Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.499
Filtrar
Mais filtros

Coleção SES
Eixos temáticos
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(29): e2300315120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428920

RESUMO

An emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (N-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative. A chemoinformatic analysis underscored limited structural diversity of N-heterocyclic substrates oxidized using chemical methods relative to pharmaceutical chemical space. Here, we describe a preparative chemical method for direct aliphatic oxidation that tolerates a wide range of nitrogen functionality (chemoselective) and matches the site of oxidation (site-selective) of liver CYP450 enzymes. Commercial small-molecule catalyst Mn(CF3-PDP) selectively effects direct methylene oxidation in compounds bearing 25 distinct heterocycles including 14 out of 27 of the most frequent N-heterocycles found in U.S. Food and Drug Administration (FDA)-approved drugs. Mn(CF3-PDP) oxidations of carbocyclic bioisostere drug candidates (for example, HCV NS5B and COX-2 inhibitors including valdecoxib and celecoxib derivatives) and precursors of antipsychotic drugs blonanserin, buspirone, and tiospirone and the fungicide penconazole are demonstrated to match the major site of aliphatic metabolism obtained with liver microsomes. Oxidations are demonstrated at low Mn(CF3-PDP) loadings (2.5 to 5 mol%) on gram scales of substrate to furnish preparative amounts of oxidized products. A chemoinformatic analysis supports that Mn(CF3-PDP) significantly expands the pharmaceutical chemical space accessible to small-molecule C-H oxidation catalysis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fígado , Oxirredução , Sistema Enzimático do Citocromo P-450/química , Preparações Farmacêuticas/química , Catálise , Microssomos Hepáticos , Nitrogênio
2.
J Biol Chem ; 300(5): 107278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599380

RESUMO

Previous work demonstrated that human liver microsomes (HLMs) can spontaneously bind to silica-coated magnetizable beads (HLM-beads) and that these HLM-beads retain uridine 5'-diphospho-glucuronosyltransferase (UGT) activity. However, the contributions of individual UGT isoforms are not directly assessable in this system except through use of model inhibitors. Thus, a preparation wherein recombinant UGT (rUGT) microsomes bound to these same beads to form rUGT-beads of individual UGT isoforms would provide a novel system for measuring the contribution of individual UGT isoforms in a direct manner. To this end, the enzyme activities and kinetic parameter estimates of various rUGT isoforms in rUGT-beads were investigated, as well as the impact of fatty acids (FAs) on enzyme activity. The catalytic efficiencies (Vmax/Km) of the tested rUGTs were twofold to sevenfold higher in rUGT-beads compared with rUGT microsomes, except for rUGT1A6, where Vmax is the maximum product formation rate normalized to milligram of microsomal protein (pmol/min/mg protein). Interestingly, in contrast to traditional rUGT preparations, the sequestration of UGT-inhibitory FA using bovine serum albumin did not alter the catalytic efficiency (Vmax/Km) of the rUGTs in rUGT-beads. Moreover, the increase in catalytic efficiency of rUGT-beads over rUGT microsomes was similar to increases in catalytic efficiency noted with rUGT microsomes (not bound to beads) incubated with bovine serum albumin, suggesting the beads in some way altered the potential for FAs to inhibit activity. The rUGT-bead system may serve as a useful albumin-free tool to determine kinetic constants for UGT substrates, particularly those that exhibit high binding to albumin.


Assuntos
Glucuronosiltransferase , Isoenzimas , Microssomos Hepáticos , Proteínas Recombinantes , Animais , Humanos , Ácidos Graxos/metabolismo , Ácidos Graxos/química , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/química , Isoenzimas/metabolismo , Isoenzimas/genética , Cinética , Microssomos Hepáticos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Magnetismo , Microssomos/química , Microssomos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(24): e2200513119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675423

RESUMO

Coordinated cell function requires a variety of subcellular organelles to exchange proteins and lipids across physical contacts that are also referred to as membrane contact sites. Such organelle-to-organelle contacts also evoke interest because they can appear in response to metabolic changes, immune activation, and possibly other stimuli. The microscopic size and complex, crowded geometry of these contacts, however, makes them difficult to visualize, manipulate, and understand inside cells. To address this shortcoming, we deposited endoplasmic reticulum (ER)-enriched microsomes purified from rat liver or from cultured cells on a coverslip in the form of a proteinaceous planar membrane. We visualized real-time lipid and protein exchange across contacts that form between this ER-mimicking membrane and lipid droplets (LDs) purified from the liver of rat. The high-throughput imaging possible in this geometry reveals that in vitro LD-ER contacts increase dramatically when the metabolic state is changed by feeding the animal and also when the immune system is activated. Contact formation in both cases requires Rab18 GTPase and phosphatidic acid, thus revealing common molecular targets operative in two very different biological pathways. An optical trap is used to demonstrate physical tethering of individual LDs to the ER-mimicking membrane and to estimate the strength of this tether. These methodologies can potentially be adapted to understand and target abnormal contact formation between different cellular organelles in the context of neurological and metabolic disorders or pathogen infection.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Animais , Células Cultivadas , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/imunologia , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Microssomos Hepáticos/química , Membranas Mitocondriais/metabolismo , Ácidos Fosfatídicos/metabolismo , Ratos , Proteínas rab de Ligação ao GTP/metabolismo
4.
Antimicrob Agents Chemother ; 68(7): e0014324, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38899927

RESUMO

In response to the spread of artemisinin (ART) resistance, ART-based hybrid drugs were developed, and their activity profile was characterized against drug-sensitive and drug-resistant Plasmodium falciparum parasites. Two hybrids were found to display parasite growth reduction, stage-specificity, speed of activity, additivity of activity in drug combinations, and stability in hepatic microsomes of similar levels to those displayed by dihydroartemisinin (DHA). Conversely, the rate of chemical homolysis of the peroxide bonds is slower in hybrids than in DHA. From a mechanistic perspective, heme plays a central role in the chemical homolysis of peroxide, inhibiting heme detoxification and disrupting parasite heme redox homeostasis. The hybrid exhibiting slow homolysis of peroxide bonds was more potent in reducing the viability of ART-resistant parasites in a ring-stage survival assay than the hybrid exhibiting fast homolysis. However, both hybrids showed limited activity against ART-induced quiescent parasites in the quiescent-stage survival assay. Our findings are consistent with previous results showing that slow homolysis of peroxide-containing drugs may retain activity against proliferating ART-resistant parasites. However, our data suggest that this property does not overcome the limited activity of peroxides in killing non-proliferating parasites in a quiescent state.


Assuntos
Antimaláricos , Artemisininas , Plasmodium falciparum , Artemisininas/farmacologia , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Humanos , Testes de Sensibilidade Parasitária , Animais , Peróxidos/farmacologia
5.
Biochem Biophys Res Commun ; 725: 150261, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897040

RESUMO

GOAL: The long-term goal of our research is to develop safe and effective soluble epoxide hydrolase (sEH) inhibitors. The objective of this study is to evaluate the potency and selectivity of six natural isothiocyanates (ITCs) as sEH inhibitors. METHODS: Molecular docking was used to model likely interactions between the ligands and receptors. The sEH inhibitory activity was tested using a validated fluorescence-based assay and PHOME as a substrate. To evaluate their selectivity as sEH inhibitors, the inhibitory potential of the ITCs was determined on microsomal epoxide hydrolase (mEH) and cytochrome P450 (CYP) enzymes in human liver microsomes. Probe substrates such as styrene oxide (mEH substrate) and established substrates for CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were used in this study. The metabolites of these substrates were analyzed using validated LC-MS/MS and HPLC-UV assays. RESULTS: Molecular Docking revealed significant differences in binding site preference among the ITCs in silico and pointed to important interactions between the ligands and the catalytic residues of the sEH enzyme. In vitro, the ITCs showed varying degrees of sEH inhibition, but sulforaphane (SFN) and phenyl isothiocyanate (PITC) were the most potent inhibitors with IC50 values of 3.65 and 7.5 µM, respectively. mEH was not significantly inhibited by any of the ITCs. Erucin and iberin were the only ITCs that did not inhibit the activity of any of the tested CYP enzymes. CONCLUSION: Our results demonstrate that natural ITCs have the potential to offer safe, selective, and potent sEH inhibition.


Assuntos
Inibidores Enzimáticos , Epóxido Hidrolases , Isotiocianatos , Microssomos Hepáticos , Simulação de Acoplamento Molecular , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/química , Isotiocianatos/farmacologia , Isotiocianatos/química , Isotiocianatos/metabolismo , Humanos , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Solubilidade
6.
J Pharmacol Exp Ther ; 388(1): 190-200, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37863485

RESUMO

This study aimed to evaluate the effects of cytochrome P450 3A4 (CYP3A4) gene polymorphism and drug interaction on the metabolism of blonanserin. Human recombinant CYP3A4 was prepared using the Bac-to-Bac baculovirus expression system. A microsomal enzyme reaction system was established, and drug-drug interactions were evaluated using Sprague-Dawley rats. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the concentrations of blonanserin and its metabolite. Compared with wild type CYP34A, the relative clearance of blonanserin by CYP3A4.29 significantly increased to 251.3%, while it decreased notably with CYP3A4.4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 23, 24, 28, 31, 33, and 34, ranging from 6.09% to 63.34%. Among 153 tested drugs, nimodipine, felodipine, and amlodipine were found to potently inhibit the metabolism of blonanserin. Moreover, the inhibitory potency of nimodipine, felodipine, and amlodipine varied with different CYP3A4 variants. The half-maximal inhibitory concentration and enzymatic kinetics assay demonstrated that the metabolism of blonanserin was noncompetitively inhibited by nimodipine in rat liver microsomes and was inhibited in a mixed manner by felodipine and amlodipine in both rat liver microsomes and human liver microsomes. When nimodipine and felodipine were coadministered with blonanserin, the area under the blood concentration-time curve (AUC)(0-t), AUC(0-∞), and C max of blonanserin increased. When amlodipine and blonanserin were combined, the C max of blonanserin C increased remarkably. The vast majority of CYP3A4 variants have a low ability to catalyze blonanserin. With combined administration of nimodipine, felodipine, and amlodipine, the elimination of blonanserin was inhibited. This study provides the basis for individualized clinical use of blonanserin. SIGNIFICANCE STATEMENT: The enzyme kinetics of novel CYP3A4 enzymes for metabolizing blonanserin were investigated. Clearance of blonanserin by CYP3A4.4, 5, 7-10, 12-14, 16-18, 23-24, 28, 31, 33, and 34 decreased notably, but increased with CYP3A4.29. Additionally, we established a drug interaction spectrum for blonanserin, in which nimodipine, felodipine, and amlodipine kinetics exhibited mixed inhibition. Moreover, their inhibitory potencies decreased with CYP3A4.4 and 5 compared to CYP3A4.1. This study provides essential data for personalized clinical use of blonanserin.


Assuntos
Citocromo P-450 CYP3A , Nimodipina , Humanos , Ratos , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Nimodipina/metabolismo , Nimodipina/farmacologia , Felodipino/metabolismo , Felodipino/farmacologia , Ratos Sprague-Dawley , Interações Medicamentosas , Anlodipino/metabolismo , Anlodipino/farmacologia , Microssomos Hepáticos/metabolismo , Metaboloma
7.
Drug Metab Dispos ; 52(3): 242-251, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38176735

RESUMO

Detailed structural characterization of small molecule metabolites is desirable during all stages of drug development, and often relies on the synthesis of metabolite standards. However, introducing structural changes into already complex, highly functionalized small molecules both regio- and stereo-selectively can be challenging using purely chemical approaches, introducing delays into the drug pipeline. An alternative is to use the cytochrome P450 enzymes (P450s) that produce the metabolites in vivo, taking advantage of the enzyme's inherently chiral active site to achieve regio- and stereoselectivity. Importantly, biotransformations are more sustainable: they proceed under mild conditions and avoid environmentally damaging solvents and transition metal catalysts. Recombinant enzymes avoid the need to use animal liver microsomes. However, native enzymes must be stabilized to work for extended periods or at elevated temperatures, and stabilizing mutations can alter catalytic activity. Here we assessed a set of novel, thermostable P450s in bacterial membranes, a format analogous to liver microsomes, for their ability to metabolize drugs through various pathways and compared them to human liver microsomes. Collectively, the thermostable P450s could replicate the metabolic pathways seen with human liver microsomes, including bioactivation to protein-reactive intermediates. Novel metabolites were found, suggesting the possibility of obtaining metabolites not produced by human or rodent liver microsomes. Importantly, no alteration in assay conditions from standard protocols for microsomal incubations was necessary. Thus, such bacterial membranes represent an analogous metabolite generation system to liver microsomes in terms of metabolites produced and ease of use, but which provides access to more diversity of metabolite structures. SIGNIFICANCE STATEMENT: In drug development it is often chemically challenging, to synthesize authentic metabolites of drug candidates for structural identification and evaluation of activity and safety. Biosynthesis using microsomes or recombinant human enzymes is confounded by the instability of the enzymes. Here we show that thermostable ancestral cytochrome P450 enzymes derived from P450 families responsible for human drug metabolism offer advantages over the native human forms in being more robust and over microbial enzymes in faithfully reflecting human drug metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Animais , Humanos , Microssomos Hepáticos/metabolismo , Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Biotransformação , Redes e Vias Metabólicas
8.
Drug Metab Dispos ; 52(7): 634-643, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830773

RESUMO

Drug metabolite identification is an integrated part of drug metabolism and pharmacokinetics studies in drug discovery and development. Definitive identification of metabolic modification sides of test compounds such as screening metabolic soft spots and supporting metabolite synthesis are often required. Currently, liquid chromatography-high resolution mass spectrometry is the dominant analytical platform for metabolite identification. However, the interpretation of product ion spectra generated by commonly used collision-induced disassociation (CID) and higher-energy collisional dissociation (HCD) often fails to identify locations of metabolic modifications, especially glucuronidation. Recently, a ZenoTOF 7600 mass spectrometer equipped with electron-activated dissociation (EAD-HRMS) was introduced. The primary objective of this study was to apply EAD-HRMS to identify metabolism sites of vepdegestrant (ARV-471), a model compound that consists of multiple functional groups. ARV-471 was incubated in dog liver microsomes and 12 phase I metabolites and glucuronides were detected. EAD generated unique product ions via orthogonal fragmentation, which allowed for accurately determining the metabolism sites of ARV-471, including phenol glucuronidation, piperazine N-dealkylation, glutarimide hydrolysis, piperidine oxidation, and piperidine lactam formation. In contrast, CID and HCD spectral interpretation failed to identify modification sites of three O-glucuronides and three phase I metabolites. The results demonstrated that EAD has significant advantages over CID and HCD in definitive structural elucidation of glucuronides and phase I metabolites although the utility of EAD-HRMS in identifying various types of drug metabolites remains to be further evaluated. SIGNIFICANCE STATEMENT: Definitive identification of metabolic modification sites by liquid chromatography-high resolution mass spectrometry is highly needed in drug metabolism research, such as screening metabolic soft spots and supporting metabolite synthesis. However, commonly used collision-induced dissociation (CID) and higher-energy collisional dissociation (HCD) fragmentation techniques often fail to provide critical information for definitive structural elucidation. In this study, the electron-activated dissociation (EAD) was applied to identifying glucuronidation and oxidative metabolism sites of vepdegestrant, which generated significantly better results than CID and HCD.


Assuntos
Glucuronídeos , Microssomos Hepáticos , Oxirredução , Animais , Microssomos Hepáticos/metabolismo , Glucuronídeos/metabolismo , Cães , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos
9.
Drug Metab Dispos ; 52(5): 345-354, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360916

RESUMO

It is common practice in drug discovery and development to predict in vivo hepatic clearance from in vitro incubations with liver microsomes or hepatocytes using the well-stirred model (WSM). When applying the WSM to a set of approximately 3000 Novartis research compounds, 73% of neutral and basic compounds (extended clearance classification system [ECCS] class 2) were well-predicted within 3-fold. In contrast, only 44% (ECCS class 1A) or 34% (ECCS class 1B) of acids were predicted within 3-fold. To explore the hypothesis whether the higher degree of plasma protein binding for acids contributes to the in vitro-in vivo correlation (IVIVC) disconnect, 68 proprietary compounds were incubated with rat liver microsomes in the presence and absence of 5% plasma. A minor impact of plasma on clearance IVIVC was found for moderately bound compounds (fraction unbound in plasma [fup] ≥1%). However, addition of plasma significantly improved the IVIVC for highly bound compounds (fup <1%) as indicated by an increase of the average fold error from 0.10 to 0.36. Correlating fup with the scaled unbound intrinsic clearance ratio in the presence or absence of plasma allowed the establishment of an empirical, nonlinear correction equation that depends on fup Taken together, estimation of the metabolic clearance of highly bound compounds was enhanced by the addition of plasma to microsomal incubations. For standard incubations in buffer only, application of an empirical correction provided improved clearance predictions. SIGNIFICANCE STATEMENT: Application of the well-stirred liver model for clearance in vitro-in vivo extrapolation (IVIVE) in rat generally underpredicts the clearance of acids and the strong protein binding of acids is suspected to be one responsible factor. Unbound intrinsic in vitro clearance (CLint,u) determinations using rat liver microsomes supplemented with 5% plasma resulted in an improved IVIVE. An empirical equation was derived that can be applied to correct CLint,u-values in dependance of fraction unbound in plasma (fup) and measured CLint in buffer.


Assuntos
Microssomos Hepáticos , Modelos Biológicos , Animais , Ratos , Microssomos Hepáticos/metabolismo , Taxa de Depuração Metabólica , Fígado/metabolismo , Hepatócitos/metabolismo , Proteínas Sanguíneas/metabolismo
10.
Drug Metab Dispos ; 52(9): 988-996, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38997155

RESUMO

P2Y12 receptor inhibitors are commonly used in clinical antiplatelet therapy, typically alongside other medications. Vicagrel, a promising P2Y12 receptor inhibitor, has submitted a new drug marketing application to the United States Food and Drug Administration. Its primary metabolites and some metabolic pathways are identical to those of clopidogrel. The aim of this study was to investigate the effects of the thiol methyltransferase inhibitor (±)-2,3-dichloro-α-methylbenzylamine (DCMB) on the metabolism and pharmacokinetics of vicagrel. In vitro incubation with human and rat liver microsomes revealed that DCMB significantly inhibited the methylation of vicagrel's thiol metabolite M15-1. Rats were orally administered 6 mg/kg [14C]vicagrel (100 µCi/kg) 1 hour after peritoneal injection with or without DCMB (80 mg/kg). Compared with the control group, the plasma of DCMB-pretreated rats exhibited maximum plasma concentration (C max) decrease and time to reach C max (T max) delay for all vicagrel-related substances, the methylation product of the thiol metabolite (M9-2), and the derivatization product of the active thiol metabolite (MP-M15-2). However, no significant changes in area under the curve (AUC) or half-life (t 1/2) were observed. DCMB had negligible effect on the total radiological recovery of vicagrel within 72 hours, although the rate of vicagrel excretion slowed down within 48 hours. DCMB had a negligible impact on the metabolic pathway of vicagrel. Overall, the present study found that DCMB did not significantly affect the total exposure, metabolic pathways, metabolite profiles, or total excretion rates of vicagrel-related metabolites in rats, but led to C max decrease, T max delay, and slower excretion rate within 48 hours. SIGNIFICANCE STATEMENT: This study used liquid chromatography-tandem mass spectrometry combined with radiolabeling technology to investigate the effects of the thiol methyltransferase inhibitor (±)-2,3-dichloro-α-methylbenzylamine on the absorption, metabolism, and excretion of vicagrel in rats. This work helps to better understand the in vivo metabolism of active thiol metabolites of P2Y12 inhibitors such as clopidogrel, vicagrel, etc.


Assuntos
Metiltransferases , Microssomos Hepáticos , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Humanos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Benzilaminas/farmacocinética , Benzilaminas/farmacologia , Metilação , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/farmacocinética , Tiofenos/farmacocinética , Tiofenos/farmacologia , Interações Medicamentosas , Fenilacetatos
11.
Drug Metab Dispos ; 52(2): 106-117, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071562

RESUMO

Ciprofol (HSK3486) is a novel intravenous agent for general anesthesia. In humans, HSK3486 mainly undergoes glucuronidation to form M4 [fraction of clearance (fCL): 62.6%], followed by the formation of monohydroxylated metabolites that further undergo glucuronidation and sulfation to produce M5-1, M5-2, M5-3, and M3 (summed fCL: 35.2%). However, the complete metabolic pathways of HSK3486 in humans remain unclear. In this study, by comparison with chemically synthesized reference standards, three monohydroxylated metabolites [M7-1, 4-hydroxylation with an unbound intrinsic clearance (CLint,u) of 2211 µl/min/mg; M7-2, ω-hydroxylation with a CLint,u of 600 µl/min/mg; and M7-3, (ω-1)-hydroxylation with a CLint,u of 78.4 µl/min/mg] were identified in human liver microsomes, and CYP2B6 primarily catalyzed their formation. In humans, M7-1 was shown to undergo glucuronidation at the 4-position and 1-position by multiple UDP-glucuronosyltransferases (UGTs) to produce M5-1 and M5-3, respectively, or was metabolized to M3 by cytosolic sulfotransferases. M7-2 was glucuronidated at the ω position by UGT1A9, 2B4, and 2B7 to form M5-2. UGT1A9 predominantly catalyzed the glucuronidation of HSK3486 (M4). The CLint,u values for M4 formation in human liver and kidney microsomes were 1028 and 3407 µl/min/mg, respectively. In vitro to in vivo extrapolation analysis suggested that renal glucuronidation contributed approximately 31.4% of the combined clearance. In addition to HSK3486 glucuronidation (M4), 4-hydroxylation (M7-1) was identified as another crucial oxidative metabolic pathway (fCL: 34.5%). Further attention should be paid to the impact of CYP2B6- and UGT1A9-mediated drug interactions and gene polymorphisms on the exposure and efficacy of HSK3486. SIGNIFICANCE STATEMENT: This research elucidates the major oxidative metabolic pathways of HSK3486 (the formation of three monohydroxylated metabolites: M7-1, M7-2, M7-3) as well as definitive structures and formation pathways of these monohydroxylated metabolites and their glucuronides or sulfate in humans. This research also identifies major metabolizing enzymes responsible for the glucuronidation (UGT1A9) and oxidation (CYP2B6) of HSK3486 and characterizes the mechanism of extrahepatic metabolism. The above information is helpful in guiding the safe use of HSK3486 in the clinic.


Assuntos
Glucuronosiltransferase , Microssomos Hepáticos , Humanos , Citocromo P-450 CYP2B6/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Difosfato de Uridina/metabolismo
12.
Drug Metab Dispos ; 52(8): 906-910, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38769015

RESUMO

Flavin-containing monooxygenases (FMOs) are a family of enzymes that are involved in the oxygenation of heteroatom-containing molecules. In humans, FMO3 is the major hepatic form, whereas FMO1 is predominant in the kidneys. FMO1 and FMO3 have also been identified in monkeys, dogs, and pigs. The predicted contribution of human FMO3 to drug candidate N-oxygenation could be estimated using the classic base dissociation constants of the N-containing moiety. A basic quinuclidine moiety was found in natural quinine and medicinal products. Consequently, N-oxygenation of quinuclidine was evaluated using liver and kidney microsomes from humans, monkeys, dogs, and pigs as well as recombinant FMO1, FMO3, and FMO5 enzymes. Experiments using simple reversed-phase liquid chromatography with fluorescence monitoring revealed that recombinant FMO1 mediated quinuclidine N-oxygenation with a high capacity in humans. Moreover, recombinant FMO1, FMO3, and/or FMO5 in monkeys, dogs, and pigs exhibited relatively broad substrate specificity toward quinuclidine N-oxygenation. Kinetic analysis showed that human FMO1 efficiently, and pig FMO1 moderately, mediated quinuclidine N-oxygenation with high capacity, which is consistent with the reported findings for larger substrates readily accepted by pig FMO1 but excluded by human FMO1. In contrast, human FMO3-mediated quinuclidine N-oxygenation was slower than that of the typical FMO3 substrate trimethylamine. These results suggest that some species differences exist in terms of FMO-mediated quinuclidine N-oxygenation in humans and some animal models (monkeys, dogs, and minipigs); however, the potential for quinuclidine, which has a simple chemical structure, to be inhibited clinically by co-administered drugs should be relatively low, especially in human livers. SIGNIFICANCE STATEMENT: The high capacity of human flavin-containing monooxygenase (FMO) 1 to mediate quinuclidine N-oxygenation, a basic moiety in natural products and medicines, was demonstrated by simple reversed-phase liquid chromatography using fluorescence monitoring. The substrate specificity of FMO1 and FMO3 toward quinuclidine N-oxygenation in monkeys, dogs, and pigs was suggested to be relatively broad. Human FMO3-mediated quinuclidine N-oxygenation was slower than trimethylamine N-oxygenation. The likelihood of quinuclidine, with its simple chemical structure, being clinically inhibited by co-administered drugs is relatively low.


Assuntos
Rim , Microssomos Hepáticos , Oxigenases , Quinuclidinas , Animais , Oxigenases/metabolismo , Cães , Humanos , Suínos , Rim/metabolismo , Microssomos Hepáticos/metabolismo , Quinuclidinas/metabolismo , Masculino , Especificidade por Substrato , Feminino , Cinética , Macaca fascicularis , Proteínas Recombinantes/metabolismo
13.
Drug Metab Dispos ; 52(6): 574-579, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38594080

RESUMO

Venomous agent X (VX) is an organophosphate acetylcholinesterase (AChE) inhibitor, and although it is one of the most toxic AChE inhibitors known, the extent of metabolism in humans is not currently well understood. The known metabolism in humans is limited to the metabolite identification from a single victim of the Osaka poisoning in 1994, which allowed for the identification of several metabolic products. VX has been reported to be metabolized in vitro by paraoxonase-1 and phosphotriesterase, although their binding constants are many orders of magnitude above the LD50, suggesting limited physiologic relevance. Using incubation with human liver microsomes (HLMs), we have now characterized the metabolism of VX and the formation of multiple metabolites as well as identified a Food and Drug Administration-approved drug [ethylenediaminetetraacetic acid (EDTA)] that enhances the metabolic rate. HLM incubation alone shows a pronounced increase in the metabolism of VX compared with buffer, suggesting that cytochrome P450-mediated metabolism of VX is occurring. We identified a biphasic decay with two distinct rates of metabolism. The enhancement of VX metabolism in multiple buffers was assessed to attempt to mitigate the effect of hydrolysis rates. The formation of VX metabolites was shown to be shifted with HLMs, suggesting a pathway enhancement over simple hydrolysis. Additionally, our investigation of hydrolysis rates in various common buffers used in biologic assays discovered dramatic differences in VX stability. The new human in vitro VX metabolic data reported points to a potential in vivo treatment strategy (EDTA) for rescue in individuals that are poisoned though enhancement of metabolism alongside existing treatments. SIGNIFICANCE STATEMENT: Venomous agent X (VX) is a potent acetylcholinesterase inhibitor and chemical weapon. To date, we do not possess a clear understanding of its metabolism in humans that would assist us in treating those exposed to it. This study now describes the human liver microsomal metabolism of VX and identifies ethylenediaminetetraacetic acid, which appears to enhance the rate of metabolism. This may provide a potential treatment option for human VX poisoning.


Assuntos
Inibidores da Colinesterase , Microssomos Hepáticos , Compostos Organotiofosforados , Humanos , Microssomos Hepáticos/metabolismo , Compostos Organotiofosforados/metabolismo , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Ácido Edético/farmacologia , Ácido Edético/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
14.
Drug Metab Dispos ; 52(9): 1020-1028, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38889967

RESUMO

The propensity for aldehyde oxidase (AO) substrates to be implicated in drug-drug interactions (DDIs) is not well understood due to the dearth of potent inhibitors that elicit in vivo inhibition of AO. Although there is only one reported instance of DDI that has been ascribed to the inhibition of AO to date, the supporting evidence for this clinical interaction is rather tenuous, and its veracity has been called into question. Our group recently reported that the epidermal growth factor receptor inhibitor erlotinib engendered potent time-dependent inhibition of AO with inactivation kinetic constants in the same order of magnitude as its free circulating plasma concentrations. At the same time, it was previously reported that the concomitant administration of erlotinib with the investigational drug OSI-930 culminated in a an approximately twofold increase in its systemic exposure. Although the basis underpinning this interaction remains unclear, the structure of OSI-930 contains a quinoline motif that is amenable to oxidation at the electrophilic carbon adjacent to the nitrogen atom by molybdenum-containing hydroxylases like AO. In this study, we conducted metabolite identification that revealed that OSI-930 undergoes AO metabolism to a mono-oxygenated 2-oxo metabolite and assessed its formation kinetics in human liver cytosol. Additionally, reaction phenotyping in human hepatocytes revealed that AO contributes nearly 50% to the overall metabolism of OSI-930. Finally, modeling the interaction between erlotinib and OSI-930 using a mechanistic static model projected an ∼1.85-fold increase in the systemic exposure of OSI-930, which accurately recapitulated clinical observations. SIGNIFICANCE STATEMENT: This study delineates an aldehyde oxidase (AO) metabolic pathway in the investigational drug OSI-930 for the first time and confirmed that it represented a major route of metabolism through reaction phenotyping in human hepatocytes. Our study provided compelling mechanistic and modeling evidence for the first instance of an AO-mediated clinical drug-drug interaction stemming from the in vivo inhibition of the AO-mediated quinoline 2-oxidation pathway in OSI-930 by erlotinib.


Assuntos
Aldeído Oxidase , Interações Medicamentosas , Cloridrato de Erlotinib , Humanos , Aldeído Oxidase/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/farmacocinética , Interações Medicamentosas/fisiologia , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia
15.
Drug Metab Dispos ; 52(6): 565-573, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565303

RESUMO

Aldehyde oxidase (AO) is a molybdenum cofactor-containing cytosolic enzyme that has gained prominence due to its involvement in the developmental failure of several drug candidates in first-in-human trials. Unlike cytochrome P450s (P450) and glucuronosyltransferase, AO substrates have been plagued by poor in vitro to in vivo extrapolation, leading to low systemic exposures and underprediction of human dose. However, apart from measuring a drug's AO clearance rates, it is also important to determine the relative contribution to metabolism by this enzyme (fm,AO). Although hydralazine is the most well-studied time-dependent inhibitor (TDI) of AO and is frequently employed for AO reaction phenotyping in human hepatocytes to derive fm,AO, multiple studies have expressed concerns pertaining to its utility in providing accurate estimates of fm,AO values due to its propensity to significantly inhibit P450s at the concentrations typically used for reaction phenotyping. In this study, we characterized icotinib, a cyclized analog of erlotinib, as a potent TDI of AO-inactivating human liver cytosolic zoniporide 2-oxidation equipotently with erlotinib with a maximal inactivate rate/inactivator concentration at half maximal inactivation rate (K I) ratio of 463 and 501 minute-1mM-1 , respectively. Moreover, icotinib also exhibits selectivity against P450 and elicits significantly weaker inhibition against human liver microsomal UGT1A1/3 as compared with erlotinib. Finally, we evaluated icotinib as an inhibitor of AO for reaction phenotyping in cryopreserved human hepatocytes and demonstrated that it can yield more accurate prediction of fm,AO compared with hydralazine and induce sustained suppression of AO activity at higher cell densities, which will be important for reaction phenotyping endeavors of low clearance drugs SIGNIFICANCE STATEMENT: In this study, we characterized icotinib as a potent time-dependent inhibitor of AO with ample selectivity margins against the P450s and UGT1A1/3 and demonstrated its utility for reaction phenotyping in human hepatocytes to obtain accurate estimates of fm,AO for victim DDI risk predictions. We envisage the adoption of icotinib in place of hydralazine in AO reaction phenotyping.


Assuntos
Aldeído Oxidase , Hepatócitos , Fenótipo , Quinazolinas , Humanos , Aldeído Oxidase/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Éteres de Coroa , Inibidores Enzimáticos/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Quinazolinas/farmacologia
16.
Drug Metab Dispos ; 52(7): 654-661, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38729662

RESUMO

The delicate balance between ischemic and bleeding risks is a critical factor in antiplatelet therapy administration. Clopidogrel and prasugrel, belonging to the thienopyridine class of antiplatelet drugs, are known for their variability in individual responsiveness and high incidence of bleeding events, respectively. The present study is centered on the development and assessment of a range of deuterated thienopyridine derivatives, leveraging insights from structure-pharmacokinetic relationships of clopidogrel and prasugrel. Our approaches were grounded in the molecular framework of clopidogrel and incorporated the C2-pharmacophore design from prasugrel. The selection of ester or carbamate substituents at the C2-position facilitated the generation of the 2-oxointermediate through hydrolysis, akin to prasugrel, thereby bypassing the issue of CYP2C19 dependency. The bulky C2-pharmacophore in our approach distinguishes itself from prasugrel's acetyloxy substituent by exhibiting a moderated hydrolysis rate, resulting in a more gradual formation of the active metabolite. Excessive and rapid release of the active metabolite, believed to be linked with an elevated risk of bleeding, is thus mitigated. Our proposed structural modification retains the hydrolysis-sensitive methyl ester of clopidogrel but substitutes it with a deuterated methyl group, shown to effectively reduce metabolic deactivation. Three promising compounds demonstrated a pharmacokinetic profile similar to that of clopidogrel at four times the dose, while also augmenting its antiplatelet activity. SIGNIFICANCE STATEMENT: Inspired by the structure-pharmacokinetic relationship of clopidogrel and prasugrel, a range of clopidogrel derivatives were designed, synthesized, and assessed. Among them, three promising compounds have been identified, striking a delicate balance between efficacy and safety for antiplatelet therapy. Additionally, the ozagrel prodrug conjugate was discovered to exert a synergistic therapeutic effect alongside clopidogrel.


Assuntos
Clopidogrel , Inibidores da Agregação Plaquetária , Cloridrato de Prasugrel , Clopidogrel/farmacocinética , Clopidogrel/farmacologia , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/química , Humanos , Cloridrato de Prasugrel/farmacocinética , Cloridrato de Prasugrel/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Relação Estrutura-Atividade , Ativação Metabólica , Masculino , Hidrólise , Microssomos Hepáticos/metabolismo , Microssomos Hepáticos/efeitos dos fármacos
17.
Drug Metab Dispos ; 52(8): 911-918, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38849209

RESUMO

Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.


Assuntos
Arsenitos , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Ratos Sprague-Dawley , Animais , Arsenitos/toxicidade , Arsenitos/farmacocinética , Masculino , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo , Absorção Intestinal/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Omeprazol/farmacologia , Omeprazol/farmacocinética , Midazolam/farmacocinética , Cafeína/farmacocinética , Clorzoxazona/farmacocinética , Metoprolol/farmacocinética , Metoprolol/farmacologia , Tolbutamida/farmacocinética , Compostos de Sódio/toxicidade , Compostos de Sódio/farmacocinética
18.
Drug Metab Dispos ; 52(2): 126-134, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38050044

RESUMO

Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1ß and C-5ß This work aimed to compare the 1ß- and 5ß-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1ß-hydroxyglycodeoxycholic acid and 5ß-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1ß-hydroxylation, DCA 5ß-hydroxylation, and GDCA 5ß-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1ß-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1ß- and 5ß-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5ß-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1ß-hydroxylation exhibited higher reactivity than DCA 5ß-hydroxylation. It is therefore suggested that DCA 1ß- and 5ß-hydroxylations may serve as alternatives to T 6ß-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1ß- and 5ß-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1ß- and 5ß-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1ß-hydroxylation exhibited higher metabolic activity than DCA 5ß-hydroxylation, DCA 5ß-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1ß-hydroxylation in individual liver microsomes.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Humanos , Citocromo P-450 CYP3A/metabolismo , Hidroxilação , Ácido Glicodesoxicólico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo
19.
Drug Metab Dispos ; 52(7): 626-633, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38684371

RESUMO

In vitro metabolism studies of the spleen tyrosine kinase inhibitors AZ-A and AZ-B identified four unusual metabolites. M1 (mass-to-charge ratio 411) was formed by both molecules and was common to several analogs (AZ-C to AZ-H) sharing the same core structure, appearing to derive from the complete loss of a pendent 3,4-diaminotetrahydropyran ring and pyrazole ring cleavage resulting in a nonobvious metabolite. M2-M4 were formed by AZ-A and a subset of the other compounds only and apparently resulted from a sequential loss of H2 from parent. Initial attempts to isolate M3 for identification were unsuccessful due to sample degradation, and it was subsequently found that M2 and M3 underwent sequential chemical degradation steps to M4. M4 was successfully isolated and shown by mass spectrometry and NMR spectroscopy to be a tricyclic species incorporating the pyrazole and the 3,4-diaminotetrahydropyran groups. We propose that this arises from an intramolecular reaction between the primary amine on the tetrahydropyran and a putative epoxide intermediate on the adjacent pyrazole ring, evidence for which was generated in a ß-mercaptoethanol-trapping experiment. The loss of the tetrahydropyran moiety observed in M1 was found to be enhanced in an analog that was unable to undergo the intramolecular reaction step, leading us to propose two possible reaction pathways originating from the reactive intermediate. Ultimately, we conclude that the apparently complex and unusual metabolism of this series of compounds likely resulted from a single metabolic activation step forming an epoxide intermediate, which subsequently underwent intramolecular rearrangement and/or chemical degradation to form the final observed products. SIGNIFICANCE STATEMENT: The current work provides an unusual biotransformation example showing the potential for intramolecular reactions and chemical degradation to give the appearance of complex metabolism arising from a single primary route of metabolism.


Assuntos
Biotransformação , Proteínas Tirosina Quinases , Quinase Syk , Quinase Syk/metabolismo , Quinase Syk/antagonistas & inibidores , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Microssomos Hepáticos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Pirazóis/metabolismo
20.
Drug Metab Dispos ; 52(8): 797-812, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38777596

RESUMO

In vitro clearance assays are routinely conducted in drug discovery to predict in vivo clearance, but low metabolic turnover compounds are often difficult to evaluate. Hepatocyte spheroids can be cultured for days, achieving higher drug turnover, but have been hindered by limitations on cell number per well. Corning Elplasia microcavity 96-well microplates enable the culture of 79 hepatocyte spheroids per well. In this study, microcavity spheroid properties (size, hepatocyte function, longevity, culturing techniques) were assessed and optimized for clearance assays, which were then compared with microsomes, hepatocyte suspensions, two-dimensional-plated hepatocytes, and macrowell spheroids cultured as one per well. Higher enzyme activity coupled with greater hepatocyte concentrations in microcavity spheroids enabled measurable turnover of all 17 test compounds, unlike the other models that exhibited less drug turnover. Microcavity spheroids also predicted intrinsic clearance (CLint) and blood clearance (CLb) within threefold for 53% [9/17; average absolute fold error (AAFE), 3.9] and 82% (14/17; AAFE, 2.6) of compounds using a linear regression correction model, respectively. An alternate method incorporating mechanistic modeling that accounts for mass transport (permeability and diffusion) within spheroids demonstrated improved predictivity for CLint (12/17; AAFE, 4.0) and CLb (14/17; AAFE, 2.1) without the need for empirical scaling factors. The estimated fraction of drug metabolized by cytochrome P450 3A4 (fm,CYP3A4) using 3 µM itraconazole was within 25% of observed values for 6 of 8 compounds, with 5 of 8 compounds within 10%. In sum, spheroid cultures in microcavity plates permit the ability to test and predict clearance as well as fm,CYP3A4 of low metabolic turnover compounds and represent a valuable complement to conventional in vitro clearance assays. SIGNIFICANCE STATEMENT: Culturing multiple spheroids in ultralow attachment microcavities permits accurate quantitation of metabolically stable compounds in substrate depletion assays, overcoming limitations with singly cultured spheroids. In turn, this permits robust estimates of intrinsic clearance, which is improved with the consideration of mass transport within the spheroid. Incubations with 3 µM itraconazole enabled assessments of CYP3A4 involvement in hepatic clearance.


Assuntos
Hepatócitos , Taxa de Depuração Metabólica , Esferoides Celulares , Hepatócitos/metabolismo , Humanos , Esferoides Celulares/metabolismo , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Modelos Biológicos , Citocromo P-450 CYP3A/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa