Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85.102
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(18): 3845-3861.e24, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37591240

RESUMO

Dopaminergic projections regulate various brain functions and are implicated in many neuropsychiatric disorders. There are two anatomically and functionally distinct dopaminergic projections connecting the midbrain to striatum: nigrostriatal, which controls movement, and mesolimbic, which regulates motivation. However, how these discrete dopaminergic synaptic connections are established is unknown. Through an unbiased search, we identify that two groups of antagonistic TGF-ß family members, bone morphogenetic protein (BMP)6/BMP2 and transforming growth factor (TGF)-ß2, regulate dopaminergic synapse development of nigrostriatal and mesolimbic neurons, respectively. Projection-preferential expression of their receptors contributes to specific synapse development. Downstream, Smad1 and Smad2 are specifically activated and required for dopaminergic synapse development and function in nigrostriatal vs. mesolimbic projections. Remarkably, Smad1 mutant mice show motor defects, whereas Smad2 mutant mice show lack of motivation. These results uncover the molecular logic underlying the proper establishment of functionally segregated dopaminergic synapses and may provide strategies to treat relevant, projection-specific disease symptoms by targeting specific BMPs/TGF-ß and/or Smads.


Assuntos
Corpo Estriado , Dopamina , Animais , Camundongos , Mesencéfalo , Motivação , Movimento , Sinapses
2.
Cell ; 184(26): 6344-6360.e18, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34890577

RESUMO

The anterior insular cortex (aIC) plays a critical role in cognitive and motivational control of behavior, but the underlying neural mechanism remains elusive. Here, we show that aIC neurons expressing Fezf2 (aICFezf2), which are the pyramidal tract neurons, signal motivational vigor and invigorate need-seeking behavior through projections to the brainstem nucleus tractus solitarii (NTS). aICFezf2 neurons and their postsynaptic NTS neurons acquire anticipatory activity through learning, which encodes the perceived value and the vigor of actions to pursue homeostatic needs. Correspondingly, aIC → NTS circuit activity controls vigor, effort, and striatal dopamine release but only if the action is learned and the outcome is needed. Notably, aICFezf2 neurons do not represent taste or valence. Moreover, aIC → NTS activity neither drives reinforcement nor influences total consumption. These results pinpoint specific functions of aIC → NTS circuit for selectively controlling motivational vigor and suggest that motivation is subserved, in part, by aIC's top-down regulation of dopamine signaling.


Assuntos
Tronco Encefálico/fisiologia , Córtex Insular/fisiologia , Motivação , Vias Neurais/fisiologia , Animais , Comportamento Animal , Dopamina/metabolismo , Feminino , Aprendizagem , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Fatores de Tempo
3.
Cell ; 183(3): 556-558, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125878

RESUMO

The uplifting Twitter trend #BlackInNature highlights the stories of Black people in the outdoors, many of whom are life scientists who perform research in the field. We asked #BlackInNature scientists to share their experiences and motivations to get outside.


Assuntos
Negro ou Afro-Americano , Natureza , Humanos , Motivação
4.
Cell ; 183(1): 211-227.e20, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937106

RESUMO

The striosome compartment within the dorsal striatum has been implicated in reinforcement learning and regulation of motivation, but how striosomal neurons contribute to these functions remains elusive. Here, we show that a genetically identified striosomal population, which expresses the Teashirt family zinc finger 1 (Tshz1) and belongs to the direct pathway, drives negative reinforcement and is essential for aversive learning in mice. Contrasting a "conventional" striosomal direct pathway, the Tshz1 neurons cause aversion, movement suppression, and negative reinforcement once activated, and they receive a distinct set of synaptic inputs. These neurons are predominantly excited by punishment rather than reward and represent the anticipation of punishment or the motivation for avoidance. Furthermore, inhibiting these neurons impairs punishment-based learning without affecting reward learning or movement. These results establish a major role of striosomal neurons in behaviors reinforced by punishment and moreover uncover functions of the direct pathway unaccounted for in classic models.


Assuntos
Aprendizagem da Esquiva/fisiologia , Corpo Estriado/fisiologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Animais , Gânglios da Base , Feminino , Proteínas de Homeodomínio/metabolismo , Aprendizagem/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motivação , Neurônios/fisiologia , Punição , Reforço Psicológico , Proteínas Repressoras/metabolismo
5.
Cell ; 182(6): 1589-1605.e22, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841600

RESUMO

Hunger and thirst have distinct goals but control similar ingestive behaviors, and little is known about neural processes that are shared between these behavioral states. We identify glutamatergic neurons in the peri-locus coeruleus (periLCVGLUT2 neurons) as a polysynaptic convergence node from separate energy-sensitive and hydration-sensitive cell populations. We develop methods for stable hindbrain calcium imaging in free-moving mice, which show that periLCVGLUT2 neurons are tuned to ingestive behaviors and respond similarly to food or water consumption. PeriLCVGLUT2 neurons are scalably inhibited by palatability and homeostatic need during consumption. Inhibition of periLCVGLUT2 neurons is rewarding and increases consumption by enhancing palatability and prolonging ingestion duration. These properties comprise a double-negative feedback relationship that sustains food or water consumption without affecting food- or water-seeking. PeriLCVGLUT2 neurons are a hub between hunger and thirst that specifically controls motivation for food and water ingestion, which is a factor that contributes to hedonic overeating and obesity.


Assuntos
Regulação do Apetite/fisiologia , Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Locus Cerúleo/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Rombencéfalo/fisiologia , Análise de Célula Única/métodos , Animais , Apetite/fisiologia , Escala de Avaliação Comportamental , Retroalimentação , Comportamento Alimentar/fisiologia , Feminino , Glutamina/metabolismo , Glutamina/fisiologia , Homeostase/fisiologia , Fome/fisiologia , Masculino , Camundongos , Camundongos Knockout , Motivação/fisiologia , Neurônios/efeitos dos fármacos , Proteínas Recombinantes , Recompensa , Rombencéfalo/citologia , Rombencéfalo/diagnóstico por imagem , Paladar/fisiologia , Sede/fisiologia
6.
Cell ; 178(3): 653-671.e19, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348890

RESUMO

Nociceptin and its receptor are widely distributed throughout the brain in regions associated with reward behavior, yet how and when they act is unknown. Here, we dissected the role of a nociceptin peptide circuit in reward seeking. We generated a prepronociceptin (Pnoc)-Cre mouse line that revealed a unique subpopulation of paranigral ventral tegmental area (pnVTA) neurons enriched in prepronociceptin. Fiber photometry recordings during progressive ratio operant behavior revealed pnVTAPnoc neurons become most active when mice stop seeking natural rewards. Selective pnVTAPnoc neuron ablation, inhibition, and conditional VTA nociceptin receptor (NOPR) deletion increased operant responding, revealing that the pnVTAPnoc nucleus and VTA NOPR signaling are necessary for regulating reward motivation. Additionally, optogenetic and chemogenetic activation of this pnVTAPnoc nucleus caused avoidance and decreased motivation for rewards. These findings provide insight into neuromodulatory circuits that regulate motivated behaviors through identification of a previously unknown neuropeptide-containing pnVTA nucleus that limits motivation for rewards.


Assuntos
Motivação/efeitos dos fármacos , Peptídeos Opioides/farmacologia , Recompensa , Área Tegmentar Ventral/metabolismo , Potenciais de Ação , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Precursores de Proteínas/genética , Receptores Opioides/agonistas , Receptores Opioides/deficiência , Receptores Opioides/genética , Receptor de Nociceptina , Nociceptina
7.
Cell ; 169(5): 836-848.e15, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525754

RESUMO

Myriad experiences produce transient memory, yet, contingent on the internal state of the organism and the saliency of the experience, only some memories persist over time. How experience and internal state influence the duration of memory at the molecular level remains unknown. A self-assembled aggregated state of Drosophila Orb2A protein is required specifically for long-lasting memory. We report that in the adult fly brain the mRNA encoding Orb2A protein exists in an unspliced non-protein-coding form. The convergence of experience and internal drive transiently increases the spliced protein-coding Orb2A mRNA. A screen identified pasilla, the fly ortholog of mammalian Nova-1/2, as a mediator of Orb2A mRNA processing. A single-nucleotide substitution in the intronic region that reduces Pasilla binding and intron removal selectively impairs long-term memory. We posit that pasilla-mediated processing of unspliced Orb2A mRNA integrates experience and internal state to control Orb2A protein abundance and long-term memory formation.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Íntrons , Memória de Longo Prazo , Ribonucleoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Animais , Sequência de Bases , Comportamento Animal , Encéfalo/metabolismo , Condicionamento Psicológico , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Aprendizagem , Modelos Animais , Motivação , Mutação , Isoformas de Proteínas/metabolismo , Splicing de RNA , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
8.
Annu Rev Neurosci ; 46: 167-189, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36917820

RESUMO

Treatment outcomes are strongly influenced by expectations, as evidenced by the placebo effect. Meta-analyses of clinical trials reveal that placebo effects are strongest in pain, indicating that psychosocial factors directly influence pain. In this review, I focus on the neural and psychological mechanisms by which instructions, learning, and expectations shape subjective pain. I address new experimental designs that help researchers tease apart the impact of these distinct processes and evaluate the evidence regarding the neural mechanisms by which these cognitive factors shape subjective pain. Studies reveal that expectations modulate pain through parallel circuits that include both pain-specific and domain-general circuits such as those involved in affect and learning. I then review how expectations, learning, and verbal instructions impact clinical outcomes, including placebo analgesia and responses to pharmacological treatments, and discuss implications for future work.


Assuntos
Analgesia , Motivação , Humanos , Dor/tratamento farmacológico , Analgesia/psicologia , Aprendizagem , Efeito Placebo
9.
Annu Rev Neurosci ; 45: 109-129, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35226827

RESUMO

Ventral tegmental area (VTA) dopamine (DA) neurons are often thought to uniformly encode reward prediction errors. Conversely, DA release in the nucleus accumbens (NAc), the prominent projection target of these neurons, has been implicated in reinforcement learning, motivation, aversion, and incentive salience. This contrast between heterogeneous functions of DA release versus a homogeneous role for DA neuron activity raises numerous questions regarding how VTA DA activity translates into NAc DA release. Further complicating this issue is increasing evidence that distinct VTA DA projections into defined NAc subregions mediate diverse behavioral functions. Here, we evaluate evidence for heterogeneity within the mesoaccumbal DA system and argue that frameworks of DA function must incorporate the precise topographic organization of VTA DA neurons to clarify their contribution to health and disease.


Assuntos
Dopamina , Área Tegmentar Ventral , Neurônios Dopaminérgicos , Motivação , Núcleo Accumbens/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia
10.
Cell ; 160(3): 516-27, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635459

RESUMO

Optimally orchestrating complex behavioral states, such as the pursuit and consumption of food, is critical for an organism's survival. The lateral hypothalamus (LH) is a neuroanatomical region essential for appetitive and consummatory behaviors, but whether individual neurons within the LH differentially contribute to these interconnected processes is unknown. Here, we show that selective optogenetic stimulation of a molecularly defined subset of LH GABAergic (Vgat-expressing) neurons enhances both appetitive and consummatory behaviors, whereas genetic ablation of these neurons reduced these phenotypes. Furthermore, this targeted LH subpopulation is distinct from cells containing the feeding-related neuropeptides, melanin-concentrating hormone (MCH), and orexin (Orx). Employing in vivo calcium imaging in freely behaving mice to record activity dynamics from hundreds of cells, we identified individual LH GABAergic neurons that preferentially encode aspects of either appetitive or consummatory behaviors, but rarely both. These tightly regulated, yet highly intertwined, behavioral processes are thus dissociable at the cellular level.


Assuntos
Comportamento Apetitivo , Comportamento Consumatório , Hipotálamo/fisiologia , Animais , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Camundongos , Motivação , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Hormônios Hipofisários/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Nature ; 630(8015): 45-53, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840013

RESUMO

The controversy over online misinformation and social media has opened a gap between public discourse and scientific research. Public intellectuals and journalists frequently make sweeping claims about the effects of exposure to false content online that are inconsistent with much of the current empirical evidence. Here we identify three common misperceptions: that average exposure to problematic content is high, that algorithms are largely responsible for this exposure and that social media is a primary cause of broader social problems such as polarization. In our review of behavioural science research on online misinformation, we document a pattern of low exposure to false and inflammatory content that is concentrated among a narrow fringe with strong motivations to seek out such information. In response, we recommend holding platforms accountable for facilitating exposure to false and extreme content in the tails of the distribution, where consumption is highest and the risk of real-world harm is greatest. We also call for increased platform transparency, including collaborations with outside researchers, to better evaluate the effects of online misinformation and the most effective responses to it. Taking these steps is especially important outside the USA and Western Europe, where research and data are scant and harms may be more severe.


Assuntos
Comunicação , Desinformação , Internet , Humanos , Algoritmos , Motivação , Mídias Sociais
12.
Nature ; 630(8015): 123-131, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840014

RESUMO

The financial motivation to earn advertising revenue has been widely conjectured to be pivotal for the production of online misinformation1-4. Research aimed at mitigating misinformation has so far focused on interventions at the user level5-8, with little emphasis on how the supply of misinformation can itself be countered. Here we show how online misinformation is largely financed by advertising, examine how financing misinformation affects the companies involved, and outline interventions for reducing the financing of misinformation. First, we find that advertising on websites that publish misinformation is pervasive for companies across several industries and is amplified by digital advertising platforms that algorithmically distribute advertising across the web. Using an information-provision experiment9, we find that companies that advertise on websites that publish misinformation can face substantial backlash from their consumers. To examine why misinformation continues to be monetized despite the potential backlash for the advertisers involved, we survey decision-makers at companies. We find that most decision-makers are unaware that their companies' advertising appears on misinformation websites but have a strong preference to avoid doing so. Moreover, those who are unaware and uncertain about their company's role in financing misinformation increase their demand for a platform-based solution to reduce monetizing misinformation when informed about how platforms amplify advertising placement on misinformation websites. We identify low-cost, scalable information-based interventions to reduce the financial incentive to misinform and counter the supply of misinformation online.


Assuntos
Publicidade , Comportamento do Consumidor , Tomada de Decisões , Desinformação , Indústrias , Internet , Humanos , Publicidade/economia , Comunicação , Indústrias/economia , Internet/economia , Motivação , Incerteza , Masculino , Feminino
13.
Nat Rev Neurosci ; 25(3): 176-194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38263216

RESUMO

Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.


Assuntos
Objetivos , Motivação , Adulto , Adolescente , Humanos , Aprendizagem
14.
Nature ; 616(7957): 510-519, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020025

RESUMO

The central amygdala (CeA) is implicated in a range of mental processes including attention, motivation, memory formation and extinction and in behaviours driven by either aversive or appetitive stimuli1-7. How it participates in these divergent functions remains elusive. Here we show that somatostatin-expressing (Sst+) CeA neurons, which mediate much of CeA functions3,6,8-10, generate experience-dependent and stimulus-specific evaluative signals essential for learning. The population responses of these neurons in mice encode the identities of a wide range of salient stimuli, with the responses of separate subpopulations selectively representing the stimuli that have contrasting valences, sensory modalities or physical properties (for example, shock and water reward). These signals scale with stimulus intensity, undergo pronounced amplification and transformation during learning, and are required for both reward and aversive learning. Notably, these signals contribute to the responses of dopamine neurons to reward and reward prediction error, but not to their responses to aversive stimuli. In line with this, Sst+ CeA neuron outputs to dopamine areas are required for reward learning, but are dispensable for aversive learning. Our results suggest that Sst+ CeA neurons selectively process information about differing salient events for evaluation during learning, supporting the diverse roles of the CeA. In particular, the information for dopamine neurons facilitates reward evaluation.


Assuntos
Aprendizagem da Esquiva , Núcleo Central da Amígdala , Plasticidade Neuronal , Recompensa , Animais , Camundongos , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Motivação , Somatostatina/metabolismo , Eletrochoque
15.
Nature ; 621(7979): 543-549, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558873

RESUMO

External rewards such as food and money are potent modifiers of behaviour1,2. Pioneering studies established that these salient sensory stimuli briefly interrupt the tonic discharge of neurons that produce the neuromodulators dopamine (DA) and acetylcholine (ACh): midbrain DA neurons (DANs) fire a burst of action potentials that broadly elevates DA in the striatum3,4 at the same time that striatal cholinergic interneurons (CINs) produce a characteristic pause in firing5,6. These phasic responses are thought to create unique, temporally limited conditions that motivate action and promote learning7-11. However, the dynamics of DA and ACh outside explicitly rewarded situations remain poorly understood. Here we show that extracellular DA and ACh levels fluctuate spontaneously and periodically at a frequency of approximately 2 Hz in the dorsal striatum of mice and maintain the same temporal relationship relative to one another as that evoked by reward. We show that this neuromodulatory coordination does not arise from direct interactions between DA and ACh within the striatum. Instead, we provide evidence that periodic fluctuations in striatal DA are inherited from midbrain DANs, while striatal ACh transients are driven by glutamatergic inputs, which act to locally synchronize the spiking of CINs. Together, our findings show that striatal neuromodulatory dynamics are autonomously organized by distributed extra-striatal afferents. The dominance of intrinsic rhythms in DA and ACh offers new insights for explaining how reward-associated neural dynamics emerge and how the brain motivates action and promotes learning from within.


Assuntos
Acetilcolina , Corpo Estriado , Dopamina , Animais , Camundongos , Acetilcolina/metabolismo , Potenciais de Ação , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Glutamina/metabolismo , Interneurônios/metabolismo , Motivação , Neostriado/citologia , Neostriado/metabolismo , Recompensa , Vias Aferentes
16.
Nature ; 613(7944): 526-533, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36631607

RESUMO

Financial incentives to encourage healthy and prosocial behaviours often trigger initial behavioural change1-11, but a large academic literature warns against using them12-16. Critics warn that financial incentives can crowd out prosocial motivations and reduce perceived safety and trust, thereby reducing healthy behaviours when no payments are offered and eroding morals more generally17-24. Here we report findings from a large-scale, pre-registered study in Sweden that causally measures the unintended consequences of offering financial incentives for taking the first dose of a COVID-19 vaccine. We use a unique combination of random exposure to financial incentives, population-wide administrative vaccination records and rich survey data. We find no negative consequences of financial incentives; we can reject even small negative impacts of offering financial incentives on future vaccination uptake, morals, trust and perceived safety. In a complementary study, we find that informing US residents about the existence of state incentive programmes also has no negative consequences. Our findings inform not only the academic debate on financial incentives for behaviour change but also policy-makers who consider using financial incentives to change behaviour.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Comportamentos Relacionados com a Saúde , Motivação , Vacinação , Humanos , COVID-19/prevenção & controle , COVID-19/psicologia , Vacinas contra COVID-19/economia , Comportamentos Relacionados com a Saúde/ética , Segurança do Paciente , Suécia , Confiança , Estados Unidos , Vacinação/economia , Vacinação/ética , Vacinação/psicologia , Coleta de Dados
17.
Nature ; 623(7987): 588-593, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914928

RESUMO

How people recall the SARS-CoV-2 pandemic is likely to prove crucial in future societal debates on pandemic preparedness and appropriate political action. Beyond simple forgetting, previous research suggests that recall may be distorted by strong motivations and anchoring perceptions on the current situation1-6. Here, using 4 studies across 11 countries (total n = 10,776), we show that recall of perceived risk, trust in institutions and protective behaviours depended strongly on current evaluations. Although both vaccinated and unvaccinated individuals were affected by this bias, people who identified strongly with their vaccination status-whether vaccinated or unvaccinated-tended to exhibit greater and, notably, opposite distortions of recall. Biased recall was not reduced by providing information about common recall errors or small monetary incentives for accurate recall, but was partially reduced by high incentives. Thus, it seems that motivation and identity influence the direction in which the recall of the past is distorted. Biased recall was further related to the evaluation of past political action and future behavioural intent, including adhering to regulations during a future pandemic or punishing politicians and scientists. Together, the findings indicate that historical narratives about the COVID-19 pandemic are motivationally biased, sustain societal polarization and affect preparation for future pandemics. Consequently, future measures must look beyond immediate public-health implications to the longer-term consequences for societal cohesion and trust.


Assuntos
Atitude Frente a Saúde , COVID-19 , Rememoração Mental , Motivação , Pandemias , Preconceito , Saúde Pública , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Risco , Vacinas contra COVID-19 , Vacinação/estatística & dados numéricos , Saúde Pública/métodos , Saúde Pública/tendências , Política de Saúde , Confiança , Preconceito/psicologia , Política , Opinião Pública , Planejamento em Desastres/métodos , Planejamento em Desastres/tendências
18.
Nat Rev Neurosci ; 24(6): 378-392, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37165018

RESUMO

Injuries of various types occur commonly in the lives of humans and other animals and lead to a pattern of persistent pain and recuperative behaviour that allows safe and effective recovery. In this Perspective, we propose a control-theoretic framework to explain the adaptive processes in the brain that drive physiological post-injury behaviour. We set out an evolutionary and ethological view on how animals respond to injury, illustrating how the behavioural state associated with persistent pain and recuperation may be just as important as phasic pain in ensuring survival. Adopting a normative approach, we suggest that the brain implements a continuous optimal inference of the current state of injury from diverse sensory and physiological signals. This drives the various effector control mechanisms of behavioural homeostasis, which span the modulation of ongoing motivation and perception to drive rest and hyper-protective behaviours. However, an inherent problem with this is that these protective behaviours may partially obscure information about whether injury has resolved. Such information restriction may seed a tendency to aberrantly or persistently infer injury, and may thus promote the transition to pathological chronic pain states.


Assuntos
Motivação , Dor , Humanos , Animais , Encéfalo
20.
Nature ; 610(7931): 319-326, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36224417

RESUMO

Self-organizing neural organoids represent a promising in vitro platform with which to model human development and disease1-5. However, organoids lack the connectivity that exists in vivo, which limits maturation and makes integration with other circuits that control behaviour impossible. Here we show that human stem cell-derived cortical organoids transplanted into the somatosensory cortex of newborn athymic rats develop mature cell types that integrate into sensory and motivation-related circuits. MRI reveals post-transplantation organoid growth across multiple stem cell lines and animals, whereas single-nucleus profiling shows progression of corticogenesis and the emergence of activity-dependent transcriptional programs. Indeed, transplanted cortical neurons display more complex morphological, synaptic and intrinsic membrane properties than their in vitro counterparts, which enables the discovery of defects in neurons derived from individuals with Timothy syndrome. Anatomical and functional tracings show that transplanted organoids receive thalamocortical and corticocortical inputs, and in vivo recordings of neural activity demonstrate that these inputs can produce sensory responses in human cells. Finally, cortical organoids extend axons throughout the rat brain and their optogenetic activation can drive reward-seeking behaviour. Thus, transplanted human cortical neurons mature and engage host circuits that control behaviour. We anticipate that this approach will be useful for detecting circuit-level phenotypes in patient-derived cells that cannot otherwise be uncovered.


Assuntos
Vias Neurais , Organoides , Animais , Animais Recém-Nascidos , Transtorno Autístico , Humanos , Síndrome do QT Longo , Motivação , Neurônios/fisiologia , Optogenética , Organoides/citologia , Organoides/inervação , Organoides/transplante , Ratos , Recompensa , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Células-Tronco/citologia , Sindactilia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa