntos
Poluentes Ambientais , Microplásticos , Humanos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Microplásticos/toxicidade , Nanopartículas/toxicidade , Medição de Risco
16.
Environ Res ; 252(Pt 3): 119061, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704011

RESUMO

Sludge is one of the primary reservoirs of microplastics (MPs), and the effects of MPs on subsequent sludge treatment raised attention. Given the entry pathways, MPs would exhibit different properties, but the entry pathway-dependent effect of MPs on sludge treatment performance and the fates of antibiotic resistance genes (ARGs), another high-risk emerging contaminant, were seldom documented. Herein, MPs with two predominant entry pathways, including wastewater-derived (WW-derived) and anaerobic digestion-introduced (AD-introduced), were used to investigate the effects on AD performance and ARGs abundances. The results indicated that WW-derived MPs, namely the MPs accumulated in sludge during the wastewater treatment process, exhibited significant inhibition on methane production by 22.8%-71.6%, while the AD-introduced MPs, being introduced in the sludge AD process, slightly increased the methane yield by 4.7%-17.1%. Meanwhile, MPs were responsible for promoting transmission of target ARGs, and polyethylene terephthalate MPs (PET-MPs) showed a greater promotion effect (0.0154-0.0936) than polyamide MPs (PA-MPs) (0.0013-0.0724). Compared to size, entry pathways and types played more vital roles on MPs influences. Investigation on mechanisms based on microbial community structure revealed characteristics (aging degree and types) of MPs determined the differences of AD performance and ARGs fates. WW-derived MPs with longer aging period and higher aging degree would release toxics and decrease the activities of microorganisms, resulting in the negative impact on AD performance. However, AD-introduced MPs with short aging period exhibited marginal impacts on AD performance. Furthermore, the co-occurrent network analysis suggested that the variations of potential host bacteria induced by MPs with different types and aging degree attributed to the dissemination of ARGs. Distinctively from most previous studies, the MPs with different sizes did not show remarkable effects on AD performance and ARGs fates. Our findings benefited the understanding of realistic environmental behavior and effect of MPs with different sources.


Assuntos
Metano , Microplásticos , Esgotos , Metano/metabolismo , Esgotos/microbiologia , Anaerobiose , Microplásticos/toxicidade , Eliminação de Resíduos Líquidos , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Environ Res ; 252(Pt 3): 119012, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704010

RESUMO

Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.


Assuntos
Biomassa , Chumbo , Microplásticos , Polietileno , Microbiologia do Solo , Poluentes do Solo , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Polietileno/toxicidade , Solo/química , Ecotoxicologia
18.
Environ Res ; 251(Pt 2): 118737, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493850

RESUMO

Microplastics (MPs) are emerging ubiquitous pollutants in aquatic environment and have received extensive global attention. In addition to the traditional studies related to the toxicity of MPs and their carrier effects, their unique surface-induced biofilm formation also increases the ecotoxicity potential of MPs from multiple perspectives. In this review, the ecological risks of MPs biofilms were summarized and assessed in detail from several aspects, including the formation and factors affecting the development of MPs biofilms, the selective enrichment and propagation mechanisms of current pollution status of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in MPs biofilms, the dominant bacterial communities in MPs biofilms, as well as the potential risks of ARGs and MGEs transferring from MPs biofilms to aquatic organisms. On this basis, this paper also put forward the inadequacy and prospects of the current research and revealed that the MGEs-mediated ARG propagation on MPs under actual environmental conditions and the ecological risk of the transmission of ARGs and MGEs to aquatic organisms and human beings are hot spots for future research. Relevant research from the perspective of MPs biofilm should be carried out as soon as possible to provide support for the ecological pollution prevention and control of MPs.


Assuntos
Biofilmes , Sequências Repetitivas Dispersas , Microplásticos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Microplásticos/toxicidade , Resistência Microbiana a Medicamentos/genética , Poluentes Químicos da Água/toxicidade
19.
Environ Res ; 252(Pt 2): 118960, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636648

RESUMO

Conventional plastics are inherently difficult to degrade, causing serious plastic pollution. With the development of society, biodegradable plastics (BPs) are considered as an alternative to traditional plastics. However, current research indicated that BPs do not undergo complete degradation in natural environments. Instead, they may convert into biodegradable microplastics (BMPs) at an accelerated rate, thereby posing a significant threat to environment. In this paper, the definition, application, distribution, degradation behaviors, bioaccumulation and biomagnification of BPs were reviewed. And the impacts of BMPs on soil and marine ecosystems, in terms of physicochemical property, nutrient cycling, microorganisms, plants and animals were comprehensively summarized. The effects of combined exposure of BMPs with other pollutants, and the mechanism of ecotoxicity induced by BMPs were also addressed. It was found that BMPs reduced pH, increased DOC content, and disrupted the nitrification of nitrogen cycle in soil ecosystem. The shoot dry weight, pod number and root growth of soil plants, and reproduction and body length of soil animals were inhibited by BMPs. Furthermore, the growth of marine plants, and locomotion, body length and survival of marine animals were suppressed by BMPs. Additionally, the ecotoxicity of combined exposure of BMPs with other pollutants has not been uniformly concluded. Exposure to BMPs induced several types of toxicity, including neurotoxicity, gastrointestinal toxicity, reproductive toxicity, immunotoxicity and genotoxicity. The future calls for heightened attention towards the regulation of the degradation of BPs in the environment, and pursuit of interventions aimed at mitigating their ecotoxicity and potential health risks to human.


Assuntos
Microplásticos , Microplásticos/toxicidade , Animais , Poluentes do Solo/toxicidade , Plásticos Biodegradáveis/toxicidade , Oceanos e Mares , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Solo/química , Ecossistema
20.
Environ Res ; 251(Pt 2): 118673, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493845

RESUMO

Both microplastics (MPs) and heavy metals are common soil pollutants and can interact to generate combined toxicity to soil ecosystems, but their impact on soil microbial communities (e.g., archaea and viruses) remains poorly studied. Here, metagenomic analysis was used to explore the response of soil microbiome in an agricultural soil exposed to MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and/or Cd. Results showed that MPs had more profound effects on microbial community composition, diversity, and gene abundances when compared to Cd or their combination. Metagenomic analysis indicated that the gene taxonomic diversity and functional diversity of microbial communities varied with MPs type and dose. MPs affected the relative abundance of major microbial phyla and genera, while their coexistence with Cd influenced dominant fungi and viruses. Nitrogen-transforming and pathogenic genera, which were more sensitive to MPs variations, could serve as the indicative taxa for MPs contamination. High-dose PLA treatments (10%, w/w) not only elevated nitrogen metabolism and pathogenic genes, but also enriched copiotrophic microbes from the Proteobacteria phylum. Overall, MPs and Cd showed minimal interactions on soil microbial communities. This study highlights the microbial shifts due to co-occurring MPs and Cd, providing evidence for understanding their environmental risks.


Assuntos
Cádmio , Metagenômica , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Microplásticos/toxicidade , Agricultura , Microbiota/efeitos dos fármacos , Solo/química , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa