Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 50(4): e12998, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39030945

RESUMO

AIMS: Diagnosis of idiopathic inflammatory myopathies (IIM) is based on morphological characteristics and the evaluation of disease-related proteins. However, although broadly applied, substantial bias is imposed by the respective methods, observers and individual staining approaches. We aimed to quantify the protein levels of major histocompatibility complex (MHC)-1, (MHC)-2 and intercellular adhesion molecule (ICAM)-1 using an automated morphometric method to mitigate bias. METHODS: Double immunofluorescence staining was performed on whole muscle sections to study differences in protein expression in myofibre and endomysial vessels. We analysed all IIM subtypes including dermatomyositis (DM), anti-synthetase syndrome (ASyS), inclusion body myositis (IBM), immune-mediated-necrotising myopathy (IMNM), dysferlinopathy (DYSF), SARS-CoV-2 infection and vaccination-associated myopathy. Biopsies with neurogenic atrophy (NA) and normal morphology served as controls. Bulk RNA-Sequencing (RNA-Seq) was performed on a subset of samples. RESULTS: Our study highlights the significance of MHC-1, MHC-2 and ICAM-1 in diagnosing IIM subtypes and reveals distinct immunological profiles. RNASeq confirmed the precision of our method and identified specific gene pathways in the disease subtypes. Notably, ASyS, DM and SARS-CoV-2-associated myopathy showed increased ICAM-1 expression in the endomysial capillaries, indicating ICAM-1-associated vascular activation in these conditions. In addition, ICAM-1 showed high discrimination between different subgroups with high sensitivity and specificity. CONCLUSIONS: Automated morphometric analysis provides precise quantitative data on immune-associated proteins that can be integrated into our pathophysiological understanding of IIM. Further, ICAM-1 holds diagnostic value for the detection of IIM pathology.


Assuntos
Molécula 1 de Adesão Intercelular , Músculo Esquelético , Miosite , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Miosite/patologia , Miosite/diagnóstico , Miosite/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , COVID-19/patologia , COVID-19/diagnóstico , Masculino , Feminino , Diagnóstico Diferencial , Antígenos de Histocompatibilidade Classe II/metabolismo
2.
Cytokine ; 181: 156691, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986253

RESUMO

BACKGROUND: The interleukin-17 (IL-17) signaling pathway is intricately linked with immunity and inflammation; however, the association between the IL-17 signaling pathway and skeletal muscle inflammation remains poorly understood. The study aims to investigate the role of the IL-17 signaling pathway in skeletal muscle inflammation and to evaluate the therapeutic potential of anti-IL-17 antibodies in reducing muscle inflammation. METHODS: A skeletal muscle inflammation model was induced by cardiotoxin (CTX) injection in C57BL6/J mice. Following treatment with an anti-IL-17 antibody, we conducted a comprehensive analysis integrating single-cell RNA sequencing (scRNA-seq), bioinformatics, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and Western blot techniques to elucidate underlying mechanisms. RESULTS: scRNA-seq analysis revealed a significant increase in neutrophil numbers and activity in inflamed skeletal muscle compared to other cell types, including macrophages, T cells, B cells, endothelial cells, fast muscle cells, fibroblasts, and skeletal muscle satellite cells. The top 30 differentially expressed genes within neutrophils, along with 55 chemokines, were predominantly enriched in the IL-17 signaling pathway. Moreover, the IL-17 signaling pathway exhibited heightened expression in inflamed skeletal muscle, particularly within neutrophils. Treatment with anti-IL-17 antibody resulted in the suppression of IL-17 signaling pathway expression, accompanied by reduced levels of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α, as well as decreased numbers and activity of Ly6g+/Mpo+ neutrophils compared to CTX-induced skeletal muscle inflammation. CONCLUSION: Our findings suggest that the IL-17 signaling pathway plays a crucial role in promoting inflammation within skeletal muscle. Targeting this pathway may hold promise as a therapeutic strategy for ameliorating the inflammatory micro-environment and reducing cytokine production.


Assuntos
Inflamação , Interleucina-17 , Camundongos Endogâmicos C57BL , Músculo Esquelético , Transdução de Sinais , Animais , Transdução de Sinais/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Camundongos , Interleucina-17/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Neutrófilos/metabolismo , Neutrófilos/imunologia , Miosite/metabolismo , Miosite/tratamento farmacológico , Miosite/imunologia
3.
Acta Neuropathol ; 148(1): 6, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012547

RESUMO

Myositis with anti-Ku-autoantibodies is a rare inflammatory myopathy associated with various connective tissue diseases. Histopathological studies have identified inflammatory and necrotizing aspects, but a precise morphological analysis and pathomechanistic disease model are lacking. We therefore aimed to carry out an in-depth morpho-molecular analysis to uncover possible pathomechanisms. Muscle biopsy specimens from 26 patients with anti-Ku-antibodies and unequivocal myositis were analyzed by immunohistochemistry, immunofluorescence, transcriptomics, and proteomics and compared to biopsy specimens of non-disease controls, immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). Clinical findings and laboratory parameters were evaluated retrospectively and correlated with morphological and molecular features. Patients were mainly female (92%) with a median age of 56.5 years. Isolated myositis and overlap with systemic sclerosis were reported in 31%, respectively. Isolated myositis presented with higher creatine kinase levels and cardiac involvement (83%), whereas systemic sclerosis-overlap patients often had interstitial lung disease (57%). Histopathology showed a wide spectrum from mild to pronounced myositis with diffuse sarcolemmal MHC-class I (100%) and -II (69%) immunoreactivity, myofiber necrosis (88%), endomysial inflammation (85%), thickened capillaries (84%), and vacuoles (60%). Conspicuous sarcoplasmic protein aggregates were p62, BAG3, myotilin, or immunoproteasomal beta5i-positive. Proteomic and transcriptomic analysis identified prominent up-regulation of autophagy, proteasome, and hnRNP-related cell stress. To conclude, Ku + myositis is morphologically characterized by myofiber necrosis, MHC-class I and II positivity, variable endomysial inflammation, and distinct protein aggregation varying from IBM and IMNM, and it can be placed in the spectrum of scleromyositis and overlap myositis. It features characteristic sarcoplasmic protein aggregation on an acquired basis being functionally associated with altered chaperone, proteasome, and autophagy function indicating that Ku + myositis exhibit aspects of an acquired inflammatory protein-aggregate myopathy.


Assuntos
Autoanticorpos , Autoantígeno Ku , Miosite , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Miosite/patologia , Miosite/imunologia , Miosite/metabolismo , Idoso , Autoanticorpos/imunologia , Adulto , Autoantígeno Ku/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Estudos Retrospectivos , Miosite de Corpos de Inclusão/patologia , Miosite de Corpos de Inclusão/metabolismo
4.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445853

RESUMO

Inclusion body myositis (IBM) is a chronic, mostly treatment-resistant, inflammatory myopathy with a pathology that centers around specific interactions between inflammation and protein accumulation. The study aimed to identify the inflammasome as a key event in the complex network of pathomechanisms. Regulation of the inflammasome was assessed in a well-established pro-inflammatory cell culture model using human myoblasts and primary human myotubes. By quantitative PCR, western blot and immunocytochemistry, inflammasome markers including NLRP3 were assessed in muscle cells exposed to the cytokines IL-1ß and IFN-γ. The data were corroborated by analysis of muscle biopsies from patients with IBM compared to other myositis subtypes. In the cell culture model of IBM, the NLRP3 inflammasome was significantly overexpressed, as evidenced by western blot (p = 0.03) and quantitative PCR (p < 0.01). Target genes that play a role in inflammasome assembly, T-cell migration, and MHC-I expression (p = 0.009) were highly co-upregulated. NLRP3 was significantly overexpressed in muscle biopsies from IBM samples compared to disease controls (p = 0.049), including other inflammatory myopathies. Due to the extraordinary features of the pathogenesis and the pronounced upregulation of NLRP3 in IBM, the inflammasome could serve as a key molecule that drives the inflammatory cascade as well as protein accumulation in the muscle. These data can be useful for future therapeutic developments.


Assuntos
Miosite de Corpos de Inclusão , Miosite , Humanos , Miosite de Corpos de Inclusão/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Cultivadas , Músculo Esquelético/metabolismo , Miosite/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768791

RESUMO

Dermatomyositis (DM) and immune-mediated necrotizing myopathy (IMNM) are two rare diseases belonging to the group of idiopathic inflammatory myopathies (IIM). Muscle involvement in DM is characterized by perifascicular atrophy and poor myofiber necrosis, while IMNM is characterized by myofiber necrosis with scarce inflammatory infiltrates. Muscle biopsies and laboratory tests are helpful in diagnosis, but currently, few biomarkers of disease activity and progression are available. In this context, we conducted a cohort study of forty-one DM and IMNM patients, aged 40-70 years. In comparison with control subjects, in the muscle biopsies of these patients, there was a lower expression of FNDC5, the precursor of irisin, a myokine playing a key role in musculoskeletal metabolism. Expectedly, the muscle cross-sectional areas of these patients were reduced, while, surprisingly, serum irisin levels were higher than in CTRL, as were mRNA levels of ADAM10, a metalloproteinase recently shown to be the cleavage agent for FNDC5. We hypothesize that elevated expression of ADAM10 in the skeletal muscle of DM and IMNM patients might be responsible for the discrepancy between irisin levels and FNDC5 expression. Future studies will be needed to understand the mechanisms underlying exacerbated FNDC5 cleavage and muscle irisin resistance in these inflammatory myopathies.


Assuntos
Doenças Autoimunes , Miosite , Humanos , Fibronectinas/metabolismo , Estudos de Coortes , Músculo Esquelético/metabolismo , Miosite/metabolismo , Fatores de Transcrição/metabolismo , Doenças Autoimunes/metabolismo , Necrose/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo
6.
BMC Genomics ; 23(1): 657, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115951

RESUMO

BACKGROUND: Titinopathies are inherited muscular diseases triggered by genetic mutations in the titin gene. Muscular dystrophy with myositis (mdm) is one such disease caused by a LINE repeat insertion, leading to exon skipping and an 83-amino acid residue deletion in the N2A-PEVK region of mouse titin. This region has been implicated in a number of titin-titin ligand interactions, hence are important for myocyte signaling and health. Mice with this mdm mutation develop a severe and progressive muscle degeneration. The range of phenotypic differences observed in mdm mice shows that the deletion of this region induces a cascade of transcriptional changes extending to numerous signaling pathways affected by the titin filament. Previous research has focused on correlating phenotypic differences with muscle function in mdm mice. These studies have provided understanding of the downstream physiological effects resulting from the mdm mutation but only provide insights on processes that can be physiologically observed and measured. We used differential gene expression (DGE) to compare the transcriptomes of extensor digitorum longus (EDL), psoas and soleus muscles from wild-type and mdm mice to develop a deeper understand of these tissue-specific responses. RESULTS: The overall expression pattern observed shows a well-differentiated transcriptional signature in mdm muscles compared to wild type. Muscle-specific clusters observed within the mdm transcriptome highlight the level of variability of each muscle to the deletion. Differential gene expression and weighted gene co-expression network analysis showed a strong directional response in oxidative respiration-associated mitochondrial genes, which aligns with the poor shivering and non-shivering thermogenesis previously observed. Sln, which is a marker associated with shivering and non-shivering thermogenesis, showed the strongest expression change in fast-fibered muscles. No drastic changes in MYH expression levels were reported, which indicated an absence of major fiber-type switching events. Overall expression shifts in MYH isoforms, MARPs, and extracellular matrix associated genes demonstrated the transcriptional complexity associated with mdm mutation. The expression alterations in mitochondrial respiration and metabolism related genes in the mdm muscle dominated over other transcriptomic changes, and likely account for the late stage cellular responses in the mdm muscles. CONCLUSIONS: We were able to demonstrate that the complex nature of mdm mutation extends beyond a simple rearrangement in titin gene. EDL, psoas and soleus exemplify unique response modes observed in skeletal muscles with mdm mutation. Our data also raises the possibility that failure to maintain proper energy homeostasis in mdm muscles may contribute to the pathogenesis of the degenerative phenotype in mdm mice. Understanding the full disease-causing molecular cascade is difficult using bulk RNA sequencing techniques due to intricate nature of the disease. The development of the mdm phenotype is temporally and spatially regulated, hence future studies should focus on single fiber level investigations.


Assuntos
Distrofias Musculares , Miosite , Aminoácidos/genética , Animais , Conectina/genética , Conectina/metabolismo , Ligantes , Camundongos , Músculo Esquelético/fisiologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Miosite/genética , Miosite/metabolismo , Miosite/patologia , Transcriptoma
7.
Biochem Biophys Res Commun ; 603: 29-34, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35276460

RESUMO

Idiopathic inflammatory myopathy (IIM) is an autoimmune disease that invades skeletal muscle; however, the etiology of IIM is still poorly understood. Toll-like receptor (TLR) 4 has been widely reported to take part in the autoimmune inflammation of IIMs. The mammalian target of rapamycin, mTOR, is a key central substance which mediates immune responses and metabolic changes, and also has been confirmed to be involved in the pathogenesis of IIMs. However, the interconnectedness between TLR4 and mTOR in IIM inflammation has not been fully elucidated. We hypothesized that TLR4 may play an important role in IIM inflammatory muscle injury by regulating mTOR. Mice were divided into four groups: a normal control group, IIM animal model (experimental autoimmune myositis, EAM) group, TAK242 intervention group and rapamycin (RAPA) intervention group. The results of EAM mice showed that TLR4, mTOR, nuclear factor-kappa B (NF-κB) and inflammatory factors interleukin-17A (IL-17A) and interferon γ (IFN-γ) mRNA levels were significantly upregulated. These factors were positively correlated with the degree of muscle inflammatory injury. When EAM mice were given the antagonist TAK242 to inhibit the TLR4 pathway, the results demonstrated that both mTOR and NF-κB were downregulated in the muscle of the mice. Muscle staining showed that the inflammatory injury was alleviated and the EAM mouse muscle strength was improved. Then, RAPA was used to inhibit the mTOR pathway, and the inflammatory factors IL-17A and IFN-γ were downregulated in EAM mouse muscle and serum. Consistently, muscle inflammatory injury was significantly reduced, and muscle strength was significantly improved. Our results suggest that TLR4 may regulate inflammatory muscle injury in EAM by activating the mTOR and NF-κB pathways, which provides both an experimental complement for the pathological mechanism of IIM and an encouraging target for the selection of effective treatments.


Assuntos
Miosite , Doença Autoimune do Sistema Nervoso Experimental , Serina-Treonina Quinases TOR , Receptor 4 Toll-Like , Animais , Interferon gama/metabolismo , Interleucina-17/metabolismo , Mamíferos/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Miosite/metabolismo , NF-kappa B/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232755

RESUMO

Compelling evidence supports the health benefits of physical exercise on the immune system, possibly through the molecules secreted by the skeletal muscles known as myokines. Herein, we assessed the impact of exercise interventions on plasma Heat shock protein 90 (Hsp90) levels in 27 patients with idiopathic inflammatory myopathies (IIM) compared with 23 IIM patients treated with standard-of-care immunosuppressive therapy only, and in 18 healthy subjects undergoing strenuous eccentric exercise, and their associations with the traditional serum markers of muscle damage and inflammation. In contrast to IIM patients treated with pharmacotherapy only, in whom we demonstrated a significant decrease in Hsp90 over 24 weeks, the 24-week exercise program resulted in a stabilization of Hsp90 levels. These changes in Hsp90 levels were associated with changes in several inflammatory cytokines/chemokines involved in the pathogenesis of IIM or muscle regeneration in general. Strenuous eccentric exercise in healthy volunteers induced a brief increase in Hsp90 levels with a subsequent return to baseline levels at 14 days after the exercise, with less pronounced correlations to systemic inflammation. In this study, we identified Hsp90 as a potential myokine and mediator for exercise-induced immune response and as a potential biomarker predicting improvement after physiotherapy in muscle endurance in IIM.


Assuntos
Terapia por Exercício , Proteínas de Choque Térmico HSP90 , Inflamação , Músculo Esquelético , Miosite , Biomarcadores/sangue , Biomarcadores/metabolismo , Quimiocinas/sangue , Quimiocinas/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Proteínas de Choque Térmico HSP90/sangue , Proteínas de Choque Térmico HSP90/metabolismo , Voluntários Saudáveis , Humanos , Imunossupressores/uso terapêutico , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/terapia , Músculo Esquelético/metabolismo , Miosite/sangue , Miosite/tratamento farmacológico , Miosite/metabolismo , Miosite/terapia
9.
J Physiol ; 599(1): 207-229, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33063873

RESUMO

KEY POINTS: Regular exercise improves muscle functional capacity and clinical state of patients with idiopathic inflammatory myopathy (IIM). In our study, we used an in vitro model of human primary muscle cell cultures, derived from IIM patients before and after a 6-month intensive supervised training intervention to assess the impact of disease and exercise on lipid metabolism dynamics. We provide evidence that muscle cells from IIM patients display altered dynamics of lipid metabolism and impaired adaptive response to saturated fatty acid load compared to healthy controls. A 6-month intensive supervised exercise training intervention in patients with IIM mitigated disease effects in their cultured muscle cells, improving or normalizing their capacity to handle lipids. These findings highlight the putative role of intrinsic metabolic defects of skeletal muscle in the pathogenesis of IIM and the positive impact of exercise, maintained in vitro by yet unknown epigenetic mechanisms. ABSTRACT: Exercise improves skeletal muscle function, clinical state and quality of life in patients with idiopathic inflammatory myopathy (IIM). Our aim was to identify disease-related metabolic perturbations and the impact of exercise in skeletal muscle cells of IIM patients. Patients underwent a 6-month intensive supervised training intervention. Muscle function, anthropometric and metabolic parameters were examined and muscle cell cultures were established (m. vastus lateralis; Bergström needle biopsy) before and after training from patients and sedentary age/sex/body mass index-matched controls. [14 C]Palmitate was used to determine fat oxidation and lipid synthesis (thin layer chromatography). Cells were exposed to a chronic (3 days) and acute (3 h) metabolic challenge (the saturated fatty acid palmitate, 100 µm). Reduced oxidative (intermediate metabolites, -49%, P = 0.034) and non-oxidative (diglycerides, -38%, P = 0.013) lipid metabolism was identified in palmitate-treated muscle cells from IIM patients compared to controls. Three days of palmitate exposure elicited distinct regulation of oxidative phosphorylation (OxPHOS) complex IV and complex V/ATP synthase (P = 0.012/0.005) and adipose triglyceride lipase in patients compared to controls (P = 0.045) (immunoblotting). Importantly, 6 months of training in IIM patients improved lipid metabolism (CO2 , P = 0.010; intermediate metabolites, P = 0.041) and activation of AMP kinase (P = 0.007), and nearly normalized palmitate-induced changes in OxPHOS proteins in myotubes from IIM patients, in parallel with improvements of patients' clinical state. Myotubes from IIM patients displayed altered dynamics of lipid metabolism and impaired response to metabolic challenge with saturated fatty acid. Our observations suggest that metabolic defects intrinsic to skeletal muscle could represent non-immune pathomechanisms, which can contribute to muscle weakness in IIM. A 6-month training intervention mitigated disease effects in muscle cells in vitro, indicating the existence of epigenetic regulatory mechanisms.


Assuntos
Metabolismo dos Lipídeos , Miosite , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Miosite/metabolismo , Qualidade de Vida
10.
Hum Mol Genet ; 28(18): 3101-3112, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31179501

RESUMO

Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy which leads to progressive muscle degeneration and inflammation. The receptor activator of nuclear factor NF-κB ligand (RANKL) and its receptor (RANK), which are expressed in bone and skeletal and cardiac muscles, form a signaling network upstream from nuclear factor-kappa B (NF-κB). We thus hypothesized that prolonged silencing RANKL/RANK signaling would significantly improve DMD. We showed that RANK and RANKL protein levels were increased in the microenvironment of myofibers of 5-month-old utrophin haploinsufficient mdx (mdx/utrn+/-) mice and that a 4 mg/kg dose of anti-RANKL antibody every 3 d for 28 days is optimal and more effective than 1 mg/kg every 3 d for improving the ex vivo maximum specific force (sP0) of dystrophic EDL muscles from mdx/utrn+/- mice. This functional improvement was associated with a reduction in muscle edema, damage, and fibrosis and a marked reduction in serum CK levels. The anti-RANKL treatment inhibited the NF-κB pathway, increased the proportion of anti-inflammatory and non-cytotoxic M2 macrophages, and reduced the number of centrally-nucleated myofibers and the frequency of small myofibers, suggesting that anti-RANKL inhibits the cycle of degeneration/regeneration in dystrophic mice. A three-point bending test showed that a 28-d anti-RANKL treatment increases the mechanical properties of bone in mdx/utrn+/- dystrophic mice. In conclusion, the anti-RANKL treatment protected against skeletal muscle dysfunctions while enhancing bone mechanical properties, filling two needs with one deed in the context of muscular dystrophy.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miosite/metabolismo , Ligante RANK/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Microambiente Celular , Modelos Animais de Doenças , Fibrose , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares , Miosite/tratamento farmacológico , Miosite/etiologia , Miosite/patologia , NF-kappa B/metabolismo , Fenótipo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Cytokine ; 137: 155350, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128920

RESUMO

BACKGROUND: Interleukin-35 (IL-35) is a recently described heterodimeric cytokine that belongs to the IL-12 family and consists of p35 (IL-12a) and EBI3 (IL-27b) subunits. The expression of IL-35 in humans is inducible in response to inflammatory stimuli. Increased IL-35 levels were documented in several autoimmune inflammatory diseases, suggesting a possible immunomodulatory role in their pathogenesis. OBJECTIVES: The aim of this study was to explore a potential role of IL-35 in the pathogenesis of idiopathic inflammatory myopathies (IIM) by studying the expression of IL-35 subunits in muscle biopsy samples and by evaluating serum levels of IL-35 and their association with disease activity in IIM patients. METHODS: The expression of IL-35 subunits was studied in serial sections of 9 muscle biopsy samples [4 polymyositis (PM), 5 dermatomyositis (DM)] and in 7 non-inflammatory control muscle biopsies. Serum levels of IL-35 were measured in 23 PM, 28 DM and 15 cancer associated myositis (CAM) patients as well as in 40 healthy controls. Disease activity was evaluated using the Myositis Disease Activity Assessment Tool (MDAAT) and by serum muscle enzymes. RESULTS: Expression of both IL-35 subunits was evident in the inflammatory infiltrates in IIM muscle biopsies, while no IL-35 expression was observed in control muscle samples. IL-35 serum levels were increased in all IIM patients compared to healthy controls [median 119.5 (range 32.1-1074.5) vs 36.2 (range 1.5-86.5) pg/ml, P < 0.001]. There were no differences in IL-35 serum levels between myositis subgroups (DM, PM or CAM). Serum IL-35 levels correlated significantly with physician's assessment of global (r = 0.29, p = 0.021), muscle (r = 0.30, p = 0.017) and extramuscular (r = 0.30, p = 0.016) disease activity as well as creatine kinase (r = 0.26, p = 0.044) and lactate dehydrogenase (r = 0.40, p = 0.003) levels. There was a significant correlation with pulmonary activity in patients with interstitial lung disease (r = 0.39, p = 0.037). Serum IL-35 correlated negatively with duration of treatment (r = -34, p = 0.009). CONCLUSIONS: IL-35 is overexpressed in inflammatory infiltrates in muscle tissue and serum in IIM patients and there is correlation with several disease activity parameters. These data suggest potential role of locally produced IL-35 in the pathogenesis of inflammatory myopathies.


Assuntos
Interleucinas/metabolismo , Músculos/metabolismo , Miosite/metabolismo , Polimiosite/metabolismo , Adolescente , Adulto , Idoso , Biópsia , Criança , Feminino , Humanos , Interleucinas/sangue , Masculino , Pessoa de Meia-Idade , Músculos/patologia , Miosite/sangue , Miosite/patologia , Polimiosite/sangue , Polimiosite/patologia , Regulação para Cima , Adulto Jovem
12.
Curr Rheumatol Rep ; 23(8): 63, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34216297

RESUMO

PURPOSE: Myositis as a rare manifestation of COVID-19 is only recently being reported. This review examines the current literature on COVID-19-induced myositis focusing on etiopathogenesis, clinical presentations, diagnostic practices, and therapeutic challenges with immunosuppression, and the difficulties experienced by rheumatologists in established myositis in the COVID-19 era. RECENT FINDINGS: COVID-19 is associated with a viral myositis attributable to direct myocyte invasion or induction of autoimmunity. COVID-19-induced myositis may be varied in presentation, from typical dermatomyositis to rhabdomyolysis, and a paraspinal affliction with back pain. It may or may not present with acute exponential elevations of enzyme markers such as creatine kinase (CK). Virus-mediated muscle inflammation is attributed to ACE2 (angiotensin-converting enzyme) receptor-mediated direct entry and affliction of muscle fibers, leading on to innate and adaptive immune activation. A greater recognition of the stark similarity between anti-MDA5-positive myositis with COVID-19 has thrown researchers into the alley of exploration - finding common etiopathogenic basis as well as therapeutic strategies. For patients with established myositis, chronic care was disrupted during the pandemic with several logistic challenges and treatment dilemmas leading to high flare rates. Teleconsultation bridged the gap while ushering in an era of patient-led care with the digital transition to tools of remote disease assessment. COVID-19 has brought along greater insight into unique manifestations of COVID-19-related myositis, ranging from direct virus-induced muscle disease to triggered autoimmunity and other etiopathogenic links to explore. A remarkable shift in the means of delivering chronic care has led patients and caregivers worldwide to embrace a virtual shift with teleconsultation and opened doorways to a new era of patient-led care.


Assuntos
COVID-19/fisiopatologia , Miosite/fisiopatologia , Rabdomiólise/fisiopatologia , Imunidade Adaptativa/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Autoanticorpos/imunologia , Dor nas Costas/etiologia , COVID-19/complicações , COVID-19/imunologia , COVID-19/metabolismo , Creatina Quinase/metabolismo , Dermatomiosite/etiologia , Dermatomiosite/imunologia , Dermatomiosite/metabolismo , Dermatomiosite/fisiopatologia , Humanos , Imunidade Inata/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Miastenia Gravis/etiologia , Miastenia Gravis/imunologia , Miastenia Gravis/metabolismo , Miastenia Gravis/fisiopatologia , Miosite/etiologia , Miosite/imunologia , Miosite/metabolismo , Músculos Paraespinais/fisiopatologia , Receptores de Coronavírus/metabolismo , Rabdomiólise/etiologia , Rabdomiólise/imunologia , Rabdomiólise/metabolismo , SARS-CoV-2
13.
Infect Immun ; 88(11)2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32817331

RESUMO

Group A Streptococcus (GAS) is a human-specific pathogen and major cause of disease worldwide. The molecular pathogenesis of GAS, like many pathogens, is dependent on the coordinated expression of genes encoding different virulence factors. The control of virulence regulator/sensor (CovRS) two-component system is a major virulence regulator of GAS that has been extensively studied. More recent investigations have also involved regulator of Cov (RocA), a regulatory accessory protein to CovRS. RocA interacts, in some manner, with CovRS; however, the precise molecular mechanism is unknown. Here, we demonstrate that RocA is a membrane protein containing seven transmembrane helices with an extracytoplasmically located N terminus and cytoplasmically located C terminus. For the first time, we demonstrate that RocA directly interacts with itself (RocA) and CovS, but not CovR, in intact cells. Single amino acid replacements along the entire length of RocA disrupt RocA-RocA and RocA-CovS interactions to significantly alter the GAS virulence phenotype as defined by secreted virulence factor activity in vitro and tissue destruction and mortality in vivo In summary, we show that single amino acid replacements in a regulatory accessory protein can affect protein-protein interactions to significantly alter the virulence of a major human pathogen.


Assuntos
Proteínas de Bactérias/genética , Fasciite Necrosante/microbiologia , Histidina Quinase/genética , Miosite/microbiologia , Proteínas Repressoras/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Transativadores/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fasciite Necrosante/metabolismo , Fasciite Necrosante/mortalidade , Fasciite Necrosante/patologia , Feminino , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina Quinase/química , Histidina Quinase/metabolismo , Humanos , Camundongos , Mutação , Miosite/metabolismo , Miosite/mortalidade , Miosite/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/mortalidade , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/crescimento & desenvolvimento , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade , Análise de Sobrevida , Transativadores/química , Transativadores/metabolismo , Virulência
14.
Curr Opin Rheumatol ; 32(6): 515-522, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890033

RESUMO

PURPOSE OF REVIEW: This review encompasses the main novelties regarding nonimmune mechanisms implicated in the pathogenesis of idiopathic inflammatory myopathies (IIM). RECENT FINDINGS: In recent years, growing data support a role for endoplasmic-reticulum (ER) stress as a propagator of muscular damage, together with the release of interferon type I and reactive oxygen species in hypoxemic muscle fibers. Other studies evaluating the relationship between autophagy and Toll-like receptors (TLRs) in IIM subtypes have shown increased TLR3 and TLR4 expression in fibers of IIM patients and colocalization with LC3, an autophagy marker, submitting autophagy as a likely player in IIM pathogenesis. Most novel evidences concern the potential role of denervation of the neuromuscular junction in IIM, possibly connected to hyperexpression of MHC-I, and trafficking of extracellular vesicles, which may represent a connection between nonimmune and immune-mediated mechanisms of muscle inflammation and damage. SUMMARY: Nonimmune mechanisms contribute to the pathogenesis of IIM, likely cooperating with immune-mediated inflammation. Consistent data were released for ER stress, autophagy, mitochondrial dysfunction and hypoxia; in addition to, neuromuscular denervation and extracellular vesicles have been proposed as thoughtful links between muscle inflammation, damage and atrophy. Further understanding of nonimmune abnormalities and potential reversible pathways is needed to improve the management of IIM.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Miosite/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Autofagia/fisiologia , Humanos , Fibras Musculares Esqueléticas/patologia , Miosite/patologia , Receptores Toll-Like/metabolismo
15.
Rheumatology (Oxford) ; 59(8): 1927-1937, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755959

RESUMO

OBJECTIVES: JDM and juvenile overlap myositis represent heterogeneous subtypes of juvenile idiopathic inflammatory myopathy (JIIM). Chronic evolution can occur in up to 60% of cases, and morbidity/mortality is substantial. We aimed to describe the clinical, biological, histological and type I IFN status in JIIM associated with anti-melanoma differentiation-associated protein 5 (anti-MDA5) autoantibodies at presentation (group 1) in comparison with other JIIM (group 2). METHODS: This was a retrospective and prospective study of patients with JIIM ascertained from three French paediatric rheumatology reference centres between 2013 and 2019. Muscle biopsies were reviewed. Type I interferon pathway activity was assessed by dosage of IFNα serum protein and the expression of IFN-stimulated genes. RESULTS: Sixty-four patients were included, 13 in group 1 (54% JDM and 46% juvenile overlap myositis) and 51 in group 2 (76% JDM and 24% juvenile overlap myositis). Group 1 patients demonstrated more arthritis, skin ulcerations, lupus features and interstitial lung disease, and a milder muscular involvement. Serum IFNα levels were higher in group 1 than 2, and decreased after treatment or improvement in both groups. Outcome was similar in both groups. Unconventional treatment (more than two lines) was required in order to achieve remission, especially when skin ulceration was reported. CONCLUSION: This study indicates a higher frequency of arthritis, skin ulcerations and interstitial lung disease, but milder muscular involvement, in JIIM with positive anti-MDA5 autoantibodies compared with other JIIM. Our data support an important role of systemic IFNα in disease pathology, particularly in the anti-MDA5 auto-antibody-positive subgroup. In severe and refractory forms of JIIM, IFNα may represent a therapeutic target.


Assuntos
Autoanticorpos/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Interferon-alfa/metabolismo , Músculo Esquelético/metabolismo , Miosite/metabolismo , Transdução de Sinais/fisiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miosite/imunologia , Miosite/patologia , Estudos Prospectivos , Estudos Retrospectivos
16.
Rheumatology (Oxford) ; 59(11): 3515-3525, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830270

RESUMO

OBJECTIVE: Damage to the vascular endothelium is strongly implicated in the pathogenesis of idiopathic inflammatory myopathies (IIM). Normally, high-density lipoprotein (HDL) protects the vascular endothelium from damage from oxidized phospholipids, which accumulate under conditions of oxidative stress. The current work evaluated the antioxidant function of HDL in IIM patients. METHODS: HDL's antioxidant function was measured in IIM patients using a cell-free assay, which assesses the ability of isolated patient HDL to inhibit oxidation of low-density lipoproteins and is reported as the HDL inflammatory index (HII). Cholesterol profiles were measured for all patients, and subgroup analysis included assessment of oxidized fatty acids in HDL and plasma MPO activity. A subgroup of IIM patients was compared with healthy controls. RESULTS: The antioxidant function of HDL was significantly worse in patients with IIM (n = 95) compared with healthy controls (n = 41) [mean (S.d.) HII 1.12 (0.61) vs 0.82 (0.13), P < 0.0001]. Higher HII associated with higher plasma MPO activity [mean (S.d.) 13.2 (9.1) vs 9.1 (4.6), P = 0.0006] and higher oxidized fatty acids in HDL. Higher 5-hydroxyeicosatetraenoic acid in HDL correlated with worse diffusion capacity in patients with interstitial lung disease (r = -0.58, P = 0.02), and HDL's antioxidant function was most impaired in patients with autoantibodies against melanoma differentiation-associated protein 5 (MDA5) or anti-synthetase antibodies. In multivariate analysis including 182 IIM patients, higher HII was associated with higher disease activity and DM diagnosis. CONCLUSION: The antioxidant function of HDL is abnormal in IIM patients and may warrant further investigation for its role in propagating microvascular inflammation and damage in this patient population.


Assuntos
Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Miosite/metabolismo , Adulto , Idoso , Aminoacil-tRNA Sintetases/imunologia , Autoanticorpos/imunologia , Estudos de Casos e Controles , Cromatografia Líquida , Dermatomiosite/tratamento farmacológico , Dermatomiosite/imunologia , Dermatomiosite/metabolismo , Endotélio Vascular , Ácidos Graxos/metabolismo , Feminino , Glucocorticoides/uso terapêutico , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Fatores Imunológicos/uso terapêutico , Imunossupressores/uso terapêutico , Helicase IFIH1 Induzida por Interferon/imunologia , Doenças Pulmonares Intersticiais/imunologia , Masculino , Pessoa de Meia-Idade , Miosite/tratamento farmacológico , Miosite/imunologia , Miosite de Corpos de Inclusão/tratamento farmacológico , Miosite de Corpos de Inclusão/imunologia , Miosite de Corpos de Inclusão/metabolismo , Oxirredução , Peroxidase/metabolismo , Polimiosite/tratamento farmacológico , Polimiosite/imunologia , Polimiosite/metabolismo , Capacidade de Difusão Pulmonar , Espectrometria de Massas por Ionização por Electrospray
17.
Muscle Nerve ; 62(2): 284-288, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32367547

RESUMO

INTRODUCTION: The mechanism by which weakness develops in idiopathic inflammatory myopathies (IIMs) is still unclear. In this study we investigated the maximum force of single muscle fibers from patients with IIMs. METHODS: Permeabilized single muscle fibers from patients with IIMs and healthy controls were subjected to contractility measurements. Maximum force and specific force production (maximum force normalized to fiber size) and fiber type were determined for each isolated fiber. RESULTS: A total of 178 fibers were studied from five patients with IIMs and 95 fibers from four controls. Specific force production was significantly lower in the IIM group for all fiber types. DISCUSSION: The findings from this exploratory study suggest that weakness in IIMs may, in part, be caused by dysfunction of the contractile apparatus. These findings provide a basis for further studies into the mechanisms underlying weakness in IIMs.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Força Muscular/fisiologia , Miosite/fisiopatologia , Adulto , Biópsia , Estudos de Casos e Controles , Tamanho Celular , Dermatomiosite/metabolismo , Dermatomiosite/patologia , Dermatomiosite/fisiopatologia , Feminino , Humanos , Pessoa de Meia-Idade , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Cadeias Pesadas de Miosina/metabolismo , Miosite/metabolismo , Miosite/patologia , Polimiosite/metabolismo , Polimiosite/patologia , Polimiosite/fisiopatologia , Adulto Jovem
18.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492876

RESUMO

Since its belated discovery, our understanding of the giant protein titin has grown exponentially from its humble beginning as a sarcomeric scaffold to recent recognition of its critical mechanical and signaling functions in active muscle. One uniquely useful model to unravel titin's functions, muscular dystrophy with myositis (mdm), arose spontaneously in mice as a transposon-like LINE repeat insertion that results in a small deletion in the N2A region of titin. This small deletion profoundly affects hypertrophic signaling and muscle mechanics, thereby providing insights into the function of this specific region and the consequences of its dysfunction. The impact of this mutation is profound, affecting diverse aspects of the phenotype including muscle mechanics, developmental hypertrophy, and thermoregulation. In this review, we explore accumulating evidence that points to the N2A region of titin as a dynamic "switch" that is critical for both mechanical and signaling functions in skeletal muscle. Calcium-dependent binding of N2A titin to actin filaments triggers a cascade of changes in titin that affect mechanical properties such as elastic energy storage and return, as well as hypertrophic signaling. The mdm phenotype also points to the existence of as yet unidentified signaling pathways for muscle hypertrophy and thermoregulation, likely involving titin's PEVK region as well as the N2A signalosome.


Assuntos
Conectina/metabolismo , Músculo Esquelético/metabolismo , Proteínas Quinases/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Regulação da Temperatura Corporal , Cálcio/metabolismo , Elasticidade , Humanos , Hipertrofia , Camundongos , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo , Distrofia Muscular Animal , Miosite/metabolismo , Fenótipo , Sarcômeros/metabolismo , Transdução de Sinais , Estresse Mecânico
19.
J Cell Physiol ; 234(5): 7236-7246, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370618

RESUMO

Myostatin is a member of the transforming growth factor ß (TGFß) superfamily that has a well-established role as a mediator of muscle growth and development. However, myostatin is now emerging as a pleiotropic hormone with multiple actions in the regulation of the metabolism as well as several aspects of both cardiac and smooth muscle cells physiology. In addition, myostatin is also expressed in several nonmuscular cells where its physiological role remains to be elucidated in most cases. In this report, we have shown that both myostatin and its receptor system are expressed in blood cells and in hematopoietic cell lines. Furthermore, myostatin treatment promotes differentiation of both HL60 and K562 cells through a mechanism that involves activation of extracellular signal-regulated kinases 1/2 and p38-mitogen-activated protein kinase, thus leading to the possibility that myostatin may be a paracrine/autocrine factor involved in the control of haematopoiesis. In addition, the presence of myostatin expression in immune cells could envisage a novel role for the hormone in the pathogenesis of inflammatory diseases.


Assuntos
Comunicação Autócrina , Células Sanguíneas/metabolismo , Hematopoese , Miostatina/metabolismo , Comunicação Parácrina , Adulto , Sobrevivência Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Células HL-60 , Humanos , Células Jurkat , Células K562 , Masculino , Miosite/sangue , Miosite/metabolismo , Miostatina/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Curr Opin Rheumatol ; 31(6): 617-622, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31385878

RESUMO

PURPOSE OF REVIEW: One of the most important advances in medical research over the past 20 years has been the emergence of technologies to assess complex biological processes on a global scale. Although a great deal of attention has been given to genome-scale genetics and genomics technologies, the utility of studying the proteome in a comprehensive way is sometimes under-appreciated. In this review, we discuss recent advances in proteomics as applied to dermatomyositis/polymyositis as well as findings from other inflammatory diseases that may enlighten our understanding of dermatomyositis/polymyositis. RECENT FINDINGS: Proteomic approaches have been used to investigate basic mechanisms contributing to lung and skin disease in dermatomyositis/polymyositis as well as to the muscle disease itself. In addition, proteomic approaches have been used to identify autoantibodies targeting the endothelium in juvenile dermatomyositis. Studies from other inflammatory diseases have shown the promise of using proteomics to characterize the composition of immune complexes and the protein cargoes of exosomes. SUMMARY: There are many relevant scientific and clinical questions in dermatomyositis/polymyositis that can be addressed using proteomics approaches. Careful attention to both methodology and analytic approaches are required to obtain useful and reproducible data.


Assuntos
Autoanticorpos/imunologia , Miosite/metabolismo , Proteômica/métodos , Humanos , Miosite/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa