Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.661
Filtrar
Mais filtros

Coleção SES
Eixos temáticos
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 820-833, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600356

RESUMO

Human bone marrow permanently harbors high numbers of neutrophils, and a tumor-supportive bias of these cells could significantly impact bone marrow-confined malignancies. In individuals with multiple myeloma, the bone marrow is characterized by inflammatory stromal cells with the potential to influence neutrophils. We investigated myeloma-associated alterations in human marrow neutrophils and the impact of stromal inflammation on neutrophil function. Mature neutrophils in myeloma marrow are activated and tumor supportive and transcribe increased levels of IL1B and myeloma cell survival factor TNFSF13B (BAFF). Interactions with inflammatory stromal cells induce neutrophil activation, including BAFF secretion, in a STAT3-dependent manner, and once activated, neutrophils gain the ability to reciprocally induce stromal activation. After first-line myeloid-depleting antimyeloma treatment, human bone marrow retains residual stromal inflammation, and newly formed neutrophils are reactivated. Combined, we identify a neutrophil-stromal cell feed-forward loop driving tumor-supportive inflammation that persists after treatment and warrants novel strategies to target both stromal and immune microenvironments in multiple myeloma.


Assuntos
Fator Ativador de Células B , Interleucina-1beta , Mieloma Múltiplo , Neutrófilos , Células Estromais , Microambiente Tumoral , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Microambiente Tumoral/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Células Estromais/metabolismo , Células Estromais/imunologia , Fator Ativador de Células B/metabolismo , Interleucina-1beta/metabolismo , Ativação de Neutrófilo , Fator de Transcrição STAT3/metabolismo , Medula Óssea/imunologia , Medula Óssea/patologia
2.
Nat Immunol ; 22(6): 769-780, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017122

RESUMO

Progression and persistence of malignancies are influenced by the local tumor microenvironment, and future eradication of currently incurable tumors will, in part, hinge on our understanding of malignant cell biology in the context of their nourishing surroundings. Here, we generated paired single-cell transcriptomic datasets of tumor cells and the bone marrow immune and stromal microenvironment in multiple myeloma. These analyses identified myeloma-specific inflammatory mesenchymal stromal cells, which spatially colocalized with tumor cells and immune cells and transcribed genes involved in tumor survival and immune modulation. Inflammatory stromal cell signatures were driven by stimulation with proinflammatory cytokines, and analyses of immune cell subsets suggested interferon-responsive effector T cell and CD8+ stem cell memory T cell populations as potential sources of stromal cell-activating cytokines. Tracking stromal inflammation in individuals over time revealed that successful antitumor induction therapy is unable to revert bone marrow inflammation, predicting a role for mesenchymal stromal cells in disease persistence.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células-Tronco Mesenquimais/imunologia , Mieloma Múltiplo/imunologia , Recidiva Local de Neoplasia/imunologia , Microambiente Tumoral/imunologia , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Cultura Primária de Células , Estudos Prospectivos , RNA-Seq , Análise de Célula Única , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
4.
Mol Cell ; 83(22): 4000-4016.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37935198

RESUMO

While 19S proteasome regulatory particle (RP) inhibition is a promising new avenue for treating bortezomib-resistant myeloma, the anti-tumor impact of inhibiting 19S RP component PSMD14 could not be explained by a selective inhibition of proteasomal activity. Here, we report that PSMD14 interacts with NSD2 on chromatin, independent of 19S RP. Functionally, PSMD14 acts as a histone H2AK119 deubiquitinase, facilitating NSD2-directed H3K36 dimethylation. Integrative genomic and epigenomic analyses revealed the functional coordination of PSMD14 and NSD2 in transcriptional activation of target genes (e.g., RELA) linked to myelomagenesis. Reciprocally, RELA transactivates PSMD14, forming a PSMD14/NSD2-RELA positive feedback loop. Remarkably, PSMD14 inhibitors enhance bortezomib sensitivity and fosters anti-myeloma synergy. PSMD14 expression is elevated in myeloma and inversely correlated with overall survival. Our study uncovers an unappreciated function of PSMD14 as an epigenetic regulator and a myeloma driver, supporting the pursuit of PSMD14 as a therapeutic target to overcome the treatment limitation of myeloma.


Assuntos
Histonas , Mieloma Múltiplo , Humanos , Histonas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Bortezomib/farmacologia , Bortezomib/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Inibidores de Proteassoma/farmacologia , Transativadores/metabolismo
5.
Immunity ; 54(8): 1772-1787.e9, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289378

RESUMO

As substantial constituents of the multiple myeloma (MM) microenvironment, pro-inflammatory macrophages have emerged as key promoters of disease progression, bone destruction, and immune impairment. We identify beta-2-microglobulin (ß2m) as a driver in initiating inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed ß2m promotes ß2m amyloid aggregation in MAMs, resulting in lysosomal rupture and ultimately production of active interleukin-1ß (IL-1ß) and IL-18. This process depends on activation of the NLRP3 inflammasome after ß2m accumulation, as macrophages from NLRP3-deficient mice lack efficient ß2m-induced IL-1ß production. Moreover, depletion or silencing of ß2m in MM cells abrogates inflammasome activation in a murine MM model. Finally, we demonstrate that disruption of NLRP3 or IL-18 diminishes tumor growth and osteolytic bone destruction normally promoted by ß2m-induced inflammasome signaling. Our results provide mechanistic evidence for ß2m's role as an NLRP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NLRP3 represents a potential therapeutic approach in MM.


Assuntos
Amiloide/metabolismo , Mieloma Múltiplo/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Associados a Tumor/metabolismo , Microglobulina beta-2/metabolismo , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fagocitose/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Microglobulina beta-2/genética
6.
CA Cancer J Clin ; 73(3): 275-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36627265

RESUMO

Multiple myeloma (MM) is a hematologic malignancy defined by the clonal proliferation of transformed plasma cells. Despite tremendous advances in the treatment paradigm of MM, a cure remains elusive for most patients. Although long-term disease control can be achieved in a very large number of patients, the acquisition of tumor resistance leads to disease relapse, especially in patients with triple-class refractory MM (defined as resistance to immunomodulatory agents, proteosome inhibitors, and monoclonal antibodies). There is an unmet need for effective treatment options in these patients. Chimeric antigen receptor (CAR) T-cell therapy is a novel approach that has demonstrated promising efficacy in the treatment of relapsed, refractory MM (RRMM). These genetically modified cellular therapies have demonstrated deep and durable remissions in other B-cell malignancies, and current efforts aim to achieve similar results in patients with RRMM. Early studies have demonstrated remarkable response rates with CAR T-cell therapy in RRMM; however, durable responses with CAR T-cell therapies in myeloma have yet to be realized. In this comprehensive review, the authors describe the development of CAR T-cell therapies in myeloma, the outcomes of notable clinical trials, the toxicities and limitations of CAR T-cell therapies, and the strategies to overcome therapeutic challenges of CAR T cells in the hope of achieving a cure for multiple myeloma.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , Receptores de Antígenos Quiméricos/uso terapêutico , Resultado do Tratamento , Terapia Baseada em Transplante de Células e Tecidos
7.
Mol Cell ; 81(6): 1170-1186.e10, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571422

RESUMO

The complex architecture of transmembrane proteins requires quality control (QC) of folding, membrane positioning, and trafficking as prerequisites for cellular homeostasis and intercellular communication. However, it has remained unclear whether transmembrane protein-specific QC hubs exist. Here we identify cereblon (CRBN), the target of immunomodulatory drugs (IMiDs), as a co-chaperone that specifically determines chaperone activity of HSP90 toward transmembrane proteins by means of counteracting AHA1. This function is abrogated by IMiDs, which disrupt the interaction of CRBN with HSP90. Among the multiple transmembrane protein clients of CRBN-AHA1-HSP90 revealed by cell surface proteomics, we identify the amino acid transporter LAT1/CD98hc as a determinant of IMiD activity in multiple myeloma (MM) and present an Anticalin-based CD98hc radiopharmaceutical for MM radio-theranostics. These data establish the CRBN-AHA1-HSP90 axis in the biogenesis of transmembrane proteins, link IMiD activity to tumor metabolism, and nominate CD98hc and LAT1 as attractive diagnostic and therapeutic targets in MM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Fatores Imunológicos/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Chaperonas Moleculares/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas
9.
Nature ; 591(7848): 117-123, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33442062

RESUMO

The activation of mostly quiescent haematopoietic stem cells (HSCs) is a prerequisite for life-long production of blood cells1. This process requires major molecular adaptations to allow HSCs to meet the regulatory and metabolic requirements for cell division2-4. The mechanisms that govern cellular reprograming upon stem-cell activation, and the subsequent return of stem cells to quiescence, have not been fully characterized. Here we show that chaperone-mediated autophagy (CMA)5, a selective form of lysosomal protein degradation, is involved in sustaining HSC function in adult mice. CMA is required for protein quality control in stem cells and for the upregulation of fatty acid metabolism upon HSC activation. We find that CMA activity in HSCs decreases with age and show that genetic or pharmacological activation of CMA can restore the functionality of old mouse and human HSCs. Together, our findings provide mechanistic insights into a role for CMA in sustaining quality control, appropriate energetics and overall long-term HSC function. Our work suggests that CMA may be a promising therapeutic target for enhancing HSC function in conditions such as ageing or stem-cell transplantation.


Assuntos
Autofagia Mediada por Chaperonas/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Adulto , Idoso , Envelhecimento , Animais , Autorrenovação Celular , Células Cultivadas , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Autofagia Mediada por Chaperonas/genética , Metabolismo Energético , Feminino , Glicólise , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ácido Linoleico/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Rejuvenescimento , Adulto Jovem
10.
EMBO J ; 41(22): e108040, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36215697

RESUMO

The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double-strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double-strand breaks, hampering DSB repair. DIS3-inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro-inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid-dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Ribonucleases/metabolismo , Reparo de DNA por Recombinação , Recombinação Homóloga , Instabilidade Genômica , Reparo do DNA , DNA/metabolismo , RNA , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
11.
Blood ; 143(6): 488-495, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37992215

RESUMO

ABSTRACT: DNA-damaging agents have represented the first effective treatment for the blood cancer multiple myeloma, and after 65 years since their introduction to the clinic, they remain one of the mainstay therapies for this disease. Myeloma is a cancer of plasma cells. Despite exceedingly slow proliferation, myeloma cells present extended genomic rearrangements and intense genomic instability, starting at the premalignant stage of the disease. Where does such DNA damage stem from? A reliable model argues that the powerful oncogenes activated in myeloma as well the phenotypic peculiarities of cancer plasma cells, including the dependency on the proteasome for survival and the constant presence of oxidative stress, all converge on modulating DNA damage and repair. Beleaguered by these contraposing forces, myeloma cells survive in a precarious balance, in which the robust engagement of DNA repair mechanisms to guarantee cell survival is continuously challenged by rampant genomic instability, essential for cancer cells to withstand hostile selective pressures. Shattering this delicate equilibrium has been the goal of the extensive use of DNA-damaging agents since their introduction in the clinic, now enriched by novel approaches that leverage upon synthetic lethality paradigms. Exploiting the impairment of homologous recombination caused by myeloma genetic lesions or treatments, it is now possible to design therapeutic combinations that could target myeloma cells more effectively. Furthermore, DNA-damaging agents, as demonstrated in solid tumors, may sensitize cells to immune therapies. In all, targeting DNA damage and repair remains as central as ever in myeloma, even for the foreseeable future.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Dano ao DNA , Reparo do DNA , Instabilidade Genômica , DNA
12.
Blood ; 143(16): 1656-1669, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38295333

RESUMO

ABSTRACT: Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Linfócitos T Reguladores , Transplante de Células-Tronco Hematopoéticas/métodos , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante Autólogo , Transplante de Células-Tronco
13.
Blood ; 143(20): 2025-2028, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427775

RESUMO

ABSTRACT: Smoldering multiple myeloma (MM) is an asymptomatic clonal plasma cell condition considered as a premalignant entity that may evolve over time to symptomatic MM. Based on a "poorly defined" risk of progression, some well-intended investigators proposed prospective interventional trials for these individuals. We believe this may be a harmful intervention and favor a close "wait and watch" approach and rather enroll these patients in dedicated observational biological studies aiming to better identify patients who will evolve to MM, based on their plasma cells' biology, including genomics, epigenetics, and the immune microenvironment.


Assuntos
Mieloma Múltiplo Latente , Humanos , Mieloma Múltiplo Latente/diagnóstico , Mieloma Múltiplo Latente/patologia , Progressão da Doença , Microambiente Tumoral/imunologia , Plasmócitos/patologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia
14.
Blood ; 143(23): 2401-2413, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38427753

RESUMO

ABSTRACT: It remains elusive how driver mutations, including those detected in circulating tumor DNA (ctDNA), affect prognosis in relapsed/refractory multiple myeloma (RRMM). Here, we performed targeted-capture sequencing using bone marrow plasma cells (BMPCs) and ctDNA of 261 RRMM cases uniformly treated with ixazomib, lenalidomide, and dexamethasone in a multicenter, prospective, observational study. We detected 24 and 47 recurrently mutated genes in BMPC and ctDNA, respectively. In addition to clonal hematopoiesis-associated mutations, varying proportion of driver mutations, particularly TP53 mutations (59.2% of mutated cases), were present in only ctDNA, suggesting their subclonal origin. In univariable analyses, ctDNA mutations of KRAS, TP53, DIS3, BRAF, NRAS, and ATM were associated with worse progression-free survival (PFS). BMPC mutations of TP53 and KRAS were associated with inferior PFS, whereas KRAS mutations were prognostically relevant only when detected in both BMPC and ctDNA. A total number of ctDNA mutations in the 6 relevant genes was a strong prognostic predictor (2-year PFS rates: 57.3%, 22.7%, and 0% for 0, 1, and ≥2 mutations, respectively) and independent of clinical factors and plasma DNA concentration. Using the number of ctDNA mutations, plasma DNA concentration, and clinical factors, we developed a prognostic index, classifying patients into 3 categories with 2-year PFS rates of 57.9%, 28.6%, and 0%. Serial analysis of ctDNA mutations in 94 cases revealed that TP53 and KRAS mutations frequently emerge after therapy. Thus, we clarify the genetic characteristics and clonal architecture of ctDNA mutations and demonstrate their superiority over BMPC mutations for prognostic prediction in RRMM. This study is a part of the C16042 study, which is registered at www.clinicaltrials.gov as #NCT03433001.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Compostos de Boro , DNA Tumoral Circulante , Dexametasona , Glicina , Lenalidomida , Mieloma Múltiplo , Humanos , Lenalidomida/administração & dosagem , Lenalidomida/uso terapêutico , Feminino , Glicina/análogos & derivados , Glicina/administração & dosagem , Glicina/uso terapêutico , Masculino , Idoso , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Prognóstico , Dexametasona/administração & dosagem , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Compostos de Boro/uso terapêutico , Compostos de Boro/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso de 80 Anos ou mais , Mutação , Adulto , Estudos Prospectivos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Biomarcadores Tumorais/genética
15.
Blood ; 143(25): 2612-2626, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38551812

RESUMO

ABSTRACT: Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Mieloma Múltiplo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Calreticulina/metabolismo , Calreticulina/genética , Morte Celular Imunogênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos
16.
Mol Cell ; 71(2): 201-215.e7, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029001

RESUMO

Macrophages are a dominant leukocyte population in the tumor microenvironment and actively promote cancer progression. However, the molecular mechanism underlying the role of macrophages remains poorly understood. Here we show that polarized M2 macrophages enhance 3-phosphoinositide-dependent protein kinase 1 (PDPK1)-mediated phosphoglycerate kinase 1 (PGK1) threonine (T) 243 phosphorylation in tumor cells by secreting interleukin-6 (IL-6). This phosphorylation facilitates a PGK1-catalyzed reaction toward glycolysis by altering substrate affinity. Inhibition of PGK1 T243 phosphorylation or PDPK1 in tumor cells or neutralization of macrophage-derived IL-6 abrogates macrophage-promoted glycolysis, proliferation, and tumorigenesis. In addition, PGK1 T243 phosphorylation correlates with PDPK1 activation, IL-6 expression, and macrophage infiltration in human glioblastoma multiforme (GBM). Moreover, PGK1 T243 phosphorylation also correlates with malignance and prognosis of human GBM. Our findings demonstrate a novel mechanism of macrophage-promoted tumor growth by regulating tumor cell metabolism, implicating the therapeutic potential to disrupt the connection between macrophages and tumor cells by inhibiting PGK1 phosphorylation.


Assuntos
Macrófagos/metabolismo , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicólise , Humanos , Macrófagos/patologia , Camundongos , Camundongos Nus , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Fosforilação , Prognóstico , Microambiente Tumoral
17.
N Engl J Med ; 387(6): 495-505, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35661166

RESUMO

BACKGROUND: Teclistamab is a T-cell-redirecting bispecific antibody that targets both CD3 expressed on the surface of T cells and B-cell maturation antigen expressed on the surface of myeloma cells. In the phase 1 dose-defining portion of the study, teclistamab showed promising efficacy in patients with relapsed or refractory multiple myeloma. METHODS: In this phase 1-2 study, we enrolled patients who had relapsed or refractory myeloma after at least three therapy lines, including triple-class exposure to an immunomodulatory drug, a proteasome inhibitor, and an anti-CD38 antibody. Patients received a weekly subcutaneous injection of teclistamab (at a dose of 1.5 mg per kilogram of body weight) after receiving step-up doses of 0.06 mg and 0.3 mg per kilogram. The primary end point was the overall response (partial response or better). RESULTS: Among 165 patients who received teclistamab, 77.6% had triple-class refractory disease (median, five previous therapy lines). With a median follow-up of 14.1 months, the overall response rate was 63.0%, with 65 patients (39.4%) having a complete response or better. A total of 44 patients (26.7%) were found to have no minimal residual disease (MRD); the MRD-negativity rate among the patients with a complete response or better was 46%. The median duration of response was 18.4 months (95% confidence interval [CI], 14.9 to not estimable). The median duration of progression-free survival was 11.3 months (95% CI, 8.8 to 17.1). Common adverse events included cytokine release syndrome (in 72.1% of the patients; grade 3, 0.6%; no grade 4), neutropenia (in 70.9%; grade 3 or 4, 64.2%), anemia (in 52.1%; grade 3 or 4, 37.0%), and thrombocytopenia (in 40.0%; grade 3 or 4, 21.2%). Infections were frequent (in 76.4%; grade 3 or 4, 44.8%). Neurotoxic events occurred in 24 patients (14.5%), including immune effector cell-associated neurotoxicity syndrome in 5 patients (3.0%; all grade 1 or 2). CONCLUSIONS: Teclistamab resulted in a high rate of deep and durable response in patients with triple-class-exposed relapsed or refractory multiple myeloma. Cytopenias and infections were common; toxic effects that were consistent with T-cell redirection were mostly grade 1 or 2. (Funded by Janssen Research and Development; MajesTEC-1 ClinicalTrials.gov numbers, NCT03145181 and NCT04557098.).


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Antígeno de Maturação de Linfócitos B , Complexo CD3 , Mieloma Múltiplo , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno de Maturação de Linfócitos B/antagonistas & inibidores , Complexo CD3/antagonistas & inibidores , Humanos , Injeções Subcutâneas , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
18.
Eur J Immunol ; 54(1): e2350627, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872778

RESUMO

To calibrate a murine model to study premalignant to malignant multiple myeloma, mice were inoculated with different amounts of myeloma cells, and changes in the immune profile were tracked for over 200 days. The model highlights the development of T-cell exhaustion and suppressor before the appearance of clinical symptoms.


Assuntos
Mieloma Múltiplo , Lesões Pré-Cancerosas , Animais , Camundongos , Mieloma Múltiplo/patologia , Imunidade Celular
19.
Blood ; 141(6): 620-633, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36223594

RESUMO

Large-scale analyses of genomic data from patients with newly diagnosed multiple myeloma (ndMM) have been undertaken, however, large-scale analysis of relapsed/refractory MM (rrMM) has not been performed. We hypothesize that somatic variants chronicle the therapeutic exposures and clonal structure of myeloma from ndMM to rrMM stages. We generated whole-genome sequencing (WGS) data from 418 tumors (386 patients) derived from 6 rrMM clinical trials and compared them with WGS from 198 unrelated patients with ndMM in a population-based case-control fashion. We identified significantly enriched events at the rrMM stage, including drivers (DUOX2, EZH2, TP53), biallelic inactivation (TP53), noncoding mutations in bona fide drivers (TP53BP1, BLM), copy number aberrations (CNAs; 1qGain, 17pLOH), and double-hit events (Amp1q-ISS3, 1qGain-17p loss-of-heterozygosity). Mutational signature analysis identified a subclonal defective mismatch repair signature enriched in rrMM and highly active in high mutation burden tumors, a likely feature of therapy-associated expanding subclones. Further analysis focused on the association of genomic aberrations enriched at different stages of resistance to immunomodulatory agent (IMiD)-based therapy. This analysis revealed that TP53, DUOX2, 1qGain, and 17p loss-of-heterozygosity increased in prevalence from ndMM to lenalidomide resistant (LENR) to pomalidomide resistant (POMR) stages, whereas enrichment of MAML3 along with immunoglobulin lambda (IGL) and MYC translocations distinguished POM from the LEN subgroup. Genomic drivers associated with rrMM are those that confer clonal selective advantage under therapeutic pressure. Their role in therapy evasion should be further evaluated in longitudinal patient samples, to confirm these associations with the evolution of clinical resistance and to identify molecular subsets of rrMM for the development of targeted therapies.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Oxidases Duais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Lenalidomida/uso terapêutico , Fatores Imunológicos/uso terapêutico , Dexametasona/uso terapêutico
20.
Genomics ; 116(3): 110846, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642856

RESUMO

Period circadian regulator 3 (PER3) functions as a tumor suppressor in various cancers. However, the role of PER3 in multiple myeloma (MM) has not been reported yet. Through this study, we aimed to investigate the potential role of PER3 in MM and the underlying mechanisms. RT-qPCR and western blotting were used to determine the mRNA and protein expression levels of PER3. Glyoxylate reductase 1 homolog (GLYR1) was predicted to be a transcription factor of PER3. The binding sites of GLYR1 on the promoter region of PER3 were analyzed using UCSC and confirmed using luciferase and chromatin immunoprecipitation assays. Viability, apoptosis, and metathesis were determined using CCK-8, colony formation, TUNEL, and transwell assays. We found that PER3 expression decreased in MM. Low PER3 levels may predict poor survival rates; PER3 overexpression suppresses the viability and migration of MM cells and promotes apoptosis. Moreover, GLYR1 transcriptionally activates PER3, and the knockdown of PER3 alleviates the effects of GLYR1 and induces its malignant behavior in MM cells. To conclude, GLYR1 upregulates PER3 and suppresses the aggressive behavior of MM cells, suggesting that GLYR1/PER3 signaling may be a potential therapeutic target for MM.


Assuntos
Movimento Celular , Proliferação de Células , Mieloma Múltiplo , Proteínas Circadianas Period , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Linhagem Celular Tumoral , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/genética , Apoptose , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa