RESUMO
Globally, about 36.7 million people were living with HIV infection at the end of 2015. The most frequent infection co-occurring with HIV-1 is Mycobacterium tuberculosis-374,000 deaths per annum are attributable to HIV-tuberculosis, 75% of those occurring in Africa. HIV-1 infection increases the risk of tuberculosis by a factor of up to 26 and alters its clinical presentation, complicates diagnosis and treatment, and worsens outcome. Although HIV-1-induced depletion of CD4+ T cells underlies all these effects, more widespread immune deficits also contribute to susceptibility and pathogenesis. These defects present a challenge to understand and ameliorate, but also an opportunity to learn and optimize mechanisms that normally protect people against tuberculosis. The most effective means to prevent and ameliorate tuberculosis in HIV-1-infected people is antiretroviral therapy, but this may be complicated by pathological immune deterioration that in turn requires more effective host-directed anti-inflammatory therapies to be derived.
Assuntos
Coinfecção , Infecções por HIV/imunologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Terapia Antirretroviral de Alta Atividade , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Progressão da Doença , Variação Genética , Infecções por HIV/diagnóstico , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Tuberculose/diagnóstico , Tuberculose/microbiologia , Tuberculose/terapia , Replicação ViralRESUMO
A subset of individuals exposed to Mycobacterium tuberculosis (Mtb) that we refer to as 'resisters' (RSTR) show evidence of IFN-γ- T cell responses to Mtb-specific antigens despite serially negative results on clinical testing. Here we found that Mtb-specific T cells in RSTR were clonally expanded, confirming the priming of adaptive immune responses following Mtb exposure. RSTR CD4+ T cells showed enrichment of TH17 and regulatory T cell-like functional programs compared to Mtb-specific T cells from individuals with latent Mtb infection. Using public datasets, we showed that these TH17 cell-like functional programs were associated with lack of progression to active tuberculosis among South African adolescents with latent Mtb infection and with bacterial control in nonhuman primates. Our findings suggested that RSTR may successfully control Mtb following exposure and immune priming and established a set of T cell biomarkers to facilitate further study of this clinical phenotype.
Assuntos
Linfócitos T CD4-Positivos , Mycobacterium tuberculosis , Tuberculose , Mycobacterium tuberculosis/imunologia , Humanos , Animais , Adolescente , Tuberculose/imunologia , Tuberculose/microbiologia , Linfócitos T CD4-Positivos/imunologia , Células Th17/imunologia , Feminino , Macaca mulatta , Masculino , Fenótipo , Interferon gama/metabolismo , Interferon gama/imunologia , Antígenos de Bactérias/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , África do Sul , Adulto Jovem , Linfócitos T Reguladores/imunologia , AdultoRESUMO
There are 9 million cases of active tuberculosis reported annually; however, an estimated one-third of the world's population is infected with Mycobacterium tuberculosis and remains asymptomatic. Of these latent individuals, only 5-10% will develop active tuberculosis disease in their lifetime. CD4(+) T cells, as well as the cytokines IL-12, IFN-γ, and TNF, are critical in the control of Mycobacterium tuberculosis infection, but the host factors that determine why some individuals are protected from infection while others go on to develop disease are unclear. Genetic factors of the host and of the pathogen itself may be associated with an increased risk of patients developing active tuberculosis. This review aims to summarize what we know about the immune response in tuberculosis, in human disease, and in a range of experimental models, all of which are essential to advancing our mechanistic knowledge base of the host-pathogen interactions that influence disease outcome.
Assuntos
Tuberculose Pulmonar/imunologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Mycobacterium tuberculosis/imunologia , Resultado do Tratamento , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/epidemiologiaRESUMO
Evidence has increasingly shown that the lungs are a major site of immune regulation. A robust and highly regulated immune response in the lung protects the host from pathogen infection, whereas an inefficient or deleterious response can lead to various pulmonary diseases. Many cell types, such as epithelial cells, dendritic cells, macrophages, neutrophils, eosinophils, and B and T lymphocytes, contribute to lung immunity. This review focuses on the recent advances in understanding how T lymphocytes mediate pulmonary host defenses against bacterial, viral, and fungal pathogens.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Pulmão/imunologia , Pulmão/patologia , Tuberculose Pulmonar/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/microbiologia , Linfonodos/imunologia , Linfonodos/microbiologia , Linfonodos/patologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologiaRESUMO
Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spatial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-ß, regulatory T cells and IDO1+ PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory programs with systemic manifestations that define active TB.
Assuntos
Granuloma/imunologia , Tuberculose/imunologia , Antígeno B7-H1/imunologia , Células Cultivadas , Citocinas/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Células Mieloides/imunologiaRESUMO
Multimodal T cell profiling can enable more precise characterization of elusive cell states underlying disease. Here, we integrated single-cell RNA and surface protein data from 500,089 memory T cells to define 31 cell states from 259 individuals in a Peruvian tuberculosis (TB) progression cohort. At immune steady state >4 years after infection and disease resolution, we found that, after accounting for significant effects of age, sex, season and genetic ancestry on T cell composition, a polyfunctional type 17 helper T (TH17) cell-like effector state was reduced in abundance and function in individuals who previously progressed from Mycobacterium tuberculosis (M.tb) infection to active TB disease. These cells are capable of responding to M.tb peptides. Deconvoluting this state-uniquely identifiable with multimodal analysis-from public data demonstrated that its depletion may precede and persist beyond active disease. Our study demonstrates the power of integrative multimodal single-cell profiling to define cell states relevant to disease and other traits.
Assuntos
Memória Imunológica , Mycobacterium tuberculosis/imunologia , Células Th17/imunologia , Tuberculose Pulmonar/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Progressão da Doença , Feminino , Seguimentos , Predisposição Genética para Doença , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Peru , RNA-Seq , Fatores Sexuais , Análise de Célula Única , Fatores Socioeconômicos , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/microbiologia , Adulto JovemRESUMO
Development of an effective tuberculosis (TB) vaccine has suffered from an incomplete understanding of the correlates of protection against Mycobacterium tuberculosis (Mtb). Intravenous (i.v.) vaccination with Bacille Calmette-Guérin (BCG) provides nearly complete protection against TB in rhesus macaques, but the antibody response it elicits remains incompletely defined. Here we show that i.v. BCG drives superior antibody responses in the plasma and the lungs of rhesus macaques compared to traditional intradermal BCG administration. While i.v. BCG broadly expands antibody titers and functions, IgM titers in the plasma and lungs of immunized macaques are among the strongest markers of reduced bacterial burden. IgM was also enriched in macaques that received protective vaccination with an attenuated strain of Mtb. Finally, an Mtb-specific IgM monoclonal antibody reduced Mtb survival in vitro. Collectively, these data highlight the potential importance of IgM responses as a marker and mediator of protection against TB.
Assuntos
Anticorpos Antibacterianos/sangue , Vacina BCG/administração & dosagem , Imunogenicidade da Vacina , Imunoglobulina M/sangue , Mycobacterium tuberculosis/imunologia , Tuberculose/prevenção & controle , Vacinação , Administração Intravenosa , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Macaca mulatta , Mycobacterium tuberculosis/patogenicidade , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/microbiologiaRESUMO
Immunological priming-in the context of either prior infection or vaccination-elicits protective responses against subsequent Mycobacterium tuberculosis (Mtb) infection. However, the changes that occur in the lung cellular milieu post-primary Mtb infection and their contributions to protection upon reinfection remain poorly understood. Using clinical and microbiological endpoints in a non-human primate reinfection model, we demonstrated that prior Mtb infection elicited a long-lasting protective response against subsequent Mtb exposure and was CD4+ T cell dependent. By analyzing data from primary infection, reinfection, and reinfection-CD4+ T cell-depleted granulomas, we found that the presence of CD4+ T cells during reinfection resulted in a less inflammatory lung milieu characterized by reprogrammed CD8+ T cells, reduced neutrophilia, and blunted type 1 immune signaling among myeloid cells. These results open avenues for developing vaccines and therapeutics that not only target lymphocytes but also modulate innate immune cells to limit tuberculosis (TB) disease.
Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Granuloma , Imunomodulação , Mycobacterium tuberculosis , Reinfecção , Animais , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Reinfecção/imunologia , Granuloma/imunologia , Granuloma/microbiologia , Linfócitos T CD8-Positivos/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Humanos , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologiaRESUMO
Although mouse infection models have been extensively used to study the host response to Mycobacterium tuberculosis, their validity in revealing determinants of human tuberculosis (TB) resistance and disease progression has been heavily debated. Here, we show that the modular transcriptional signature in the blood of susceptible mice infected with a clinical isolate of M. tuberculosis resembles that of active human TB disease, with dominance of a type I interferon response and neutrophil activation and recruitment, together with a loss in B lymphocyte, natural killer and T cell effector responses. In addition, resistant but not susceptible strains of mice show increased lung B cell, natural killer and T cell effector responses in the lung upon infection. Notably, the blood signature of active disease shared by mice and humans is also evident in latent TB progressors before diagnosis, suggesting that these responses both predict and contribute to the pathogenesis of progressive M. tuberculosis infection.
Assuntos
Transcriptoma/imunologia , Tuberculose/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/microbiologia , Humanos , Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/imunologia , Linfócitos T/imunologia , Linfócitos T/microbiologia , Tuberculose/microbiologiaRESUMO
The cytokine interleukin (IL)-1ß is a key mediator of antimicrobial immunity as well as autoimmune inflammation. Production of IL-1ß requires transcription by innate immune receptor signaling and maturational cleavage by inflammasomes. Whether this mechanism applies to IL-1ß production seen in T cell-driven autoimmune diseases remains unclear. Here, we describe an inflammasome-independent pathway of IL-1ß production that was triggered upon cognate interactions between effector CD4+ T cells and mononuclear phagocytes (MPs). The cytokine TNF produced by activated CD4+ T cells engaged its receptor TNFR on MPs, leading to pro-IL-1ß synthesis. Membrane-bound FasL, expressed by CD4+ T cells, activated death receptor Fas signaling in MPs, resulting in caspase-8-dependent pro-IL-1ß cleavage. The T cell-instructed IL-1ß resulted in systemic inflammation, whereas absence of TNFR or Fas signaling protected mice from CD4+ T cell-driven autoimmunity. The TNFR-Fas-caspase-8-dependent pathway provides a mechanistic explanation for IL-1ß production and its consequences in CD4+ T cell-driven autoimmune pathology.
Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Células Mieloides/metabolismo , Animais , Caspase 1/genética , Caspase 8/metabolismo , Células Cultivadas , Células Dendríticas/imunologia , Proteína Ligante Fas/metabolismo , Imunidade Inata/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The developmental programs that generate a broad repertoire of regulatory T cells (Treg cells) able to respond to both self antigens and non-self antigens remain unclear. Here we found that mature Treg cells were generated through two distinct developmental programs involving CD25+ Treg cell progenitors (CD25+ TregP cells) and Foxp3lo Treg cell progenitors (Foxp3lo TregP cells). CD25+ TregP cells showed higher rates of apoptosis and interacted with thymic self antigens with higher affinity than did Foxp3lo TregP cells, and had a T cell antigen receptor repertoire and transcriptome distinct from that of Foxp3lo TregP cells. The development of both CD25+ TregP cells and Foxp3lo TregP cells was controlled by distinct signaling pathways and enhancers. Transcriptomics and histocytometric data suggested that CD25+ TregP cells and Foxp3lo TregP cells arose by coopting negative-selection programs and positive-selection programs, respectively. Treg cells derived from CD25+ TregP cells, but not those derived from Foxp3lo TregP cells, prevented experimental autoimmune encephalitis. Our findings indicate that Treg cells arise through two distinct developmental programs that are both required for a comprehensive Treg cell repertoire capable of establishing immunotolerance.
Assuntos
Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Células Progenitoras Linfoides/fisiologia , Linfócitos T Reguladores/fisiologia , Timo/crescimento & desenvolvimento , Animais , Autoantígenos/imunologia , Colite/imunologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Adjuvante de Freund/administração & dosagem , Adjuvante de Freund/imunologia , Humanos , Tolerância Imunológica/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Células Progenitoras Linfoides/transplante , Camundongos , Camundongos Transgênicos , Mycobacterium tuberculosis/imunologia , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Timo/citologia , Timo/imunologiaRESUMO
In this issue of Cell, Lu et al. provide important insights on the efficacy of human antibodies to Mycobacterium tuberculosis and on how functional heterogeneity of the antibody response may explain a century of contradictory evidence for the role of humoral immunity in defense against tuberculosis.
Assuntos
Anticorpos Antibacterianos/imunologia , Mycobacterium tuberculosis/imunologia , Humanos , Imunidade Humoral , Imunoglobulinas , Tuberculose/imunologiaRESUMO
Granulomas are immune cell aggregates formed in response to persistent inflammatory stimuli. Granuloma macrophage subsets are diverse and carry varying copy numbers of their genomic information. The molecular programs that control the differentiation of such macrophage populations in response to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid granuloma-resident macrophages formed via modified cell divisions and mitotic defects and not, as previously thought, by cell-to-cell fusion. TLR2 signaling promoted macrophage polyploidy and suppressed genomic instability by regulating Myc and ATR. We propose that, in the presence of persistent inflammatory stimuli, pathways previously linked to oncogene-initiated carcinogenesis instruct a long-lived granuloma-resident macrophage differentiation program that regulates granulomatous tissue remodeling.
Assuntos
Dano ao DNA , Granuloma/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Inflamação/imunologia , Lipoproteínas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptor 2 Toll-LikeRESUMO
While a third of the world carries the burden of tuberculosis, disease control has been hindered by a lack of tools, including a rapid, point-of-care diagnostic and a protective vaccine. In many infectious diseases, antibodies (Abs) are powerful biomarkers and important immune mediators. However, in Mycobacterium tuberculosis (Mtb) infection, a discriminatory or protective role for humoral immunity remains unclear. Using an unbiased antibody profiling approach, we show that individuals with latent tuberculosis infection (Ltb) and active tuberculosis disease (Atb) have distinct Mtb-specific humoral responses, such that Ltb infection is associated with unique Ab Fc functional profiles, selective binding to FcγRIII, and distinct Ab glycosylation patterns. Moreover, compared to Abs from Atb, Abs from Ltb drove enhanced phagolysosomal maturation, inflammasome activation, and, most importantly, macrophage killing of intracellular Mtb. Combined, these data point to a potential role for Fc-mediated Ab effector functions, tuned via differential glycosylation, in Mtb control.
Assuntos
Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/imunologia , Adulto , Feminino , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Ativação de Macrófagos , Masculino , Pessoa de Meia-Idade , Polissacarídeos/imunologia , Análise Serial de Proteínas , Receptores de IgG/imunologia , Adulto JovemRESUMO
Apoptosis can potently defend against intracellular pathogens by directly killing microbes and eliminating their replicative niche. However, the reported ability of Mycobacterium tuberculosis to restrict apoptotic pathways in macrophages in vitro has led to apoptosis being dismissed as a host-protective process in tuberculosis despite a lack of in vivo evidence. Here we define crucial in vivo functions of the death receptor-mediated and BCL-2-regulated apoptosis pathways in mediating protection against tuberculosis by eliminating distinct populations of infected macrophages and neutrophils and priming T cell responses. We further show that apoptotic pathways can be targeted therapeutically with clinical-stage compounds that antagonize inhibitor of apoptosis (IAP) proteins to promote clearance of M. tuberculosis in mice. These findings reveal that any inhibition of apoptosis by M. tuberculosis is incomplete in vivo, advancing our understanding of host-protective responses to tuberculosis (TB) and revealing host pathways that may be targetable for treatment of disease.
Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Neutrófilos/imunologia , Tuberculose Pulmonar/imunologia , Animais , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular , Dipeptídeos/uso terapêutico , Humanos , Indóis/uso terapêutico , Ativação Linfocitária/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linfócitos T/imunologia , Tiazóis/uso terapêutico , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
Severe defects in human IFNγ immunity predispose individuals to both Bacillus Calmette-Guérin disease and tuberculosis, whereas milder defects predispose only to tuberculosis1. Here we report two adults with recurrent pulmonary tuberculosis who are homozygous for a private loss-of-function TNF variant. Neither has any other clinical phenotype and both mount normal clinical and biological inflammatory responses. Their leukocytes, including monocytes and monocyte-derived macrophages (MDMs) do not produce TNF, even after stimulation with IFNγ. Blood leukocyte subset development is normal in these patients. However, an impairment in the respiratory burst was observed in granulocyte-macrophage colony-stimulating factor (GM-CSF)-matured MDMs and alveolar macrophage-like (AML) cells2 from both patients with TNF deficiency, TNF- or TNFR1-deficient induced pluripotent stem (iPS)-cell-derived GM-CSF-matured macrophages, and healthy control MDMs and AML cells differentiated with TNF blockers in vitro, and in lung macrophages treated with TNF blockers ex vivo. The stimulation of TNF-deficient iPS-cell-derived macrophages with TNF rescued the respiratory burst. These findings contrast with those for patients with inherited complete deficiency of the respiratory burst across all phagocytes, who are prone to multiple infections, including both Bacillus Calmette-Guérin disease and tuberculosis3. Human TNF is required for respiratory-burst-dependent immunity to Mycobacterium tuberculosis in macrophages but is surprisingly redundant otherwise, including for inflammation and immunity to weakly virulent mycobacteria and many other infectious agents.
Assuntos
Macrófagos , Tuberculose Pulmonar , Fatores de Necrose Tumoral , Adulto , Feminino , Humanos , Masculino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Homozigoto , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Inflamação/imunologia , Interferon gama/imunologia , Mutação com Perda de Função , Pulmão/citologia , Pulmão/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Mycobacterium tuberculosis/imunologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/deficiência , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Explosão Respiratória , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/genética , Inibidores do Fator de Necrose Tumoral/farmacologia , Fatores de Necrose Tumoral/deficiência , Fatores de Necrose Tumoral/genética , Adolescente , Adulto JovemRESUMO
There is no highly effective tuberculosis vaccine. Darrah et al. (2020) and Tait et al. (2019) are setting new benchmarks for protection against infection and pulmonary disease by changing the route of vaccine delivery and by using a protein subunit vaccine with a potent adjuvant.
Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose , Tuberculose , Humanos , Vacinação , Vacinas de Subunidades AntigênicasRESUMO
Tuberculosis, an ancient disease of mankind, remains one of the major infectious causes of human death. We examine newly discovered facets of tuberculosis pathogenesis and explore the evolution of its causative organism Mycobacterium tuberculosis from soil dweller to human pathogen. M. tuberculosis has coevolved with the human host to evade and exploit host macrophages and other immune cells in multiple ways. Though the host can often clear infection, the organism can cause transmissible disease in enough individuals to sustain itself. Tuberculosis is a near-perfect paradigm of a host-pathogen relationship, and that may be the challenge to the development of new therapies for its eradication.