Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.445
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017655

RESUMO

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Assuntos
Caspases/metabolismo , Morte Celular , Inflamação/etiologia , Inflamação/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Animais , Apoptose , Biomarcadores , Caspases/genética , Morte Celular/genética , Suscetibilidade a Doenças , Ativação Enzimática , Humanos , Inflamação/patologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
2.
Cell ; 185(13): 2208-2209, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750031

RESUMO

Plant immune receptors often contain TIR domains, which can oligomerize to form active enzyme complexes in response to pathogen infections. In this issue of Cell, Yu and colleagues discover that some plant TIR domains possess a novel 2',3'-cAMP/cGMP synthetase activity that cleaves double-stranded RNA/DNA, triggering cell death during plant immune responses.


Assuntos
Imunidade Vegetal , Receptores Imunológicos , Morte Celular/genética , Imunidade Vegetal/genética , Plantas/metabolismo , Receptores Imunológicos/metabolismo
3.
Cell ; 185(13): 2370-2386.e18, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35597242

RESUMO

2',3'-cAMP is a positional isomer of the well-established second messenger 3',5'-cAMP, but little is known about the biology of this noncanonical cyclic nucleotide monophosphate (cNMP). Toll/interleukin-1 receptor (TIR) domains of nucleotide-binding leucine-rich repeat (NLR) immune receptors have the NADase function necessary but insufficient to activate plant immune responses. Here, we show that plant TIR proteins, besides being NADases, act as 2',3'-cAMP/cGMP synthetases by hydrolyzing RNA/DNA. Structural data show that a TIR domain adopts distinct oligomers with mutually exclusive NADase and synthetase activity. Mutations specifically disrupting the synthetase activity abrogate TIR-mediated cell death in Nicotiana benthamiana (Nb), supporting an important role for these cNMPs in TIR signaling. Furthermore, the Arabidopsis negative regulator of TIR-NLR signaling, NUDT7, displays 2',3'-cAMP/cGMP but not 3',5'-cAMP/cGMP phosphodiesterase activity and suppresses cell death activity of TIRs in Nb. Our study identifies a family of 2',3'-cAMP/cGMP synthetases and establishes a critical role for them in plant immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular/genética , AMP Cíclico/biossíntese , GMP Cíclico/biossíntese , Ligases/metabolismo , NAD+ Nucleosidase/metabolismo , Doenças das Plantas , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Interleucina-1/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
4.
Cell ; 180(6): 1115-1129.e13, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200799

RESUMO

Influenza A virus (IAV) is a lytic RNA virus that triggers receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated pathways of apoptosis and mixed lineage kinase domain-like pseudokinase (MLKL)-dependent necroptosis in infected cells. ZBP1 initiates RIPK3-driven cell death by sensing IAV RNA and activating RIPK3. Here, we show that replicating IAV generates Z-RNAs, which activate ZBP1 in the nucleus of infected cells. ZBP1 then initiates RIPK3-mediated MLKL activation in the nucleus, resulting in nuclear envelope disruption, leakage of DNA into the cytosol, and eventual necroptosis. Cell death induced by nuclear MLKL was a potent activator of neutrophils, a cell type known to drive inflammatory pathology in virulent IAV disease. Consequently, MLKL-deficient mice manifest reduced nuclear disruption of lung epithelia, decreased neutrophil recruitment into infected lungs, and increased survival following a lethal dose of IAV. These results implicate Z-RNA as a new pathogen-associated molecular pattern and describe a ZBP1-initiated nucleus-to-plasma membrane "inside-out" death pathway with potentially pathogenic consequences in severe cases of influenza.


Assuntos
Vírus da Influenza A/genética , Necroptose/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Apoptose/genética , Morte Celular/genética , Linhagem Celular Tumoral , Feminino , Vírus da Influenza A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , RNA/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia
5.
Cell ; 172(4): 811-824.e14, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29395325

RESUMO

Type I interferon (IFN) is produced when host sensors detect foreign nucleic acids, but how sensors differentiate self from nonself nucleic acids, such as double-stranded RNA (dsRNA), is incompletely understood. Mutations in ADAR1, an adenosine-to-inosine editing enzyme of dsRNA, cause Aicardi-Goutières syndrome, an autoinflammatory disorder associated with spontaneous interferon production and neurologic sequelae. We generated ADAR1 knockout human cells to explore ADAR1 substrates and function. ADAR1 primarily edited Alu elements in RNA polymerase II (pol II)-transcribed mRNAs, but not putative pol III-transcribed Alus. During the IFN response, ADAR1 blocked translational shutdown by inhibiting hyperactivation of PKR, a dsRNA sensor. ADAR1 dsRNA binding and catalytic activities were required to fully prevent endogenous RNA from activating PKR. Remarkably, ADAR1 knockout neuronal progenitor cells exhibited MDA5 (dsRNA sensor)-dependent spontaneous interferon production, PKR activation, and cell death. Thus, human ADAR1 regulates sensing of self versus nonself RNA, allowing pathogen detection while avoiding autoinflammation.


Assuntos
Adenosina Desaminase/metabolismo , Elementos Alu , Doenças Autoimunes do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Biossíntese de Proteínas , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/imunologia , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Morte Celular/genética , Morte Celular/imunologia , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/imunologia , Helicase IFIH1 Induzida por Interferon/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/patologia , RNA Polimerase II/genética , RNA Polimerase II/imunologia , RNA Polimerase II/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , eIF-2 Quinase/genética , eIF-2 Quinase/imunologia , eIF-2 Quinase/metabolismo
6.
Nat Immunol ; 18(1): 96-103, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27820810

RESUMO

T lymphocytes and B lymphocytes integrate activating signals to control the size of their proliferative response. Here we report that such control was achieved by timed changes in the production rate of cell-cycle-regulating proto-oncoprotein Myc, with division cessation occurring when Myc levels fell below a critical threshold. The changing pattern of the level of Myc was not affected by cell division, which identified the regulating mechanism as a cell-intrinsic, heritable temporal controller. Overexpression of Myc in stimulated T cells and B cells did not sustain cell proliferation indefinitely, as a separate 'time-to-die' mechanism, also heritable, was programmed after lymphocyte activation and led to eventual cell loss. Together the two competing cell-intrinsic timed fates created the canonical T cell and B cell immune-response pattern of rapid growth followed by loss of most cells. Furthermore, small changes in these timed processes by regulatory signals, or by oncogenic transformation, acted in synergy to greatly enhance cell numbers over time.


Assuntos
Linfócitos B/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Divisão Celular , Proliferação de Células/genética , Imunidade Celular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Morte Celular/genética , Divisão Celular/genética , Células Cultivadas , Regulação da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais , Transgenes/genética
7.
Immunity ; 52(6): 978-993.e6, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32362323

RESUMO

Pathways controlling intestinal epithelial cell (IEC) death regulate gut immune homeostasis and contribute to the pathogenesis of inflammatory bowel diseases. Here, we show that caspase-8 and its adapter FADD act in IECs to regulate intestinal inflammation downstream of Z-DNA binding protein 1 (ZBP1)- and tumor necrosis factor receptor-1 (TNFR1)-mediated receptor interacting protein kinase 1 (RIPK1) and RIPK3 signaling. Mice with IEC-specific FADD or caspase-8 deficiency developed colitis dependent on mixed lineage kinase-like (MLKL)-mediated epithelial cell necroptosis. However, MLKL deficiency fully prevented ileitis caused by epithelial caspase-8 ablation, but only partially ameliorated ileitis in mice lacking FADD in IECs. Our genetic studies revealed that caspase-8 and gasdermin-D (GSDMD) were both required for the development of MLKL-independent ileitis in mice with epithelial FADD deficiency. Therefore, FADD prevents intestinal inflammation downstream of ZBP1 and TNFR1 by inhibiting both MLKL-induced necroptosis and caspase-8-GSDMD-dependent pyroptosis-like death of epithelial cells.


Assuntos
Caspase 8/genética , Proteína de Domínio de Morte Associada a Fas/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Quinases/metabolismo , Animais , Apoptose/genética , Caspase 8/metabolismo , Morte Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Perfilação da Expressão Gênica , Homeostase/genética , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas Quinases/genética
8.
Nature ; 621(7978): 415-422, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674080

RESUMO

DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Polimerase Dirigida por DNA , Mitose , Proteínas Serina-Treonina Quinases , Humanos , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Mutações Sintéticas Letais , DNA Polimerase teta , Quinase 1 Polo-Like
9.
Mol Cell ; 81(15): 3048-3064.e9, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216543

RESUMO

RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression, and aberrant RBP-RNA interactions can promote cancer progression. Here, we interrogate the function of RBPs in cancer using pooled CRISPR-Cas9 screening and identify 57 RBP candidates with distinct roles in supporting MYC-driven oncogenic pathways. We find that disrupting YTHDF2-dependent mRNA degradation triggers apoptosis in triple-negative breast cancer (TNBC) cells and tumors. eCLIP and m6A sequencing reveal that YTHDF2 interacts with mRNAs encoding proteins in the MAPK pathway that, when stabilized, induce epithelial-to-mesenchymal transition and increase global translation rates. scRibo-STAMP profiling of translating mRNAs reveals unique alterations in the translatome of single cells within YTHDF2-depleted solid tumors, which selectively contribute to endoplasmic reticulum stress-induced apoptosis in TNBC cells. Thus, our work highlights the therapeutic potential of RBPs by uncovering a critical role for YTHDF2 in counteracting the global increase of mRNA synthesis in MYC-driven breast cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a RNA/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Morte Celular/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes myc , Humanos , Camundongos Nus , Camundongos Transgênicos , Biossíntese de Proteínas , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Cell ; 81(2): 370-385.e7, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33271062

RESUMO

The mechanisms of cellular energy sensing and AMPK-mediated mTORC1 inhibition are not fully delineated. Here, we discover that RIPK1 promotes mTORC1 inhibition during energetic stress. RIPK1 is involved in mediating the interaction between AMPK and TSC2 and facilitate TSC2 phosphorylation at Ser1387. RIPK1 loss results in a high basal mTORC1 activity that drives defective lysosomes in cells and mice, leading to accumulation of RIPK3 and CASP8 and sensitization to cell death. RIPK1-deficient cells are unable to cope with energetic stress and are vulnerable to low glucose levels and metformin. Inhibition of mTORC1 rescues the lysosomal defects and vulnerability to energetic stress and prolongs the survival of RIPK1-deficient neonatal mice. Thus, RIPK1 plays an important role in the cellular response to low energy levels and mediates AMPK-mTORC1 signaling. These findings shed light on the regulation of mTORC1 during energetic stress and unveil a point of crosstalk between pro-survival and pro-death pathways.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína de Domínio de Morte Associada a Fas/genética , Intestino Grosso/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Proteína 5 Relacionada à Autofagia/deficiência , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular/genética , Proteína de Domínio de Morte Associada a Fas/deficiência , Regulação da Expressão Gênica , Glucose/antagonistas & inibidores , Glucose/farmacologia , Células HEK293 , Células HT29 , Humanos , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/patologia , Células Jurkat , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/antagonistas & inibidores , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais , Sirolimo/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
11.
Immunity ; 50(6): 1352-1364, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216460

RESUMO

Caspases are an evolutionary conserved family of cysteine proteases that are centrally involved in cell death and inflammation responses. A wealth of foundational insight into the molecular mechanisms that control caspase activation has emerged in recent years. Important advancements include the identification of additional inflammasome platforms and pathways that regulate activation of inflammatory caspases; the discovery of gasdermin D as the effector of pyroptosis and interleukin (IL)-1 and IL-18 secretion; and the existence of substantial crosstalk between inflammatory and apoptotic initiator caspases. A better understanding of the mechanisms regulating caspase activation has supported initial efforts to modulate dysfunctional cell death and inflammation pathways in a suite of communicable, inflammatory, malignant, metabolic, and neurodegenerative diseases. Here, we review current understanding of caspase biology with a prime focus on the inflammatory caspases and outline important topics for future experimentation.


Assuntos
Caspases/metabolismo , Suscetibilidade a Doenças , Inflamação/etiologia , Inflamação/metabolismo , Animais , Apoptose , Biomarcadores , Caspases/química , Caspases/genética , Morte Celular/genética , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Piroptose , Transdução de Sinais/efeitos dos fármacos
12.
Mol Cell ; 78(6): 1045-1054, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32516599

RESUMO

Cell death, or, more specifically, cell suicide, is a process of fundamental importance to human health. Throughout our lives, over a million cells are produced every second. When organismal growth has stopped, to balance cell division, a similar number of cells must be removed. This is achieved by activation of molecular mechanisms that have evolved so that cells can destroy themselves. The first clues regarding the nature of one of these mechanisms came from studying genes associated with cancer, in particular the gene for BCL-2. Subsequent studies revealed that mutations or other defects that inhibit cell death allow cells to accumulate, prevent removal of cells with damaged DNA, and increase the resistance of malignant cells to chemotherapy. Knowledge of this mechanism has allowed development of drugs that kill cancer cells by directly activating the cell death machinery and by synergizing with conventional chemotherapy as well as targeted agents to achieve improved outcomes for cancer patients.


Assuntos
Morte Celular/fisiologia , Neoplasias/genética , Neoplasias/terapia , Apoptose/genética , Morte Celular/genética , Dano ao DNA/genética , Humanos , Neoplasias/fisiopatologia
13.
Genes Dev ; 34(5-6): 398-412, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32001511

RESUMO

Chromatin barriers prevent spurious interactions between regulatory elements and DNA-binding proteins. One such barrier, whose mechanism for overcoming is poorly understood, is access to recombination hot spots during meiosis. Here we show that the chromatin remodeler HELLS and DNA-binding protein PRDM9 function together to open chromatin at hot spots and provide access for the DNA double-strand break (DSB) machinery. Recombination hot spots are decorated by a unique combination of histone modifications not found at other regulatory elements. HELLS is recruited to hot spots by PRDM9 and is necessary for both histone modifications and DNA accessibility at hot spots. In male mice lacking HELLS, DSBs are retargeted to other sites of open chromatin, leading to germ cell death and sterility. Together, these data provide a model for hot spot activation in which HELLS and PRDM9 form a pioneer complex to create a unique epigenomic environment of open chromatin, permitting correct placement and repair of DSBs.


Assuntos
DNA Helicases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Recombinação Homóloga/genética , Meiose/fisiologia , Animais , Morte Celular/genética , Quebras de DNA de Cadeia Dupla , Células Germinativas/patologia , Código das Histonas/genética , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Substâncias Macromoleculares/metabolismo , Masculino , Meiose/genética , Camundongos
14.
Genes Dev ; 34(23-24): 1735-1752, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184218

RESUMO

FGFs are key developmental regulators that engage a signal transduction cascade through receptor tyrosine kinases, prominently engaging ERK1/2 but also other pathways. However, it remains unknown whether all FGF activities depend on this canonical signal transduction cascade. To address this question, we generated allelic series of knock-in Fgfr1 and Fgfr2 mouse strains, carrying point mutations that disrupt binding of signaling effectors, and a kinase dead allele of Fgfr2 that broadly phenocopies the null mutant. When interrogated in cranial neural crest cells, we identified discrete functions for signaling pathways in specific craniofacial contexts, but point mutations, even when combined, failed to recapitulate the single or double null mutant phenotypes. Furthermore, the signaling mutations abrogated established FGF-induced signal transduction pathways, yet FGF functions such as cell-matrix and cell-cell adhesion remained unaffected, though these activities did require FGFR kinase activity. Our studies establish combinatorial roles of Fgfr1 and Fgfr2 in development and uncouple novel FGFR kinase-dependent cell adhesion properties from canonical intracellular signaling.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Transdução de Sinais/genética , Animais , Adesão Celular/genética , Morte Celular/genética , Células Cultivadas , Camundongos , Mutação , Crista Neural/citologia , Proteínas Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
15.
Nature ; 591(7848): 131-136, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33472215

RESUMO

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Morte Celular , Membrana Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Animais , Apoptose , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Morte Celular/genética , Feminino , Humanos , Macrófagos , Masculino , Camundongos , Mutação , Necrose , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Multimerização Proteica , Piroptose/genética
16.
Hum Mol Genet ; 33(17): 1524-1539, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-38776957

RESUMO

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.


Assuntos
Modelos Animais de Doenças , Ácido Glutâmico , Doença de Huntington , Neurônios , Receptores de N-Metil-D-Aspartato , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Ovinos , Neurônios/metabolismo , Neurônios/patologia , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , RNA-Seq , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Morte Celular/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Animais Geneticamente Modificados , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Transcriptoma/genética , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Neurônios Espinhosos Médios
17.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38078651

RESUMO

To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.


Assuntos
Anoikis , Células de Sertoli , Animais , Masculino , Camundongos , Anoikis/genética , Morte Celular/genética , Células de Sertoli/metabolismo , Testículo/metabolismo
18.
Nat Rev Mol Cell Biol ; 15(2): 135-47, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24452471

RESUMO

Cell death research was revitalized by the understanding that necrosis can occur in a highly regulated and genetically controlled manner. Although RIPK1 (receptor-interacting protein kinase 1)- and RIPK3-MLKL (mixed lineage kinase domain-like)-mediated necroptosis is the most understood form of regulated necrosis, other examples of this process are emerging, including cell death mechanisms known as parthanatos, oxytosis, ferroptosis, NETosis, pyronecrosis and pyroptosis. Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.


Assuntos
Apoptose/genética , Terapia de Alvo Molecular , Necrose/genética , Transdução de Sinais , Morte Celular/genética , Humanos , Necrose/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Nat Rev Mol Cell Biol ; 15(8): 503-8, 2014 08.
Artigo em Inglês | MEDLINE | ID: mdl-25027653

RESUMO

Ubiquitylation is a versatile post-translational modification. Met1-linked linear ubiquitin chains are involved in nuclear factor-κB signalling and cell death, and dysfunctions in linear ubiquitylation underlie chronic inflammation. Recent identification of deubiquitylating enzymes and binding domains that are specific for linear ubiquitin chains suggests new physiological roles for linear ubiquitin chains. Moreover, the ligase required for linear ubiquitylation has a crucial role in the pathogenesis of some malignancies. Structural and functional analyses of the conjugation and deconjugation of linear ubiquitin chains have enabled the development of new probes to study the roles of linear chain ubiquitylation.


Assuntos
NF-kappa B/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Animais , Morte Celular/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais/fisiologia , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
20.
EMBO J ; 40(1): e106118, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33226141

RESUMO

Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53-mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53-mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non-centrosomal protein SMC5 is also TP53-dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.


Assuntos
Centrossomo/metabolismo , Microcefalia/genética , Microcefalia/metabolismo , Mitose/genética , Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Ubiquitina Tiolesterase/genética , Animais , Apoptose/genética , Encéfalo/patologia , Morte Celular/genética , Proliferação de Células/genética , Células Cultivadas , Camundongos , Camundongos Knockout , Mutação/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa