Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.972
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 649-671, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32040356

RESUMO

A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.


Assuntos
Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Microbioma Gastrointestinal , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Imunidade Adaptativa , Animais , Mucosa Gástrica/patologia , Microbioma Gastrointestinal/imunologia , Neoplasias Gastrointestinais/patologia , Humanos , Imunidade Inata , Mucosa Intestinal/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia
2.
Immunity ; 52(3): 557-570.e6, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32160523

RESUMO

The intestine contains some of the most diverse and complex immune compartments in the body. Here we describe a method for isolating human gut-associated lymphoid tissues (GALTs) that allows unprecedented profiling of the adaptive immune system in submucosal and mucosal isolated lymphoid follicles (SM-ILFs and M-ILFs, respectively) as well as in GALT-free intestinal lamina propria (LP). SM-ILF and M-ILF showed distinct patterns of distribution along the length of the intestine, were linked to the systemic circulation through MAdCAM-1+ high endothelial venules and efferent lymphatics, and had immune profiles consistent with immune-inductive sites. IgA sequencing analysis indicated that human ILFs are sites where intestinal adaptive immune responses are initiated in an anatomically restricted manner. Our findings position ILFs as key inductive hubs for regional immunity in the human intestine, and the methods presented will allow future assessment of these compartments in health and disease.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Tecido Linfoide/imunologia , Imunidade Adaptativa/genética , Animais , Citometria de Fluxo , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Humanos , Imunidade nas Mucosas/genética , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestrutura , Intestinos/ultraestrutura , Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Linfoide/metabolismo , Tecido Linfoide/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/ultraestrutura , Análise de Sequência de DNA
3.
Immunity ; 42(3): 512-23, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25769611

RESUMO

Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible (Il4ra(F709)) mice with enhanced interleukin-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of a T helper 2 (Th2)-cell-like phenotype, also found in peripheral-blood allergen-specific Treg cells of food-allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg-cell-lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Th2 cell reprogramming of Treg cells. Interruption of Th2 cell reprogramming of Treg cells might thus provide candidate therapeutic strategies in food allergy.


Assuntos
Hipersensibilidade Alimentar/imunologia , Predisposição Genética para Doença , Imunidade nas Mucosas , Receptores de Superfície Celular/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Adolescente , Alérgenos/imunologia , Animais , Reprogramação Celular/imunologia , Criança , Pré-Escolar , Feminino , Hipersensibilidade Alimentar/genética , Hipersensibilidade Alimentar/patologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Lactente , Interleucina-13/deficiência , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/deficiência , Interleucina-4/genética , Interleucina-4/imunologia , Masculino , Mastócitos/imunologia , Mastócitos/patologia , Camundongos , Camundongos Transgênicos , Receptores de Superfície Celular/genética , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/imunologia , Transdução de Sinais , Linfócitos T Reguladores/patologia , Células Th2/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
4.
Helicobacter ; 29(3): e13097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38819071

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) can evade the host's immune response and persist for a long time on the gastric mucosa. T helper (Th) cells appear to be involved in the control of H. pylori bacteria but promote mucosal inflammation. In contrast, regulatory T cells (Tregs) may reduce inflammation but promote H. pylori persistence. CC motif chemokine receptor 6 (CCR6) is involved in the migration of various cells into inflamed gastric mucosa. In this study, we examined CCR6+ Th cells and CCR6+ Tregs during H. pylori infection in humans. MATERIALS AND METHODS: Isolation of cells from blood and mucosal biopsies, magnetic separation of В cells, CD4+ and CD4+CCR6+CD45RO+ T cells, antigen-specific activation, B cell response in vitro, flow cytometry, determination of CD4+CD25hiFoxP3+ Tregs and various groups of Th cells. RESULTS: CD4+CCR6+ blood lymphocytes from healthy donors included Th cells and Tregs. These CCR6+ Th cells produced proinflammatory cytokines and also stimulated plasma cell maturation and antibody production in vitro. H. pylori gastritis and peptic ulcer disease were associated with an increase in the number of circulate CD4+CCR6+CD45RO+ cells and the percentage of Th1, Th17 and Th1/17 cells in this lymphocyte subgroup. In H. pylori-positive patients, circulating CD4+CCR6+ cells contained a higher proportion of H. pylori-specific cells compared with their CD4+CCR6- counterparts. H. pylori infection strongly increased the content of CD4+ lymphocytes in the inflamed gastric mucosa, with the majority of these CD4+ lymphocytes expressing CCR6. CD4+CCR6+ lymphocytes from H. pylori-infected stomach included Tregs and in vivo activated T cells, some of which produced interferon-γ without ex vivo stimulation. CONCLUSION: H. pylori infection causes an increase in the number of mature CD4+CCR6+ lymphocytes in the blood, with a pro-inflammatory shift in their composition and enrichment of the gastric mucosa with CD4+CCR6+ lymphocytes, including CCR6+ Th1 cells and Tregs.


Assuntos
Mucosa Gástrica , Infecções por Helicobacter , Helicobacter pylori , Receptores CCR6 , Linfócitos T Reguladores , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Citometria de Fluxo , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Receptores CCR6/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia
5.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892046

RESUMO

Trained immunity is a concept in immunology in which innate immune cells, such as monocytes and macrophages, exhibit enhanced responsiveness and memory-like characteristics following initial contact with a pathogenic stimulus that may promote a more effective immune defense following subsequent contact with the same pathogen. Helicobacter pylori, a bacterium that colonizes the stomach lining, is etiologically associated with various gastrointestinal diseases, including gastritis, peptic ulcer, gastric adenocarcinoma, MALT lymphoma, and extra gastric disorders. It has been demonstrated that repeated exposure to H. pylori can induce trained immunity in the innate immune cells of the gastric mucosa, which become more responsive and better able to respond to subsequent H. pylori infections. However, interactions between H. pylori and trained immunity are intricate and produce both beneficial and detrimental effects. H. pylori infection is characterized histologically as the presence of both an acute and chronic inflammatory response called acute-on-chronic inflammation, or gastritis. The clinical outcomes of ongoing inflammation include intestinal metaplasia, gastric atrophy, and dysplasia. These same mechanisms may also reduce immunotolerance and trigger autoimmune pathologies in the host. This review focuses on the relationship between trained immunity and H. pylori and underscores the dynamic interplay between the immune system and the pathogen in the context of gastric colonization and inflammation.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Tolerância Imunológica , Imunidade Inata , Humanos , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Animais , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrite/imunologia , Gastrite/microbiologia , Memória Imunológica , Imunidade Treinada
6.
J Immunol ; 206(6): 1161-1170, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33568397

RESUMO

Helicobacter pylori is the major etiological agent for most gastric cancer. CagA has been reported to be an important virulence factor of H. pylori, but its effect on the immune response is not yet clear. In this study, wild-type C57BL/6 mice and Ptpn6me-v/me-v mice were randomly assigned for infection with H. pylori We demonstrated that CagA suppressed H. pylori-stimulated expression of proinflammatory cytokines in vivo. Besides, we infected mouse peritoneal macrophages RAW264.7 and AGS with H. pylori Our results showed that CagA suppressed expression of proinflammatory cytokines through inhibiting the MAPKs and NF-κB pathways activation in vitro. Mechanistically, we found that CagA interacted with the host cellular tyrosine phosphatase SHP-1, which facilitated the recruitment of SHP-1 to TRAF6 and inhibited the K63-linked ubiquitination of TRAF6, which obstructed the transmission of signal downstream. Taken together, these findings reveal a previously unknown mechanism by which CagA negatively regulates the posttranslational modification of TRAF6 in innate antibacterial immune response and provide molecular basis for new therapeutics to treat microbial infection.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Células HEK293 , Células HeLa , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Humanos , Imunidade Inata , Lisina/metabolismo , Macrófagos Peritoneais , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/imunologia , Transfecção , Ubiquitinação/imunologia
7.
Semin Cell Dev Biol ; 101: 59-67, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033828

RESUMO

Helicobacter pylori colonizes human stomach mucosa and its infection causes gastrointestinal diseases with variable severity. Bacterial infection stimulates autophagy, which is a part of innate immunity used to eliminate intracellular pathogens. Several intracellular bacteria have evolved multipronged strategies to circumvent this conserved system and thereby enhance their chance of intracellular survival. Nonetheless, studies on H. pylori have produced inconsistent results, showing either elevated or reduced clearance efficiency of intracellular bacteria through autophagy. In this review, we summarize recent studies on the mechanisms involved in autophagy induced by H. pylori and the fate of intracellular bacteria.


Assuntos
Mucosa Gástrica/imunologia , Helicobacter pylori/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mucosa Gástrica/microbiologia , Humanos , Evasão da Resposta Imune
8.
Gastroenterology ; 161(2): 637-652.e4, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33971182

RESUMO

BACKGROUND & AIMS: The immune compartment is critical for maintaining tissue homeostasis. A weak immune response increases susceptibility to infection, but immune hyperactivation causes tissue damage, and chronic inflammation may lead to cancer development. In the stomach, inflammation damages the gastric glands and drives the development of potentially preneoplastic metaplasia. Glucocorticoids are potent anti-inflammatory steroid hormones that are required to suppress gastric inflammation and metaplasia. However, these hormones function differently in males and females. Here, we investigate the impact of sex on the regulation of gastric inflammation. METHODS: Endogenous glucocorticoids and male sex hormones were removed from mice using adrenalectomy and castration, respectively. Mice were treated with 5α-dihydrotestosterone (DHT) to test the effects of androgens on regulating gastric inflammation. Single-cell RNA sequencing of gastric leukocytes was used to identify the leukocyte populations that were the direct targets of androgen signaling. Type 2 innate lymphoid cells (ILC2s) were depleted by treatment with CD90.2 antibodies. RESULTS: We show that adrenalectomized female mice develop spontaneous gastric inflammation and spasmolytic polypeptide-expressing metaplasia (SPEM) but that the stomachs of adrenalectomized male mice remain quantitatively normal. Simultaneous depletion of glucocorticoids and sex hormones abolished the male-protective effects and triggered spontaneous pathogenic gastric inflammation and SPEM. Treatment of female mice with DHT prevented gastric inflammation and SPEM development when administered concurrent with adrenalectomy and also reversed the pathology when administered after disease onset. Single-cell RNAseq of gastric leukocytes revealed that ILC2s expressed abundant levels of both the glucocorticoid receptor (Gr) and androgen receptor (Ar). We demonstrated that DHT treatment potently suppressed the expression of the proinflammatory cytokines Il13 and Csf2 by ILC2s. Moreover, ILC2 depletion protected the stomach from SPEM development. CONCLUSIONS: Here, we report a novel mechanism by which glucocorticoids and androgens exert overlapping effects to regulate gastric inflammation. Androgen signaling within ILC2s prevents their pathogenic activation by suppressing the transcription of proinflammatory cytokines. This work revealed a critical role for sex hormones in regulating gastric inflammation and metaplasia.


Assuntos
Androgênios/farmacologia , Anti-Inflamatórios/farmacologia , Di-Hidrotestosterona/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Gastrite Atrófica/metabolismo , Glucocorticoides/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Linfócitos/efeitos dos fármacos , Adrenalectomia , Animais , Microambiente Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Gastrite Atrófica/imunologia , Gastrite Atrófica/patologia , Gastrite Atrófica/prevenção & controle , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Masculino , Metaplasia , Camundongos Endogâmicos C57BL , Orquiectomia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores Sexuais , Transdução de Sinais , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo
9.
Gastroenterology ; 160(4): 1256-1268.e9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33189701

RESUMO

BACKGROUND & AIMS: Inflammation in the gastrointestinal tract may lead to the development of cancer. Dicarbonyl electrophiles, such as isolevuglandins (isoLGs), are generated from lipid peroxidation during the inflammatory response and form covalent adducts with amine-containing macromolecules. Thus, we sought to determine the role of dicarbonyl electrophiles in inflammation-associated carcinogenesis. METHODS: The formation of isoLG adducts was analyzed in the gastric tissues of patients infected with Helicobacter pylori from gastritis to precancerous intestinal metaplasia, in human gastric organoids, and in patients with colitis and colitis-associated carcinoma (CAC). The effect on cancer development of a potent scavenger of dicarbonyl electrophiles, 5-ethyl-2-hydroxybenzylamine (EtHOBA), was determined in transgenic FVB/N insulin-gastrin (INS-GAS) mice and Mongolian gerbils as models of H pylori-induced carcinogenesis and in C57BL/6 mice treated with azoxymethane-dextran sulfate sodium as a model of CAC. The effect of EtHOBA on mutations in gastric epithelial cells of H pylori-infected INS-GAS mice was assessed by whole-exome sequencing. RESULTS: We show increased isoLG adducts in gastric epithelial cell nuclei in patients with gastritis and intestinal metaplasia and in human gastric organoids infected with H pylori. EtHOBA inhibited gastric carcinoma in infected INS-GAS mice and gerbils and attenuated isoLG adducts, DNA damage, and somatic mutation frequency. Additionally, isoLG adducts were elevated in tissues from patients with colitis, colitis-associated dysplasia, and CAC as well as in dysplastic tumors of C57BL/6 mice treated with azoxymethane-dextran sulfate sodium. In this model, EtHOBA significantly reduced adduct formation, tumorigenesis, and dysplasia severity. CONCLUSIONS: Dicarbonyl electrophiles represent a link between inflammation and somatic genomic alterations and are thus key targets for cancer chemoprevention.


Assuntos
Transformação Celular Neoplásica/imunologia , Neoplasias Associadas a Colite/imunologia , Lipídeos/imunologia , Lesões Pré-Cancerosas/imunologia , Neoplasias Gástricas/imunologia , Animais , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Associadas a Colite/microbiologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/prevenção & controle , Modelos Animais de Doenças , Células Epiteliais , Mucosa Gástrica/citologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Gastrite/imunologia , Gastrite/microbiologia , Gastrite/patologia , Gerbillinae , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/imunologia , Helicobacter pylori/isolamento & purificação , Humanos , Lipídeos/antagonistas & inibidores , Metaplasia/imunologia , Metaplasia/microbiologia , Metaplasia/patologia , Camundongos , Camundongos Transgênicos , Organoides , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/prevenção & controle
10.
Gastroenterology ; 160(3): 781-796, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33129844

RESUMO

BACKGROUND & AIMS: Immune checkpoint inhibitors have limited efficacy in many tumors. We investigated mechanisms of tumor resistance to inhibitors of programmed cell death-1 (PDCD1, also called PD-1) in mice with gastric cancer, and the role of its ligand, PD-L1. METHODS: Gastrin-deficient mice were given N-methyl-N-nitrosourea (MNU) in drinking water along with Helicobacter felis to induce gastric tumor formation; we also performed studies with H/K-ATPase-hIL1B mice, which develop spontaneous gastric tumors at the antral-corpus junction and have parietal cells that constitutively secrete interleukin 1B. Mice were given injections of an antibody against PD-1 or an isotype control before tumors developed, or anti-PD-1 and 5-fluorouracil and oxaliplatin, or an antibody against lymphocyte antigen 6 complex locus G (also called Gr-1), which depletes myeloid-derived suppressor cells [MDSCs]), after tumors developed. We generated knock-in mice that express PD-L1 specifically in the gastric epithelium or myeloid lineage. RESULTS: When given to gastrin-deficient mice before tumors grew, anti-PD-1 significantly reduced tumor size and increased tumor infiltration by T cells. However, anti-PD-1 alone did not have significant effects on established tumors in these mice. Neither early nor late anti-PD-1 administration reduced tumor growth in the presence of MDSCs in H/K-ATPase-hIL-1ß mice. The combination of 5-fluorouracil and oxaliplatin reduced MDSCs, increased numbers of intra-tumor CD8+ T cells, and increased the response of tumors to anti-PD-1; however, this resulted in increased tumor expression of PD-L1. Expression of PD-L1 by tumor or immune cells increased gastric tumorigenesis in mice given MNU. Mice with gastric epithelial cells that expressed PD-L1 did not develop spontaneous tumors, but they developed more and larger tumors after administration of MNU and H felis, with accumulation of MDSCs. CONCLUSIONS: In mouse models of gastric cancer, 5-fluorouracil and oxaliplatin reduce numbers of MDSCs to increase the effects of anti-PD-1, which promotes tumor infiltration by CD8+ T cells. However, these chemotherapeutic agents also induce expression of PD-L1 by tumor cells. Expression of PD-L1 by gastric epithelial cells increases tumorigenesis in response to MNU and H felis, and accumulation of MDSCs, which promote tumor progression. The timing and site of PD-L1 expression is therefore important in gastric tumorigenesis and should be considered in design of therapeutic regimens.


Assuntos
Infecções por Helicobacter/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/imunologia , Administração Oral , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrinas/genética , Infecções por Helicobacter/induzido quimicamente , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter felis/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Metilnitrosoureia/administração & dosagem , Camundongos , Camundongos Knockout , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/microbiologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/microbiologia , Microambiente Tumoral/imunologia
11.
Eur J Immunol ; 51(11): 2641-2650, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34398472

RESUMO

Helicobacter pylori is a Gram-negative bacterium found on the luminal surface of the gastric mucosa in at least 50% of the world's human population. The protective effect of breastfeeding against H. pylori infection has been extensively reported; however, the mechanisms behind this protection remain poorly understood. Human IgA from colostrum has reactivity against H. pylori antigens. Despite that IgA1 and IgA2 display structural and functional differences, their reactivity against H. pylori had not been previously determined. We attested titers and reactivity of human colostrum-IgA subclasses by ELISA, immunoblot, and flow cytometry. Colostrum samples from healthy mothers had higher titers of IgA; and IgA1 mostly recognized H. pylori antigens. Moreover, we found a correlation between IgA1 reactivity and their neutralizing effect determined by inhibition of cytoskeletal changes in AGS cells infected with H. pylori. In conclusion, colostrum-IgA reduces H. pylori infection of epithelial gastric cells, suggesting an important role in preventing the bacteria establishment during the first months of life. As a whole, these results suggest that IgA1 from human colostrum provides protection that may help in the development of the mucosal immune system of newborn children.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Colostro/imunologia , Helicobacter pylori/imunologia , Imunoglobulina A Secretora/imunologia , Citoesqueleto , Células Epiteliais , Feminino , Mucosa Gástrica/imunologia , Infecções por Helicobacter/imunologia , Humanos , Gravidez
12.
J Immunol ; 204(6): 1421-1428, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32152211

RESUMO

The goal of this Brief Review is to highlight literature that demonstrates how cytokines made by T lymphocytes impact the gastric epithelium, especially during Helicobacter pylori infection. These cytokines effect many of the diverse functions of the epithelium and the epithelium's interactions with H. pylori The focal point of this Brief Review will be on how T cell cytokines impact antimicrobial function and barrier function and how T cell cytokines influence the development and progression of cancer. Furthermore, the modulation of epithelial-derived chemokines by H. pylori infection will be discussed.


Assuntos
Citocinas/metabolismo , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Neoplasias Gástricas/imunologia , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Mucosa Gástrica/citologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Humanos , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Linfócitos T/metabolismo
13.
J Sci Food Agric ; 102(3): 1255-1262, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34358346

RESUMO

BACKGROUND: Artemisia capillaris is among the most abundantly used traditional medicines, utilized in East Asia to treat diverse illnesses, including gastrointestinal tract diseases. We previously reported that an aqueous extract of A. capillaris (AEAC) inhibited gastric inflammation induced by HCl/ethanol via reactive oxygen species scavenging and NF-κB downregulation. To date, the pharmacological potential of AEAC for promoting mucosal integrity has not been studied. RESULTS: Here, we report that a single treatment with AEAC increased mucus production, and repeated administration of AEAC abolished HCl/ethanol-induced mucosal injury in vivo. Single- and multiple-dose AEAC treatments measurably increased the expression of mucosal stabilizing factors in vivo, including mucin (MUC) 5 AC, MUC6, and trefoil factor (TFF) 1 and TFF2 (but not TFF3). AEAC also induced mucosal stabilizing factors in both SNU-601 cells and RGM cells through phosphorylation of extracellular signal-regulated kinases. CONCLUSION: Taken together, our results suggest that AEAC protects against HCl/ethanol-induced gastritis by upregulating MUCs and TFFs and stabilizing the mucosal epithelium. © 2021 Society of Chemical Industry.


Assuntos
Artemisia/química , Medicamentos de Ervas Chinesas/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Gastropatias/tratamento farmacológico , Animais , Mucosa Gástrica/imunologia , Mucosa Gástrica/lesões , Humanos , Masculino , Mucinas/genética , Mucinas/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley , Gastropatias/genética , Gastropatias/imunologia , Fator Trefoil-1/genética , Fator Trefoil-1/imunologia
14.
Infect Immun ; 89(7): e0073820, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33941576

RESUMO

Trypanosoma cruzi is the intracellular parasite of Chagas disease, a chronic condition characterized by cardiac and gastrointestinal morbidity. Protective immunity requires CD4+ T cells, and Th1 cells and gamma interferon (IFN-γ) are important players in host defense. More recently, Th17 cells and interleukin 17A (IL-17A) have been shown to exert protective functions in systemic T. cruzi infection. However, it remains unclear whether Th17 cells and IL-17A protect in the mucosa, the initial site of parasite invasion in many human cases. We found that IL-17RA knockout (KO) mice are highly susceptible to orogastric infection, indicating an important function for this cytokine in mucosal immunity to T. cruzi. To investigate the specific role of Th17 cells for mucosal immunity, we reconstituted RAG1 KO mice with T. cruzi-specific T cell receptor transgenic Th17 cells prior to orogastric T. cruzi challenges. We found that Th17 cells provided protection against gastric mucosal T. cruzi infection, indicated by significantly lower stomach parasite burdens. In vitro macrophage infection assays revealed that protection by Th17 cells is reduced with IL-17A neutralization or reversed by loss of macrophage NADPH oxidase activity. Consistently with this, mice lacking functional NADPH oxidase were not protected by Th17 cell transfer. These data are the first report that Th17 cells protect against mucosal T. cruzi infection and identify a novel protective mechanism involving the induction of NADPH oxidase activity by IL-17A. These studies provide important insights for Chagas vaccine development and, more broadly, increase our understanding of the diverse roles of Th17 cells in host defense.


Assuntos
Doença de Chagas/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/parasitologia , Interações Hospedeiro-Parasita/imunologia , Imunidade nas Mucosas , Células Th17/imunologia , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Interleucina-17/genética , Interleucina-17/metabolismo , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Knockout , NADPH Oxidases/metabolismo , Células Th17/metabolismo
15.
Gastroenterology ; 159(6): 2077-2091.e8, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32891625

RESUMO

BACKGROUND & AIMS: Severe injury to the lining of the stomach leads to changes in the epithelium (reprogramming) that protect and promote repair of the tissue, including development of spasmolytic polypeptide-expressing metaplasia (SPEM) and tuft and foveolar cell hyperplasia. Acute gastric damage elicits a type-2 inflammatory response that includes production of type-2 cytokines and infiltration by eosinophils and alternatively activated macrophages. Stomachs of mice that lack interleukin 33 (IL33) or interleukin 13 (IL13) did not undergo epithelial reprogramming after drug-induced injury. We investigated the role of group 2 innate lymphoid cells (ILC2s) in gastric epithelial repair. METHODS: Acute gastric injury was induced in C57BL/6J mice (wild-type and RAG1 knockout) by administration of L635. We isolated ILC2s by flow cytometry from stomachs of mice that were and were not given L635 and performed single-cell RNA sequencing. ILC2s were depleted from wild-type and RAG1-knockout mice by administration of anti-CD90.2. We assessed gastric cell lineages, markers of metaplasia, inflammation, and proliferation. Gastric tissue microarrays from patients with gastric adenocarcinoma were analyzed by immunostaining. RESULTS: There was a significant increase in the number of GATA3-positive ILC2s in stomach tissues from wild-type mice after L635-induced damage, but not in stomach tissues from IL33-knockout mice. We characterized a marker signature of gastric mucosal ILC2s and identified a transcription profile of metaplasia-associated ILC2s, which included changes in expression of Il5, Il13, Csf2, Pd1, and Ramp3; these changes were validated by quantitative polymerase chain reaction and immunocytochemistry. Depletion of ILC2s from mice blocked development of metaplasia after L635-induced injury in wild-type and RAG1-knockout mice and prevented foveolar and tuft cell hyperplasia and infiltration or activation of macrophages after injury. Numbers of ILC2s were increased in stomach tissues from patients with SPEM compared with patients with normal corpus mucosa. CONCLUSIONS: In analyses of stomach tissues from mice with gastric tissue damage and patients with SPEM, we found evidence of type 2 inflammation and increased numbers of ILC2s. Our results suggest that ILC2s coordinate the metaplastic response to severe gastric injury.


Assuntos
Mucosa Gástrica/patologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Animais , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/imunologia , Humanos , Interleucina-33/genética , Metaplasia/induzido quimicamente , Metaplasia/genética , Metaplasia/imunologia , Camundongos , Camundongos Knockout
16.
Gastroenterology ; 159(1): 169-182.e8, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32169428

RESUMO

BACKGROUND & AIMS: Helicobacter pylori induces strong inflammatory responses that are directed at clearing the infection, but if not controlled, these responses can be harmful to the host. We investigated the immune-regulatory effects of the innate immune molecule, nucleotide-binding oligomerization domain-like receptors (NLR) family CARD domain-containing 5 (NLRC5), in patients and mice with Helicobacter infection. METHODS: We obtained gastric biopsies from 30 patients in Australia. We performed studies with mice that lack NLRC5 in the myeloid linage (Nlrc5møKO) and mice without Nlrc5 gene disruption (controls). Some mice were gavaged with H pylori SS1 or Helicobacter felis; 3 months later, stomachs, spleens, and sera were collected, along with macrophages derived from bone marrow. Human and mouse gastric tissues and mouse macrophages were analyzed by histology, immunohistochemistry, immunoblots, and quantitative polymerase chain reaction. THP-1 cells (human macrophages, controls) and NLRC5-/- THP-1 cells (generated by CRISPR-Cas9 gene editing) were incubated with Helicobacter and gene expression and production of cytokines were analyzed. RESULTS: Levels of NLRC5 messenger RNA were significantly increased in gastric tissues from patients with H pylori infection, compared with patients without infection (P < .01), and correlated with gastritis severity (P < .05). H pylori bacteria induced significantly higher levels of chemokine and cytokine production by NLRC5-/- THP-1 macrophages than by control THP-1 cells (P < .05). After 3 months of infection with H felis, Nlrc5mø-KO mice developed gastric hyperplasia (P < .0001), splenomegaly (P < .0001), and increased serum antibody titers (P < .01), whereas control mice did not. Nlrc5mø-KO mice with chronic H felis infection had increased numbers of gastric B-cell follicles expressing CD19 (P < .0001); these follicles had features of mucosa-associated lymphoid tissue lymphoma. We identified B-cell-activating factor as a protein that promoted B-cell hyperproliferation in Nlrc5mø-KO mice. CONCLUSIONS: NLRC5 is a negative regulator of gastric inflammation and mucosal lymphoid formation in response to Helicobacter infection. Aberrant NLRC5 signaling in macrophages can promote B-cell lymphomagenesis during chronic Helicobacter infection.


Assuntos
Infecções por Helicobacter/complicações , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma de Zona Marginal Tipo Células B/imunologia , Neoplasias Gástricas/imunologia , Animais , Linfócitos B/imunologia , Biópsia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter felis/imunologia , Helicobacter pylori/imunologia , Humanos , Hiperplasia/imunologia , Hiperplasia/microbiologia , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/microbiologia , Tecido Linfoide/patologia , Linfoma de Zona Marginal Tipo Células B/microbiologia , Linfoma de Zona Marginal Tipo Células B/patologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Células THP-1
17.
Clin Sci (Lond) ; 135(22): 2541-2558, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730176

RESUMO

OBJECTIVE: Regulated in development and DNA damage responses-1 (REDD1) is a conserved and ubiquitous protein, which is induced in response to multiple stimuli. However, the regulation, function and clinical relevance of REDD1 in Helicobacter pylori-associated gastritis are presently unknown. APPROACH: Immunohistochemistry, real-time PCR and Western blot analyses were performed to examine the levels of REDD1 in gastric samples from H. pylori-infected patients and mice. Gastric tissues from Redd1-/- and wildtype (WT, control) mice were examined for inflammation. Gastric epithelial cells (GECs), monocytes and T cells were isolated, stimulated and/or cultured for REDD1 regulation and functional assays. RESULTS: REDD1 was increased in gastric mucosa of H. pylori-infected patients and mice. H. pylori induced GECs to express REDD1 via the phosphorylated cytotoxin associated gene A (cagA) that activated MAPKp38 pathway to mediate NF-κB directly binding to REDD1 promoter. Human gastric REDD1 increased with the severity of gastritis, and mouse REDD1 from non-marrow chimera-derived cells promoted gastric inflammation that was characterized by the influx of MHCII+ monocytes. Importantly, gastric inflammation, MHCII+ monocyte infiltration, IL-23 and IL-17A were attenuated in Redd1-/- mice. Mechanistically, REDD1 in GECs regulated CXCL1 production, which attracted MHCII+ monocytes migration by CXCL1-CXCR2 axis. Then H. pylori induced MHCII+ monocytes to secrete IL-23, which favored IL-17A-producing CD4+ cell (Th17 cell) polarization, thereby contributing to the development of H. pylori-associated gastritis. CONCLUSIONS: The present study identifies a novel regulatory network involving REDD1, which collectively exert a pro-inflammatory effect within gastric microenvironment. Efforts to inhibit this REDD1-dependent pathway may prove valuable strategies in treating of H. pylori-associated gastritis.


Assuntos
Citocinas/metabolismo , Mucosa Gástrica/microbiologia , Gastrite/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Células Th17/microbiologia , Fatores de Transcrição/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Gastrite/imunologia , Gastrite/metabolismo , Infecções por Helicobacter/complicações , Helicobacter pylori/imunologia , Helicobacter pylori/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Fenótipo , Fosforilação , Células Th17/imunologia , Células Th17/metabolismo , Fatores de Transcrição/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
Gastric Cancer ; 24(2): 327-340, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32924090

RESUMO

BACKGROUND: Recent clinical studies on immune checkpoint (IC) inhibitors in the context of advanced gastric cancer (AGC) have failed to show significant survival benefits but have suggested the possible role of IC inhibitors in anti-AGC immunity. Considering the low efficacy of targeted drugs in AGC, there is an urgent need for the discovery of new targets for the development of immunotherapeutics and prognostic markers for patient selection. This study aimed to investigate the expression of a new IC molecule, V-set Ig domain-containing 4 (VSIG4), and its clinical significance in AGC and other major cancers. METHODS: We analyzed the expression of VSIG4 and its correlation with survival in various carcinomas, including 882 surgically resected samples from patients with stage II-III AGC (two academic hospitals). RESULTS: VSIG4 positivity in AGC was significantly associated with overall survival (OS; Hazard ratio (HR) = 2.661, 95% confidence interval [CI] = 2.012-3.519, P < 0.001) and event-free survival (HR = 2.8, 95% CI = 2.18-3.72, P < 0.001). These findings were successfully validated in independent cohorts. VSIG4 expression was also significantly correlated with low intratumoral CD8 + T-cell infiltration (CD8i) (P = 0.029) and high Foxp3 + /CD8i ratio (P = 0.026), which is consistent with the previously reported immunological function of VSIG4. However, VSIG4 expression was not associated with survival in other cancers (colon, P = 0.459; lung, P = 0.275; kidney, P = 0.121; breast, P = 0.147). CONCLUSION: Our results suggest that VSIG4 is an independent prognostic factor in AGC and also implies that VSIG4 is a second-tier IC molecule in AGC, thus, providing an important basis for the development of gastric cancer-specific immunotherapeutics.


Assuntos
Receptores de Complemento/metabolismo , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/mortalidade , Biomarcadores Tumorais/imunologia , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Taxa de Sobrevida
19.
J Immunol ; 202(7): 2095-2104, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30760618

RESUMO

Inflammatory bowel disease (IBD) is an expanding autoimmune disease afflicting millions that remains difficult to treat due to the accumulation of multiple immunological changes. BT-11 is an investigational new drug for IBD that is orally active, gut restricted, and targets the lanthionine synthetase C-like 2 immunometabolic pathway. CD25+ FOXP3+ CD4+ T cells are increased locally within the colon of BT-11-treated mice in Citrobacter rodentium and IL-10-/- mouse models of colitis. The maintained efficacy of BT-11 in the absence of IL-10 combined with the loss of efficacy when direct cell-cell interactions are prevented suggest that the regulatory T cell (Treg)-related elements of suppression are cell contact-mediated. When PD-1 is inhibited, both in vitro and in vivo, the efficacy of BT-11 is reduced, validating this assertion. The depletion of CD25+ cells in vivo abrogated the retention of therapeutic efficacy postdiscontinuation of treatment, indicating that Tregs are implicated in the maintenance of tolerance mediated by BT-11. Furthermore, the involvement of CD25 suggested a role of BT-11 in IL-2 signaling. Cotreatment with BT-11 and IL-2 greatly enhances the differentiation of CD25+ FOXP3+ cells from naive CD4+ T cells relative to either alone. BT-11 enhances phosphorylation of STAT5, providing a direct linkage to the regulation of FOXP3 transcription. Notably, when STAT5 is inhibited, the effects of BT-11 on the differentiation of Tregs are blocked. BT-11 effectively enhances the IL-2/STAT5 signaling axis to induce the differentiation and stability of CD25+ FOXP3+ cells in the gastrointestinal mucosa to support immunoregulation and immunological tolerance in IBD.


Assuntos
Benzimidazóis/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Doenças Inflamatórias Intestinais/imunologia , Piperazinas/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Colite/imunologia , Mucosa Gástrica/imunologia , Camundongos , Camundongos Endogâmicos C57BL
20.
Future Oncol ; 17(25): 3383-3396, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34291647

RESUMO

Gastric cancer is the fourth most common type of cancer worldwide and the second most lethal. Gastric cancer biomarkers can be used for diagnosis, prediction of sensitivity to treatment, and prognosis. The following search terms were applied to PubMed as of December 2020: 'gastric cancer classification', 'gastric cancer epidemiology', 'cancer metastasis' and 'gastric cancer biomarker'. Only experimental studies were reported in the 'biomarkers' section. Some biomarkers can serve as therapeutic targets for antitumoral drugs. The genes analyzed include E-cadherin, RPRM, XAF1, MINT25, TFF1, p16 and p53. The miRNAs analyzed include miR-18a, miR185-5p, miR-125b and miR-21. Some molecules were associated with metastasis of gastric cancer, specifically those involved with EMT process and tissue degradation.


Lay abstract Gastric cancer is the fourth most common type of cancer worldwide and the second most lethal. Gastric cancer biomarkers are molecules that have different expressions in tumor cells than in normal body cells, and can be used for diagnosis, prediction of sensitivity to treatment, and prognosis. Biomarkers in gastric cancer can include genes that suppress tumor progression, genes that increase tumor progression by binding to growth molecules, molecules related to the body's immune response to the tumor, and non-coding RNA molecules (RNA molecules that do not produce proteins but regulate the cell's genetic material). Some biomarkers can serve as therapeutic targets for anti-tumoral drugs.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Gástricas/diagnóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinogênese/genética , Carcinogênese/imunologia , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Mucosa Gástrica/imunologia , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Regiões Promotoras Genéticas , Medição de Risco/métodos , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/mortalidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa