Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.797
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 20(1): 29-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538339

RESUMO

Macrophages promote both injury and repair after myocardial infarction, but discriminating functions within mixed populations remains challenging. Here we used fate mapping, parabiosis and single-cell transcriptomics to demonstrate that at steady state, TIMD4+LYVE1+MHC-IIloCCR2- resident cardiac macrophages self-renew with negligible blood monocyte input. Monocytes partially replaced resident TIMD4-LYVE1-MHC-IIhiCCR2- macrophages and fully replaced TIMD4-LYVE1-MHC-IIhiCCR2+ macrophages, revealing a hierarchy of monocyte contribution to functionally distinct macrophage subsets. Ischemic injury reduced TIMD4+ and TIMD4- resident macrophage abundance, whereas CCR2+ monocyte-derived macrophages adopted multiple cell fates within infarcted tissue, including those nearly indistinguishable from resident macrophages. Recruited macrophages did not express TIMD4, highlighting the ability of TIMD4 to track a subset of resident macrophages in the absence of fate mapping. Despite this similarity, inducible depletion of resident macrophages using a Cx3cr1-based system led to impaired cardiac function and promoted adverse remodeling primarily within the peri-infarct zone, revealing a nonredundant, cardioprotective role of resident cardiac macrophages.


Assuntos
Macrófagos/fisiologia , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular , Linhagem da Célula , Autorrenovação Celular , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Parabiose , Receptores CCR2/genética , Receptores CCR2/metabolismo , Análise de Célula Única , Remodelação Ventricular , Proteínas de Transporte Vesicular/metabolismo
2.
Immunity ; 54(9): 2057-2071.e6, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34363749

RESUMO

Hypertension affects one-third of the world's population, leading to cardiac dysfunction that is modulated by resident and recruited immune cells. Cardiomyocyte growth and increased cardiac mass are essential to withstand hypertensive stress; however, whether immune cells are involved in this compensatory cardioprotective process is unclear. In normotensive animals, single-cell transcriptomics of fate-mapped self-renewing cardiac resident macrophages (RMs) revealed transcriptionally diverse cell states with a core repertoire of reparative gene programs, including high expression of insulin-like growth factor-1 (Igf1). Hypertension drove selective in situ proliferation and transcriptional activation of some cardiac RM states, directly correlating with increased cardiomyocyte growth. During hypertension, inducible ablation of RMs or selective deletion of RM-derived Igf1 prevented adaptive cardiomyocyte growth, and cardiac mass failed to increase, which led to cardiac dysfunction. Single-cell transcriptomics identified a conserved IGF1-expressing macrophage subpopulation in human cardiomyopathy. Here we defined the absolute requirement of RM-produced IGF-1 in cardiac adaptation to hypertension.


Assuntos
Adaptação Fisiológica/fisiologia , Hipertensão/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Macrófagos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Hipertensão/complicações , Hipertensão/imunologia , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Miocárdio/imunologia , Miocárdio/metabolismo , Miocárdio/patologia
3.
Immunity ; 51(1): 131-140.e5, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315031

RESUMO

Macrophages play an important role in structural cardiac remodeling and the transition to heart failure following myocardial infarction (MI). Previous research has focused on the impact of blood-derived monocytes on cardiac repair. Here we examined the contribution of resident cavity macrophages located in the pericardial space adjacent to the site of injury. We found that disruption of the pericardial cavity accelerated maladaptive post-MI cardiac remodeling. Gata6+ macrophages in mouse pericardial fluid contributed to the reparative immune response. Following experimental MI, these macrophages invaded the epicardium and lost Gata6 expression but continued to perform anti-fibrotic functions. Loss of this specialized macrophage population enhanced interstitial fibrosis after ischemic injury. Gata6+ macrophages were present in human pericardial fluid, supporting the notion that this reparative function is relevant in human disease. Our findings uncover an immune cardioprotective role for the pericardial tissue compartment and argue for the reevaluation of surgical procedures that remove the pericardium.


Assuntos
Fibrose/prevenção & controle , Fator de Transcrição GATA6/metabolismo , Coração/fisiologia , Macrófagos/imunologia , Infarto do Miocárdio/imunologia , Miocárdio/patologia , Pericárdio/imunologia , Animais , Movimento Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Remodelação Ventricular
4.
Nature ; 608(7924): 766-777, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948637

RESUMO

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Assuntos
Remodelamento Atrial , Montagem e Desmontagem da Cromatina , Perfilação da Expressão Gênica , Infarto do Miocárdio , Análise de Célula Única , Remodelação Ventricular , Remodelamento Atrial/genética , Estudos de Casos e Controles , Cromatina/genética , Epigenoma , Humanos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Tempo , Remodelação Ventricular/genética
5.
Nature ; 608(7921): 174-180, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732739

RESUMO

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFß1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Núcleo Celular , Perfilação da Expressão Gênica , Insuficiência Cardíaca , Análise de Célula Única , Sistemas CRISPR-Cas , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Estudos de Casos e Controles , Núcleo Celular/genética , Células Cultivadas , Técnicas de Inativação de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Miocárdio/metabolismo , Miocárdio/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , RNA-Seq , Transcrição Gênica , Fator de Crescimento Transformador beta1
6.
Physiol Rev ; 100(2): 673-694, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751167

RESUMO

The central dogma of molecular biology illustrates the importance of mRNAs as critical mediators between genetic information encoded at the DNA level and proteomes/metabolomes that determine the diverse functional outcome at the cellular and organ levels. Although the total number of protein-producing (coding) genes in the mammalian genome is ~20,000, it is evident that the intricate processes of cardiac development and the highly regulated physiological regulation in the normal heart, as well as the complex manifestation of pathological remodeling in a diseased heart, would require a much higher degree of complexity at the transcriptome level and beyond. Indeed, in addition to an extensive regulatory scheme implemented at the level of transcription, the complexity of transcript processing following transcription is dramatically increased. RNA processing includes post-transcriptional modification, alternative splicing, editing and transportation, ribosomal loading, and degradation. While transcriptional control of cardiac genes has been a major focus of investigation in recent decades, a great deal of progress has recently been made in our understanding of how post-transcriptional regulation of mRNA contributes to transcriptome complexity. In this review, we highlight some of the key molecular processes and major players in RNA maturation and post-transcriptional regulation. In addition, we provide an update to the recent progress made in the discovery of RNA processing regulators implicated in cardiac development and disease. While post-transcriptional modulation is a complex and challenging problem to study, recent technological advancements are paving the way for a new era of exciting discoveries and potential clinical translation in the context of cardiac biology and heart disease.


Assuntos
Cardiopatias/metabolismo , Coração/embriologia , Miocárdio/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias/tratamento farmacológico , Cardiopatias/genética , Cardiopatias/patologia , Humanos , Morfogênese , Miocárdio/patologia , Estabilidade de RNA , RNA Mensageiro/genética , Transcrição Gênica
7.
Nature ; 595(7865): 107-113, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915569

RESUMO

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Assuntos
COVID-19/patologia , COVID-19/virologia , Rim/patologia , Fígado/patologia , Pulmão/patologia , Miocárdio/patologia , SARS-CoV-2/patogenicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Atlas como Assunto , Autopsia , Bancos de Espécimes Biológicos , COVID-19/genética , COVID-19/imunologia , Células Endoteliais , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Fibroblastos , Estudo de Associação Genômica Ampla , Coração/virologia , Humanos , Inflamação/patologia , Inflamação/virologia , Rim/virologia , Fígado/virologia , Pulmão/virologia , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Fagócitos , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , RNA Viral/análise , Regeneração , SARS-CoV-2/imunologia , Análise de Célula Única , Carga Viral
8.
Proc Natl Acad Sci U S A ; 121(22): e2402890121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771868

RESUMO

Maintaining the structure of cardiac membranes and membrane organelles is essential for heart function. A critical cardiac membrane organelle is the transverse tubule system (called the t-tubule system) which is an invagination of the surface membrane. A unique structural characteristic of the cardiac muscle t-tubule system is the extension of the extracellular matrix (ECM) from the surface membrane into the t-tubule lumen. However, the importance of the ECM extending into the cardiac t-tubule lumen is not well understood. Dystroglycan (DG) is an ECM receptor in the surface membrane of many cells, and it is also expressed in t-tubules in cardiac muscle. Extensive posttranslational processing and O-glycosylation are required for DG to bind ECM proteins and the binding is mediated by a glycan structure known as matriglycan. Genetic disruption resulting in defective O-glycosylation of DG results in muscular dystrophy with cardiorespiratory pathophysiology. Here, we show that DG is essential for maintaining cardiac t-tubule structural integrity. Mice with defects in O-glycosylation of DG developed normal t-tubules but were susceptible to stress-induced t-tubule loss or severing that contributed to cardiac dysfunction and disease progression. Finally, we observed similar stress-induced cardiac t-tubule disruption in a cohort of mice that solely lacked matriglycan. Collectively, our data indicate that DG in t-tubules anchors the luminal ECM to the t-tubule membrane via the polysaccharide matriglycan, which is critical to transmitting structural strength of the ECM to the t-tubules and provides resistance to mechanical stress, ultimately preventing disruptions in cardiac t-tubule integrity.


Assuntos
Distroglicanas , Miocárdio , Animais , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Glicosilação , Distroglicanas/metabolismo , Matriz Extracelular/metabolismo , Camundongos Knockout
9.
Physiol Rev ; 99(4): 1765-1817, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364924

RESUMO

Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.


Assuntos
Morte Celular , Citotoxicidade Imunológica , Cardiopatias/patologia , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Cardiopatias/imunologia , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Mitocôndrias Cardíacas/imunologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/imunologia , Miocárdio/metabolismo , Necrose , Piroptose , Transdução de Sinais
10.
Blood ; 144(6): 672-675, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38691679

RESUMO

ABSTRACT: Serial cardiovascular magnetic resonance evaluation of children and young adults with SCD who underwent hematopoietic cell transplantation showed mean ECV, representing diffuse myocardial fibrosis, decreased 3.4% from baseline to 12 months posttransplantation. This trial was registered at www.clinicaltrials.gov as #NCT04362293.


Assuntos
Anemia Falciforme , Fibrose , Transplante de Células-Tronco Hematopoéticas , Humanos , Anemia Falciforme/terapia , Anemia Falciforme/patologia , Anemia Falciforme/complicações , Masculino , Feminino , Adolescente , Criança , Adulto Jovem , Cardiomiopatias/etiologia , Cardiomiopatias/terapia , Cardiomiopatias/patologia , Adulto , Miocárdio/patologia , Imageamento por Ressonância Magnética , Pré-Escolar
11.
Circ Res ; 134(12): 1718-1751, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843294

RESUMO

The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.


Assuntos
Infarto do Miocárdio , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Animais , Transdução de Sinais , Regeneração , Mediadores da Inflamação/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia
12.
Circ Res ; 134(12): 1752-1766, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843295

RESUMO

Heart failure (HF) is characterized by a progressive decline in cardiac function and represents one of the largest health burdens worldwide. Clinically, 2 major types of HF are distinguished based on the left ventricular ejection fraction (EF): HF with reduced EF and HF with preserved EF. While both types share several risk factors and features of adverse cardiac remodeling, unique hallmarks beyond ejection fraction that distinguish these etiologies also exist. These differences may explain the fact that approved therapies for HF with reduced EF are largely ineffective in patients suffering from HF with preserved EF. Improving our understanding of the distinct cellular and molecular mechanisms is crucial for the development of better treatment strategies. This article reviews the knowledge of the immunologic mechanisms underlying HF with reduced and preserved EF and discusses how the different immune profiles elicited may identify attractive therapeutic targets for these conditions. We review the literature on the reported mechanisms of adverse cardiac remodeling in HF with reduced and preserved EF, as well as the immune mechanisms involved. We discuss how the knowledge gained from preclinical models of the complex syndrome of HF as well as from clinical data obtained from patients may translate to a better understanding of HF and result in specific treatments for these conditions in humans.


Assuntos
Insuficiência Cardíaca , Volume Sistólico , Remodelação Ventricular , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/imunologia , Animais , Miocardite/fisiopatologia , Miocardite/imunologia , Função Ventricular Esquerda , Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/imunologia
13.
Circ Res ; 134(12): 1681-1702, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843288

RESUMO

Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.


Assuntos
Análise de Célula Única , Humanos , Animais , Análise de Célula Única/métodos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Genômica/métodos , Camundongos
14.
Circ Res ; 134(12): 1824-1840, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843291

RESUMO

Immunometabolism is an emerging field at the intersection of immunology and metabolism. Immune cell activation plays a critical role in the pathogenesis of cardiovascular diseases and is integral for regeneration during cardiac injury. We currently possess a limited understanding of the processes governing metabolic interactions between immune cells and cardiomyocytes. The impact of this intercellular crosstalk can manifest as alterations to the steady state flux of metabolites and impact cardiac contractile function. Although much of our knowledge is derived from acute inflammatory response, recent work emphasizes heterogeneity and flexibility in metabolism between cardiomyocytes and immune cells during pathological states, including ischemic, cardiometabolic, and cancer-associated disease. Metabolic adaptation is crucial because it influences immune cell activation, cytokine release, and potential therapeutic vulnerabilities. This review describes current concepts about immunometabolic regulation in the heart, focusing on intercellular crosstalk and intrinsic factors driving cellular regulation. We discuss experimental approaches to measure the cardio-immunologic crosstalk, which are necessary to uncover unknown mechanisms underlying the immune and cardiac interface. Deeper insight into these axes holds promise for therapeutic strategies that optimize cardioimmunology crosstalk for cardiac health.


Assuntos
Miócitos Cardíacos , Humanos , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/imunologia , Metabolismo Energético , Cardiomiopatias/metabolismo , Cardiomiopatias/imunologia , Miocárdio/metabolismo , Miocárdio/imunologia , Miocárdio/patologia
15.
Circ Res ; 135(3): 453-469, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38899461

RESUMO

BACKGROUND: Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-ß (transforming growth factor-ß)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-ß activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-ß response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-ß signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS: The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS: Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-ß and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS: The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.


Assuntos
Fibrose , Camundongos Knockout , Miofibroblastos , Proteína Smad7 , Remodelação Ventricular , Animais , Proteína Smad7/metabolismo , Proteína Smad7/genética , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo , Masculino , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais , Miocárdio/metabolismo , Miocárdio/patologia
16.
Circ Res ; 134(12): 1703-1717, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843287

RESUMO

Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.


Assuntos
Fibroblastos , Homeostase , Miocárdio , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/imunologia , Miocárdio/patologia , Miocárdio/imunologia , Miocárdio/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/imunologia , Miocardite/imunologia , Miocardite/patologia , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Comunicação Celular
17.
Circ Res ; 134(10): 1240-1255, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563133

RESUMO

BACKGROUND: Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS: In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS: Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFß (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS: Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.


Assuntos
Fibroblastos , Fibrose , Pericitos , Proteínas RGS , Pericitos/metabolismo , Pericitos/patologia , Animais , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas RGS/deficiência , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Células Cultivadas , Envelhecimento/metabolismo , Envelhecimento/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Masculino , Técnicas de Cocultura
18.
Circ Res ; 134(12): 1808-1823, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843289

RESUMO

Mounting experimental and clinical evidence has revealed that adaptive immune mechanisms targeting myocardial antigens are triggered by different forms of cardiac injury and impact disease progression. B and T lymphocytes recognize specific antigens via unique adaptive immune receptors generated through a somatic rearrangement process that generates a potential repertoire of 1019 unique receptors. While the adaptive immune receptor repertoire diversity provides the basis for immunologic specificity, making sense of it can be a challenging task. In the present review, we discuss key aspects underlying the generation of TCRs (T cell receptors) and emerging tools for their study in the context of myocardial diseases. Moreover, we outline how exploring TCR repertoires could lead to a deeper understanding of myocardial pathophysiological principles and potentially serve as diagnostic tools.


Assuntos
Cardiomiopatias , Receptores de Antígenos de Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Cardiomiopatias/imunologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Imunidade Adaptativa , Linfócitos T/imunologia , Linfócitos T/metabolismo , Miocárdio/metabolismo , Miocárdio/imunologia , Miocárdio/patologia
19.
Circ Res ; 135(7): 758-773, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39140165

RESUMO

BACKGROUND: Cardiac hypertrophy is characterized by remodeling of the myocardium, which involves alterations in the ECM (extracellular matrix) and cardiomyocyte structure. These alterations critically contribute to impaired contractility and relaxation, ultimately leading to heart failure. Emerging evidence implicates that extracellular signaling molecules are critically involved in the pathogenesis of cardiac hypertrophy and remodeling. The immunophilin CyPA (cyclophilin A) has been identified as a potential culprit. In this study, we aimed to unravel the interplay between eCyPA (extracellular CyPA) and myocardial dysfunction and evaluate the therapeutic potential of inhibiting its extracellular accumulation to improve heart function. METHODS: Employing a multidisciplinary approach encompassing in silico, in vitro, in vivo, and ex vivo experiments we studied a mouse model of cardiac hypertrophy and human heart specimen to decipher the interaction of CyPA and the cardiac microenvironment in highly relevant pre-/clinical settings. Myocardial expression of CyPA (immunohistology) and the inflammatory transcriptome (NanoString) was analyzed in human cardiac tissue derived from patients with nonischemic, noninflammatory congestive heart failure (n=187). These analyses were paralleled by a mouse model of Ang (angiotensin) II-induced heart failure, which was assessed by functional (echocardiography), structural (immunohistology, atomic force microscopy), and biomolecular (Raman spectroscopy) analyses. The effect of inhibiting eCyPA in the cardiac microenvironment was evaluated using a newly developed neutralizing anti-eCyPA monoclonal antibody. RESULTS: We observed a significant accumulation of eCyPA in both human and murine-failing hearts. Importantly, higher eCyPA expression was associated with poor clinical outcomes in patients (P=0.043) and contractile dysfunction in mice (Pearson correlation coefficient, -0.73). Further, myocardial expression of eCyPA was critically associated with an increase in myocardial hypertrophy, inflammation, fibrosis, stiffness, and cardiac dysfunction in vivo. Antibody-based inhibition of eCyPA prevented (Ang II)-induced myocardial remodeling and dysfunction in mice. CONCLUSIONS: Our study provides strong evidence of the pathogenic role of eCyPA in remodeling, myocardial stiffening, and dysfunction in heart failure. The findings suggest that antibody-based inhibition of eCyPA may offer a novel therapeutic strategy for nonischemic heart failure. Further research is needed to evaluate the translational potential of these interventions in human patients with cardiac hypertrophy.


Assuntos
Ciclofilina A , Insuficiência Cardíaca , Animais , Feminino , Humanos , Masculino , Camundongos , Microambiente Celular , Ciclofilina A/antagonistas & inibidores , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
20.
Nature ; 587(7834): 460-465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33149301

RESUMO

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Assuntos
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinogênio/biossíntese , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Comunicação Parácrina , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Átrios do Coração/citologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Receptores da Calcitonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa