RESUMO
BACKGROUND: Rats with chronic hypoxia-induced non-inflammatory pulmonary hypertension (PH) are resistant to ventilator-induced lung injury. We investigated the effect of high tidal volume ventilation in another model of PH, monocrotaline (MCT)-induced PH, which is a type of inflammatory PH. METHODS: PH was induced in rats by subcutaneous injection with 60 mg/kg MCT. Normal control rats, rats at 2 weeks after MCT injection (MCT2), and rats at 3 weeks after MCT injection (MCT3) were ventilated with low tidal volume (LV, 6 mL/kg) or high tidal volume (HV, 35 mL/kg) for 2 h with room air without positive end-expiratory pressure. Arterial oxygen pressure (PaO2) and Evans blue dye (EBD) extravasation were measured. Hypertensive pulmonary vascular remodeling was assessed morphometrically by the percentage of muscularized peripheral pulmonary arteries (%Muscularization) and the media wall thickness to external diameter ratio, namely percentage medial wall thickness (%MWT). To assess inflammation, lung IκB protein and cytokine mRNA expression levels were assessed. RESULTS: Baseline mean pulmonary arterial pressure was significantly higher in MCT rats (normal, 15.4 ± 0.5 mmHg; MCT2, 23.7 ± 0.9; and MCT3, 34.5 ± 1.5). After 2-h ventilation, PaO2 was significantly lower in the HV groups compared with the LV groups in normal and MCT2 rats, but not in MCT3 rats. Impairment of oxygenation with HV was less in MCT3 rats compared with normal and MCT2 rats. Among the HV groups, MCT3 rats showed significantly lower levels of EBD extravasation than normal and MCT2 rats. HV significantly downregulated IκB protein expression in normal and MCT3 rats and increased IL-6, MCP-1, CXCL-1 (MIP-1), and IL-10 mRNA levels in MCT3 rats. %Muscularization, %MWT, and the expression of lung elastin were significantly higher in MCT3 rats than in normal and MCT2 rats. CONCLUSION: We found that HV-associated damage might be reduced in MCT-induced PH rats compared with normal rats. The results of this and earlier studies suggest that hypertensive pulmonary vascular structural changes might be protective against the occurrence of ventilator-induced lung injury, irrespective of the etiology of PH.
Assuntos
Hipertensão Pulmonar/fisiopatologia , Pneumopatias/etiologia , Respiração Artificial/efeitos adversos , Animais , Hipertensão Pulmonar/induzido quimicamente , Masculino , Monocrotalina/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Volume de Ventilação PulmonarRESUMO
OBJECTIVES: Pulmonary hypertension (PH) is a life-threatening progressive disease with high mortality in the elderly. However, the pathogenesis of PH has not been fully understood and there is no effective therapy to reverse the disease process. This study aims to determine whether cellular senescence is involved in the development of PH. METHODS: The rat PH model was established by intraperitoneal injection of monocrotaline and evaluated by pulmonary arteriole wall thickness and right ventricular hypertrophy index. Human lung fibroblasts (HLFs) were treated with CoCl2 or hypoxia to induce cellular senescence in vitro. SA-ß-gal staining and the changes of senescent markers were used to examine cellular senescence. The molecular mechanism of cellular senescence was further explored by detecting reactive oxygen species (ROS) levels and culturing cells with a conditioned medium. RESULTS: We revealed the cellular senescence of pulmonary adventitial fibroblasts in vivo in the rat PH model. The expression of Bmi-1, an important regulator of senescence, was decreased in the lungs of PH rats and localized in adventitial fibroblasts. The in vitro experiments showed that p16 expression was increased while Bmi-1 expression was decreased after CoCl2 treatment in HLFs. Mechanistically, Bmi-1 could alleviate CoCl2-induced HLFs senescence by eliminating ROS which further promoted the proliferation of pulmonary artery smooth muscle cells by paracrine mode of action of HLFs. CONCLUSION: Bmi-1 alleviates the cellular senescence of pulmonary fibroblasts in PH, which expands the pathogenesis of PH and provides a theoretical basis for targeting senescent cells in the treatment of PH.
Assuntos
Túnica Adventícia/metabolismo , Hipertensão Pulmonar/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Túnica Adventícia/patologia , Animais , Linhagem Celular , Proliferação de Células , Senescência Celular , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/metabolismo , Hipóxia/complicações , Masculino , Monocrotalina/administração & dosagem , Complexo Repressor Polycomb 1/genética , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.
Assuntos
Fármacos Cardiovasculares/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/prevenção & controle , Miócitos de Músculo Liso/efeitos dos fármacos , Trifluoperazina/farmacologia , Animais , Antipsicóticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Hemodinâmica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipóxia/induzido quimicamente , Hipóxia/genética , Hipóxia/fisiopatologia , Indóis/administração & dosagem , Monocrotalina/administração & dosagem , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Pirróis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Survivina/genética , Survivina/metabolismoRESUMO
Several studies have reported the pathophysiologic and molecular mechanisms responsible for pulmonary arterial hypertension (PAH). However, the in situ evidence of collagen V (Col V) and interleukin-17 (IL-17)/interleukin-6 (IL-6) activation in PAH has not been fully elucidated. We analyzed the effects of collagen I (Col I), Col V, IL-6, and IL-17 on vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Twenty male Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, whereas the control group (CTRL) received saline. On day 21, the pulmonary blood pressure (PAP) and right ventricular systolic pressure (RVSP) were determined. Lung histology (smooth muscle cell proliferation [α-smooth muscle actin; α-SMA] and periadventitial fibrosis), immunofluorescence (Col I, Col V, and α-SMA), immunohistochemistry (IL-6, IL-17, and transforming growth factor-beta [TGF-ß]), and transmission electron microscopy to detect fibronexus were evaluated. The RVSP (40 ± 2 vs. 24 ± 1 mm Hg, respectively; p < 0.0001), right ventricle hypertrophy index (65 ± 9 and 25 ± 5%, respectively; p < 0.0001), vascular periadventitial Col I and Col V, smooth muscle cell α-SMA+, fibronexus, IL-6, IL-17, and TGF-ß were higher in the MCT group than in the CTRL group. In conclusion, our findings indicate in situ evidence of Col V and IL-6/IL-17 activation in vascular remodeling and suggest that increase of Col V may yield potential therapeutic targets for treating patients with PAH.
Assuntos
Colágeno/genética , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/fisiopatologia , Interleucina-17/imunologia , Interleucina-6/imunologia , Remodelação Vascular/imunologia , Animais , Colágeno/classificação , Colágeno/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Interleucina-17/genética , Interleucina-6/genética , Masculino , Monocrotalina/administração & dosagem , Ratos , Ratos WistarRESUMO
BACKGROUND: One major etiology of hepatic sinusoidal obstruction syndrome (HSOS) in China is the intake of pyrrolizidine alkaloids (PAs). Since PAs-induced HSOS is a rare disease that has not been clearly characterized until now, the aim of this study was to investigate clinical characteristics, CT features, and pathological findings of PA-induced HSOS. METHODS: This retrospective cohort study included 116 patients with PAs-induced HSOS and 68 patients with Budd-Chiari syndrome from Jan 2006 to Sep 2016. We collected medical records of the patients, and reviewed image features of CT, and analyzed pathological findings. RESULTS: Common clinical manifestations of PAs-induced HSOS were abdominal distention (98.26%), ascites (100%), jaundice (52.94%), abdominal pain (36.36%). Abnormal liver function was observed in most of PAs-induced HSOS. On CT scan, common findings included: ascites, hepatomegaly, the thickening of gallbladder wall, pleural effusion, patchy liver enhancement, and heterogeneous hypoattenuation. Most of the patients had a low ascitic total protein (< 25 g/L) and a high SAAG (≥ 11.0 g/L). In acute stage, pathologic features were massive sinusoidal dilatation, sinusoidal congestion, the extravasation of erythrocytes, hepatocellular necrosis, the accumulation of macrophages, the deposition of hemosiderin. In subacute stage, complete loss of pericentral hepatocytes, sinusoidal dilatation, the deposition of pigment granules were observed. CONCLUSIONS: The PAs-induced HSOS patients displayed distinct clinical characteristics, imaging features, and pathological findings, which provided some evidences for the diagnosis of PAs-induced HSOS. TRIAL REGISTRATION: ChiCTR-DRD-17010709.
Assuntos
Hepatopatia Veno-Oclusiva/induzido quimicamente , Hepatopatia Veno-Oclusiva/diagnóstico por imagem , Alcaloides de Pirrolizidina/efeitos adversos , Idoso , Animais , Ascite/diagnóstico por imagem , Ascite/patologia , Feminino , Hepatopatia Veno-Oclusiva/sangue , Hepatopatia Veno-Oclusiva/patologia , Hepatomegalia/diagnóstico por imagem , Hepatomegalia/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Monocrotalina/administração & dosagem , Monocrotalina/efeitos adversos , Alcaloides de Pirrolizidina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos , Tomografia Computadorizada por Raios XRESUMO
The hexosamine biosynthetic pathway (HBP) converts glucose to uridine-diphosphate-N-acetylglucosamine, which, when added to serines or threonines, modulates protein function through protein O-GlcNAcylation. Glutamine-fructose-6-phosphate amidotransferase (GFAT) regulates HBP flux, and AMP-kinase phosphorylation of GFAT blunts GFAT activity and O-GlcNAcylation. While numerous studies demonstrate increased right ventricle (RV) glucose uptake in pulmonary arterial hypertension (PAH), the relationship between O-GlcNAcylation and RV function in PAH is unexplored. Therefore, we examined how colchicine-mediated AMP-kinase activation altered HBP intermediates, O-GlcNAcylation, mitochondrial function, and RV function in pulmonary artery-banded (PAB) and monocrotaline (MCT) rats. AMPK activation induced GFAT phosphorylation and reduced HBP intermediates and O-GlcNAcylation in MCT but not PAB rats. Reduced O-GlcNAcylation partially restored the RV metabolic signature and improved RV function in MCT rats. Proteomics revealed elevated expression of O-GlcNAcylated mitochondrial proteins in MCT RVs, which fractionation studies corroborated. Seahorse micropolarimetry analysis of H9c2 cardiomyocytes demonstrated colchicine improved mitochondrial function and reduced O-GlcNAcylation. Presence of diabetes in PAH, a condition of excess O-GlcNAcylation, reduced RV contractility when compared to nondiabetics. Furthermore, there was an inverse relationship between RV contractility and HgbA1C. Finally, RV biopsy specimens from PAH patients displayed increased O-GlcNAcylation. Thus, excess O-GlcNAcylation may contribute to metabolic derangements and RV dysfunction in PAH.
Assuntos
Diabetes Mellitus/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Mitocôndrias/metabolismo , Processamento de Proteína Pós-Traducional , Disfunção Ventricular Direita/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acilação , Adulto , Idoso , Animais , Linhagem Celular , Estudos de Coortes , Colchicina/farmacologia , Diabetes Mellitus/diagnóstico por imagem , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Ecocardiografia , Regulação da Expressão Gênica , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Hexosaminas/metabolismo , Humanos , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/fisiopatologia , Masculino , Metaboloma , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Monocrotalina/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/fisiopatologiaRESUMO
Cysteine cathepsin proteases play critical roles in cardiovascular disease progression and are implicated in extracellular matrix (ECM) degradation. Patients with pulmonary arterial hypertension (PAH) exhibit increased elastase production by pulmonary arterial smooth muscle cells (PASMCs), which is related to the degradation of elastic fibers and pulmonary vascular remodeling. However, the mechanism by which cathepsins regulate the ECM and PASMC proliferation in PAH remains unclear. We hypothesized that cathepsin proteases in PASMCs promote the development of PAH. Here, we show overexpression of cathepsin S (Cat S) and degradation of elastic laminae in the lungs of patients with idiopathic PAH and in the PASMCs of monocrotaline-induced PAH model (MCT-PAH) rats. In addition, pulmonary hypertension can be treated in MCT-PAH rats by administering a selective Cat S inhibitor, Millipore-219393, which stimulates peroxisome proliferator-activated receptor-γ (PPARγ) to inhibit the expression of Cat S, thus suppressing the proliferation and migration of MCT-PAH PASMCs. We then reduced Cat S or PPARγ expression by using small interfering RNA in human PASMCs to demonstrate a mechanistic link between Cat S signaling and PPARγ protein, and the results suggest that PPARγ is upstream of Cat S signaling. In conclusion, the activity of Cat S in pulmonary vascular remodeling and degradation of elastin fibers through the disruption of PPARγ is pathophysiologically significant in PAH.
Assuntos
Catepsinas/genética , Miócitos de Músculo Liso/metabolismo , PPAR gama/genética , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Idoso , Animais , Anti-Hipertensivos/farmacologia , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Monocrotalina/administração & dosagem , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Elastase Pancreática/genética , Elastase Pancreática/metabolismo , Cultura Primária de Células , Inibidores de Proteases/farmacologia , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de SinaisRESUMO
Pulmonary arterial hypertension (PAH) is a female predominant disease in which progressive vascular remodeling and vasoconstriction result in right ventricular (RV) failure and death. Most PAH patients utilize multiple therapies. In contrast, the majority of preclinical therapeutic studies are performed in male rats with a single novel drug often markedly reversing disease in the model. We sought to differentiate single drug therapy from combination therapy in female rats with severe disease. One week after left pneumonectomy, we induced PH in young female Sprague-Dawley rats with an injection of monocrotaline (45 mg/kg). Female rats were then randomized to receive combination therapy (ambrisentan plus tadalafil), ambrisentan monotherapy, tadalafil monotherapy, or vehicle. We measured RV size and function on two serial echocardiograms during the development of disease. We measured RV systolic pressure (RVSP) invasively at day 28 after monocrotaline before analyzing the vascular volume with microcomputed tomography (microCT) of the right middle lobe. RVSP was significantly lower in female rats treated with combination therapy, and combination therapy resulted in increased small vessel volume density measured by microCT compared with untreated rats. Combination-treated rats had the smallest RV end-diastolic diameter on echocardiogram as compared with the other groups. In summary, we report a female model of pulmonary hypertension that can distinguish between one and two drug therapies; this model may facilitate better preclinical drug testing for novel compounds.
Assuntos
Anti-Hipertensivos/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/tratamento farmacológico , Fenilpropionatos/farmacologia , Piridazinas/farmacologia , Tadalafila/farmacologia , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Ecocardiografia , Feminino , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/diagnóstico por imagem , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Monocrotalina/administração & dosagem , Pneumonectomia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/fisiopatologia , Microtomografia por Raio-XRESUMO
Effect of different Ca2+ concentrations in the bathing solution [Ca2+]o on the parameters of single isometric contraction and slow force response to stretching was studied in isolated preparations of healthy and hypertrophied myocardium of male and female Wistar rats. In all groups of experimental animals, the increase in calcium concentration was followed by a decrease in the myocardium slow response intensity. We revealed a complementary relationship between the current and medium-term systems of myocardial contractility regulation by the length of the myocardium aimed at the maintenance of the constant level during adaptation to the load. Slow responses of the hypertrophied rat heart myocardium were suppressed in comparison with those in the healthy myocardium and their intensity did not depend on animal sex.
Assuntos
Cloreto de Cálcio/farmacologia , Cardiomegalia/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Contração Isométrica/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/patologia , Animais , Cardiomegalia/induzido quimicamente , Feminino , Ventrículos do Coração/fisiopatologia , Masculino , Monocrotalina/administração & dosagem , Ratos , Ratos Wistar , Fatores Sexuais , Fatores de Tempo , Técnicas de Cultura de TecidosRESUMO
Pyrrolizidine alkaloids (PAs) are known hepatotoxins. The execution of the toxicities of the alkaloids requires metabolic activation. Protein modification by reactive metabolites of PAs has been suggested to be an important mechanism of the toxic actions of PAs. The objectives of the present study were to define the interactions of dehydromonocrotaline (DHM) with lysine, lysine derivatives, a model peptide, and bovine serum albumin and to explore the lysine modification of hepatic proteins of animals given monocrotaline. DHM was found to react with the ε-amino group of all model compounds tested after incubation with DHM, and the modification reaction preferentially occurred at C7 of the necine base. The lysine residue modification with the same regioselectivity was also observed in hepatic proteins of mice treated with monocrotaline. The observed modification increased with the increase in doses administered to the animals. This work allowed us to better understand the mechanisms of the hepatotoxicity of monocrotaline.
Assuntos
Lisina/metabolismo , Monocrotalina/metabolismo , Animais , Bovinos , Injeções Intraperitoneais , Lisina/química , Masculino , Camundongos , Camundongos Endogâmicos , Monocrotalina/administração & dosagem , Monocrotalina/química , Monocrotalina/toxicidade , Peptídeos/química , Peptídeos/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismoRESUMO
AIMS: It is still controversial whether bone marrow (BM)-derived endothelial progenitor cells (EPCs) can contribute to vascular repair and prevent the progression of vascular diseases. We aimed to characterize BM-derived EPC subpopulations and to evaluate their therapeutic efficacies to repair injured vascular endothelium of systemic and pulmonary arteries. METHODS AND RESULTS: BM mononuclear cells of Fisher-344 rats were cultured under endothelial cell-conditions. Early EPCs appeared on days 3-6. Late-outgrowth and very late-outgrowth EPCs (LOCs and VLOCs) were defined as cells forming cobblestone colonies on days 9-14 and 17-21, respectively. Among EPC subpopulations, LOCs showed the highest angiogenic capability with enhanced proliferation potential and secretion of proangiogenic proteins. To investigate the therapeutic effects of these EPCs, Fisher-344 rats underwent wire-mediated endovascular injury in femoral artery (FA) and were concurrently injected intraperitoneally with 60mg/kg monocrotaline (MCT). Injured rats were then treated with six injections of one of three EPCs (1×10(6) per time). After 4weeks, transplanted LOCs, but not early EPCs or VLOCs, significantly attenuated neointimal lesion formation in injured FAs. Some of CD31(+) LOCs directly replaced the injured FA endothelium (replacement ratio: 11.7±7.0%). In contrast, any EPC treatment could neither replace MCT-injured endothelium of pulmonary arterioles nor prevent the progression of pulmonary arterial hypertension (PAH). LOCs modified protectively the expression profile of angiogenic and inflammatory genes in injured FAs, but not in MCT-injured lungs. CONCLUSION: BM-derived LOCs can contribute to vascular repair of injured systemic artery; however, even they cannot rescue injured pulmonary vasculature under MCT-induced PAH.
Assuntos
Células Progenitoras Endoteliais/transplante , Endotélio Vascular/crescimento & desenvolvimento , Hipertensão Pulmonar/patologia , Neointima/patologia , Doenças Vasculares/patologia , Animais , Arteríolas/crescimento & desenvolvimento , Arteríolas/transplante , Células da Medula Óssea/patologia , Transplante de Medula Óssea , Diferenciação Celular/genética , Proliferação de Células , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Endotélio Vascular/patologia , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/lesões , Artéria Femoral/patologia , Humanos , Hipertensão Pulmonar/terapia , Monocrotalina/administração & dosagem , Neointima/terapia , Ratos , Doenças Vasculares/terapiaRESUMO
Pediatric pulmonary arterial hypertension (PAH) presents certain specific features. In this specific age group, experimental models to study the pathophysiology of PAH are lacking. To characterize hemodynamic, morphometric, and histological progression as well as the expression of neurohumoral factors and regulators of cardiac transcription in an infantile model of PAH induced by monocrotaline (MCT), eight-day-old Wistar rats were randomly injected with MCT (30 mg/kg, sc, n = 95) or equal volume of saline solution (n = 92). Animals were instrumented for biventricular hemodynamic recording 7, 14, and 21 days after MCT, whereas samples were collected at 1, 3, 7, 14, and 21 days after MCT. Different time point postinjections were defined for further analysis. Hearts and lungs were collected for morphometric characterization, assessment of right- and left-ventricle (RV and LV) cardiomyocyte diameter and collagen type-I and type-III ratio, RV collagen volume fraction, and pulmonary vessels wall thickness. mRNA quantification was undertaken for brain natriuretic peptide (BNP), endothelin-1 (ET-1), and for cardiac transcription regulators (HOP and Islet1). Animals treated with MCT at the 8th day of life presented RV hypertrophy since day 14 after MCT injection. There were no differences on the RV collagen volume fraction or collagen type-I and type-III ratio. Pulmonary vascular remodelling and PAH were present on day 21, which were accompanied by an increased expression of BNP, ET-1, HOP, and Islet1. The infantile model of MCT-induced PAH can be useful for the study of its pathophysiology and to test new therapeutic targets in pediatric age group.
Assuntos
Coração/fisiopatologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/patologia , Pulmão/patologia , Monocrotalina/toxicidade , Animais , Animais Recém-Nascidos , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Endotelina-1/metabolismo , Feminino , Coração/efeitos dos fármacos , Hemodinâmica , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Masculino , Monocrotalina/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Peptídeo Natriurético Encefálico/metabolismo , Alcaloides de Pirrolizidina/toxicidade , RNA Mensageiro , Ratos , Ratos Wistar , Fatores de Tempo , Fatores de Transcrição/metabolismoRESUMO
Pulmonary hypertension (PH) is associated with profound vascular remodeling and alterations in Ca(2+) homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Previous studies show that canonical transient receptor potential (TRPC) genes are upregulated and store-operated Ca(2+) entry (SOCE) is augmented in PASMCs of chronic hypoxic rats and patients of pulmonary arterial hypertension (PAH). Here we further examine the involvement of TRPC and SOCE in PH with a widely used rat model of monocrotaline (MCT)-induced PAH. Rats developed severe PAH, right ventricular hypertrophy, and significant increase in store-operated TRPC1 and TRPC4 mRNA and protein in endothelium-denuded pulmonary arteries (PAs) 3 wk after MCT injection. Contraction of PA and Ca(2+) influx in PASMC evoked by store depletion using cyclopiazonic acid (CPA) were enhanced dramatically, consistent with augmented SOCE in the MCT-treated group. The time course of increase in CPA-induced contraction corresponded to that of TRPC1 expression. Endothelin-1 (ET-1)-induced vasoconstriction was also potentiated in PAs of MCT-treated rats. The response was partially inhibited by SOCE blockers, including Gd(3+), La(3+), and SKF-96365, as well as the general TRPC inhibitor BTP-2, suggesting that TRPC-dependent SOCE was involved. Moreover, the ET-1-induced contraction and Ca(2+) response in the MCT group were more susceptible to the inhibition caused by the various SOCE blockers. Hence, our study shows that MCT-induced PAH is associated with increased TRPC expression and SOCE, which are involved in the enhanced vascular reactivity to ET-1, and support the hypothesis that TRPC-dependent SOCE is an important pathway for the development of PH.
Assuntos
Sinalização do Cálcio/fisiologia , Hipertensão Pulmonar/metabolismo , Monocrotalina/administração & dosagem , Artéria Pulmonar/metabolismo , Canais de Cátion TRPC/biossíntese , Animais , Cálcio/metabolismo , Cálcio/fisiologia , Células Cultivadas , Hipertensão Pulmonar/induzido quimicamente , Masculino , Técnicas de Cultura de Órgãos , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/fisiologiaRESUMO
Pulmonary arterial hypertension (PAH) is a disease that increases the pulmonary vascular resistance, causing hypertrophy and subsequent right heart failure. Oxidative stress is involved in the pathogenesis of PAH, and estrogen is considered an antioxidant. Thus, the aim of this study was to test the hypothesis that estrogen could attenuate PAH by modulating oxidative stress. Female Wistar rats were ovariectomized or suffered the surgery simulation (sham). After 7 days, subcutaneous pellets with 17ß-estradiol or sunflower oil were implanted. At this time, PAH was induced by means of a single dose of monocrotaline (MCT) (60 mg·kg(-1) i.p.). The experimental groups were as follows: (1) sham, (2) sham + MCT, (3) ovariectomy (O), (4) ovariectomy + MCT (OM), (5) ovariectomy + estrogen replacement + MCT (ORM). Hemodynamic measurements were performed 21 days after MCT or saline. Nonovariectomized animals were assessed in the stage of diestrus. Afterwards, the rats were killed to collect the heart, the lung and the liver to evaluate morphometry. Samples of the right ventricle were used to analyse the reduced glutathione : oxidized glutathione ratio. Lung congestion in the OM group, which was decreased in the ORM group, was observed. Right ventricle end-diastolic pressure was increased in the OM and the ORM groups. The glutathione ratio decreased in the groups O, OM and ORM. The data suggest that estrogen can exert great influence on the cellular redox balance. The maintenance of physiological estrogen levels may help to avoid the appearance of pulmonary oedema, characteristic of this model of PAH, and right ventricular failure.
Assuntos
Estradiol/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Estresse Oxidativo , Animais , Western Blotting , Peso Corporal , Diestro/fisiologia , Estradiol/administração & dosagem , Feminino , Glutationa/metabolismo , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/fisiopatologia , Monocrotalina/administração & dosagem , Monocrotalina/efeitos adversos , Ovariectomia , Óleos de Plantas/administração & dosagem , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Óleo de GirassolRESUMO
Multifunctional granular mast cells (MCs) are involved in various pathological processes. The response of MC populations of myocardium, pericardium and lung to pulmonary hypertension (PH) has been studies 8 weeks after injection of monocrotaline. Five intact and five experimental rats were used. The density of MCs of different maturity was estimated on paraffin sections stained with Alcian blue and Safranin. Expressiveness of PH was estimated by functional parameters with the help of echocardiograms and by morphological markers. The MC density in myocardium of the intact and experimental rats was relatively low: 2 to 4 cells/mm2. MC density in the pericardium of intact rats was 14 times higher than in myocardium and increased 3 times for PH. The mature Safranin-positive cells predominated (70-80%) in myocardium and pericardium of intact and experimental rats. The MC density in the lungs of intact rats was about 30 cells/mm2; 98% of these cells were immature Alcian-positive cells. The mean density of MCs in the lungs of rats with PH increased 5.6 times. The mature Safranin-positive cells appeared in the lungs of rats with severe pathology. The greatest number of MCs in lungs was in the rats with the most pronounced disorders of myocardium function and marked histological damages (injuries) of myocardium and lungs. The finding show active response of MC population to monocrotaline-induced PH that stimulates migration of immature MCs into pericardium and lungs from the outside. Our data indicate the important role of MCs in the pathogenesis of PH.
Assuntos
Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Mastócitos/patologia , Monocrotalina/administração & dosagem , Pericárdio/patologia , Azul Alciano , Animais , Contagem de Células , Movimento Celular/efeitos dos fármacos , Ecocardiografia , Hipertensão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Microtomia , Monocrotalina/efeitos adversos , Miocárdio/patologia , Tamanho do Órgão/efeitos dos fármacos , Inclusão em Parafina , Pericárdio/efeitos dos fármacos , Fenazinas , Artéria Pulmonar/patologia , Ratos , Ratos WistarRESUMO
BACKGROUND: Metabonomics has been widely used to analyze the initiation, progress, and development of diseases. However, application of metabonomics to explore the mechanism of pulmonary arterial hypertension (PAH) are poorly reported. This study aimed to investigate the influence of atorvastatin (Ato) on metabolic pattern of rats with pulmonary hypertension. METHODS: PAH animal model was established using monocrotaline (MCT). The mean pulmonary artery pressure (mPAP) and right ventricular hypertrophy index (RVHI) were measured. The microstructure of pulmonary arterioles was observed by HE staining. Nuclear magnetic resonance was used to detect and analyze the serum metabolites. The levels of glycogen synthase kinase-3ß (GSK-3ß), hexokinase 2 (HK-2), sterol regulatory element-binding protein 1c (SREBP-1c), and carnitine palmitoyltransferase I (CPT-1) in the lung tissues were measured. RESULTS: Ato significantly improved lung function by decreasing mPAP, RVHI, wall thickness, and wall area. Differences in metabolic patterns were observed among normal, PAH, and Ato group. The levels of GSK-3ß and SREBP-1c were decreased, but HK-2 and CPT-1 were increased in the group PAH. Ato treatment markedly reversed the influence of MCT. CONCLUSION: Ato significantly improved the pulmonary vascular remodeling and pulmonary hypertension of PAH rats due to its inhibition on Warburg effect and fatty acid ß oxidation.
Assuntos
Atorvastatina/administração & dosagem , Hipertensão Pulmonar/tratamento farmacológico , Remodelação Vascular/efeitos dos fármacos , Animais , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Masculino , Metabolômica , Monocrotalina/administração & dosagem , Monocrotalina/toxicidade , Oxirredução/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , RatosRESUMO
Pulmonary hypertension (PH) initially results in compensatory right ventricular (RV) hypertrophy, but eventually in RV failure. This transition is poorly understood, but may be triggered by hypoxia. Measurements of RV oxygen tension (pO2) in PH are lacking. We hypothesized that RV hypoxia occurs in monocrotaline-induced PH in rats and that myo-inositol trispyrophosphate (ITPP), facilitating oxygen dissociation from hemoglobin, can relieve it. Rats received monocrotaline (PH) or saline (control) and 24 days later echocardiograms, pressure-volume loops were obtained and myocardial pO2 was measured using a fluorescent probe. In PH mean pulmonary artery pressure more than doubled (35 ± 5 vs. 15 ± 2 in control), RV was hypertrophied, though its contractility was augmented. RV and LV pO2 was 32 ± 5 and 15 ± 8 mmHg, respectively, in control rats. In PH RV pO2 was reduced to 18 ± 9 mmHg, while LV pO2 was unchanged. RV pO2 correlated with RV diastolic wall stress (negatively) and LV systolic pressure (positively). Acute ITPP administration did not affect RV or LV pO2 in control animals, but increased RV pO2 to 26 ± 5 mmHg without affecting LV pO2 in PH. RV oxygen balance is impaired in PH and as such can be an important target for PH therapy. ITPP may be one of such potential therapies.
Assuntos
Cardiotônicos/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipóxia/tratamento farmacológico , Fosfatos de Inositol/farmacologia , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Cardiotônicos/administração & dosagem , Modelos Animais de Doenças , Hemoglobinas/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/induzido quimicamente , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Monocrotalina/administração & dosagem , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Ratos , Ratos Wistar , Resultado do Tratamento , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologiaRESUMO
L-arginine can attenuate pulmonary hypertension (PH) by a mechanism that are not fully understood. This study investigated the molecule mechanism of L-arginine attenuating PH. Sprague Dawley rats were treated with monocrotaline (MCT) with or without L-arginine for 3 or 5 wk. Right ventricular systolic pressure (RVSP), right heart hypertrophy, survival rate, pulmonary artery wall thickness, nitric oxide (NO) concentration, and superoxide anion (O(2)(*-)) generation in the lung were measured. Expressions of endothelial nitric oxide synthase (eNOS) and heat shock protein 90 (HSP90), phosphorylation of eNOS at Ser(1177), and the association of eNOS and HSP90 in the lung were determined by Western blot and immunoprecipitation experiments. MCT increased RVSP, right heart hypertrophy, mortality, pulmonary artery wall thickness, and O(2)(*-) generation and decreased eNOS and HSP90 expression and association, phosphorylation of eNOS at Ser(1177), and NO production. L-arginine decreased RVSP, right heart hypertrophy, mortality, O(2)(*-) generation, and pulmonary artery wall thickness and increased NO production. L-arginine increased eNOS expression, phosphorylation of eNOS at Ser(1177), and association of eNOS and HSP90 without significantly altering HSP90 expression. L-arginine may act through three pathways, providing a substrate for NO generation, preserving eNOS expression/phosphorylation, and maintaining the association of eNOS and HSP90, which allows restoration of eNOS activity and coupling activity, to maintain the balance between NO and O(2)(*-) and delay the development of PH.
Assuntos
Arginina/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/enzimologia , Monocrotalina/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Pressão Sanguínea , Western Blotting , Peso Corporal , Proteínas de Choque Térmico HSP90/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Imunoprecipitação , Estimativa de Kaplan-Meier , Masculino , Monocrotalina/administração & dosagem , Óxido Nítrico/metabolismo , Fosforilação , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
INTRODUCTION: Cardiac cachexia is a catabolic state in which adipose tissue atrophy is accompanied by a proinflammatory state. The molecular mechanisms underlying proinflammatory activation remain, however, largely unknown. In this experimental study, the effect of a high-calorie diet was analyzed in the advanced stages of monocrotaline-induced pulmonary hypertension (PH). METHODS: Male Wistar rats (180-200 g; n=28) were randomly injected with either monocrotaline (MCT; 60 mg/kg; sc) or vehicle. Each group was then assigned to either a regular diet (2.9 kcal/g) or a high-calorie diet with a high fat and simple carbohydrate content (5.4 kcal/g). Twenty-four to 32 days after injection, adipose tissue was collected for morphometric, histological and molecular analysis. The proportional weight of the gonadal fat pad was used as an adiposity index. Detection of macrophages in adipose tissue was performed with an anti-CD6 monoclonal antibody. Interleukin-6 (IL-6) mRNA quantification was performed using real-time RT-PCR. RESULTS: MCT injection was accompanied by a reduction in adiposity (-51 +/- 3.4%) and by adipocyte atrophy (-18 +/- 1.4%). This was accompanied by IL-6 overexpression (+879 +/- 444%), but there were no changes in adipose tissue macrophage content. Exposure to a high-calorie diet in the MCT group attenuated adipose tissue atrophy as well as IL-6 gene overexpression. CONCLUSION: A high-calorie diet attenuates cachexia and proinflammatory activation in the advanced stages of monocrotaline-induced PH. These results suggest nutritional state potential therapeutic target in advanced PH
Assuntos
Caquexia/dietoterapia , Caquexia/etiologia , Ingestão de Energia , Hipertensão Pulmonar/complicações , Paniculite/dietoterapia , Paniculite/etiologia , Animais , Hipertensão Pulmonar/induzido quimicamente , Masculino , Monocrotalina/administração & dosagem , Ratos , Ratos WistarRESUMO
Pulmonary arterial hypertension (PAH) is a serious disease characterized by elevated pulmonary artery pressure, inflammatory cell infiltration and pulmonary vascular remodeling. However, little is known about the pathogenic mechanisms underlying the disease onset and progression. RNA sequencing (RNA-seq) was used to identify the transcriptional profiling in control and rats injected with monocrotaline (MCT) for 1, 2, 3 and 4 weeks. A total of 23200 transcripts and 280, 1342, 908 and 3155 differentially expressed genes (DEGs) were identified at the end of week 1, 2, 3 and 4, of which Svop was the common top 10 DEGs over the course of PAH progression. Functional enrichment analysis of DEGs showed inflammatory/immune response occurred in the early stage of PAH development. KEGG pathway enrichment analysis of DEGs showed that cytokine-cytokine receptor interaction and neuroactive ligand-receptor interaction were in the initiation and progression of PAH. Further analysis revealed impaired expression of cholinergic receptors, adrenergic receptors including alpha1, beta1 and beta2 receptor, and dysregulated expression of γ-aminobutyric acid receptors. In summary, the dysregulated inflammation/immunity and neuroactive ligand receptor signaling pathways may be involved in the onset and progression of PAH.