Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
J Cardiovasc Pharmacol ; 84(4): 468-478, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39115898

RESUMO

ABSTRACT: The hypothalamic paraventricular nucleus (PVN) plays a central role in regulating cardiovascular activity and blood pressure. We administered hydroxylamine hydrochloride (HA), a cystathionine-ß-synthase inhibitor, into the PVN to suppress endogenous hydrogen sulfide and investigate its effects on the mitogen-activated protein kinase (MAPK) pathway in high salt (HS)-induced hypertension. We randomly divided 40 male Dahl salt-sensitive rats into 4 groups: the normal salt (NS) + PVN vehicle group, the NS + PVN HA group, the HS + PVN vehicle group, and the HS + PVN HA group, with 10 rats in each group. The rats in the NS groups were fed a NS diet containing 0.3% NaCl, while the HS groups were fed a HS diet containing 8% NaCl. The mean arterial pressure was calculated after noninvasive measurement using an automatic sphygmomanometer to occlude the tail cuff once a week. HA or vehicle was infused into the bilateral PVN using Alzet osmotic mini pumps for 6 weeks after the hypertension model was successfully established. We measured the levels of H 2 S in the PVN and plasma norepinephrine using enzyme linked immunosorbent assay. In addition, we assessed the parameters of the MAPK pathway, inflammation, and oxidative stress through western blotting, immunohistochemical analysis, or real-time polymerase chain reaction. In this study, we discovered that decreased levels of endogenous hydrogen sulfide in the PVN contributed to the onset of HS-induced hypertension. This was linked to the activation of the MAPK signaling pathway, proinflammatory cytokines, and oxidative stress in the PVN, as well as the activation of the sympathetic nervous system.


Assuntos
Sulfeto de Hidrogênio , Hipertensão , Núcleo Hipotalâmico Paraventricular , Cloreto de Sódio na Dieta , Animais , Masculino , Ratos , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Hidroxilamina/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Norepinefrina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/enzimologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos Dahl
2.
Clin Exp Hypertens ; 46(1): 2402260, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39305040

RESUMO

BACKGROUND: Gestational diabetes can lead to increased blood pressure in offspring, accompanied by impaired renal sodium excretion function and vasoconstriction and diastole dysfunction. However, there are few studies on whether it is accompanied by increased sympathetic nerve activity. METHODS: Pregnant C57BL/6 mice were intraperitoneally injected with streptozotocin (35 mg/kg) or citrate buffer at day 0 of gestation. The mice of control mother offspring (CMO) and diabetic mother offspring (DMO) at 16 weeks of age were infused with vehicle (artificial cerebrospinal fluid, aCSF, 0.4 µL/h) or tempol (1 mmol/L, 0.4 µL/h) into the bilateral paraventricular nucleus (PVN) of mice for 4 weeks, respectively. RESULTS: Compared with CMO group, SBP and peripheral sympathetic nerve activity (increased heart rate, LF/HF and plasma norepinephrine and decreased SDNN and RMSSD) were increased in DMO group, which was accompanied by increased angiotensin II type-1 receptor (AT1R) expression and function in PVN. The increase in AT1R expression levels was attributed to a decrease in the methylation level of the AT1R promoter region, resulting in an increase in AT1R mRNA levels in PVN of DMO. Moreover, compared with CMO group, the levels of oxidative stress were increased and DNMT1 expression was decreased in PVN of DMO. Bilateral PVN infusion of tempol attenuated oxidative stress increased the level of DNMT1 expression and the binding of DNMT1 to the AT1R promoter region, which reduced mRNA and protein expression level of AT1R, heart rate and SBP in DMO, but not in CMO. CONCLUSIONS: The present study provides evidence for overactive sympathetic nervous systems in the pathogenesis of gestational diabetes-induced hypertension in offspring. Central antioxidant intervention in the PVN may be an important treatment strategy for fetal-programmed hypertension.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , Hipertensão , Camundongos Endogâmicos C57BL , Sistema Nervoso Simpático , Animais , Gravidez , Sistema Nervoso Simpático/fisiopatologia , Feminino , Camundongos , Diabetes Gestacional/fisiopatologia , Hipertensão/fisiopatologia , Hipertensão/etiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/complicações , Óxidos N-Cíclicos/farmacologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Marcadores de Spin , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Pressão Sanguínea/fisiologia , Receptor Tipo 1 de Angiotensina/genética , Masculino , Frequência Cardíaca/fisiologia , Estresse Oxidativo
3.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R161-R169, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018823

RESUMO

Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.


Assuntos
Arginina Vasopressina/genética , Proteínas de Fluorescência Verde/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Hipovolemia/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Animais , Corticosterona/sangue , Hormônio Liberador da Corticotropina/genética , Hormônio Liberador da Corticotropina/metabolismo , Modelos Animais de Doenças , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hipovolemia/genética , Hipovolemia/fisiopatologia , Injeções Intraperitoneais , Masculino , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Polietilenoglicóis/administração & dosagem , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Transgênicos , Ratos Wistar , Solução Salina Hipertônica/administração & dosagem , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/fisiopatologia , Fatores de Tempo , Regulação para Cima
4.
J Neurosci ; 40(46): 8842-8852, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051356

RESUMO

In many species, social networks provide benefit for both the individual and the collective. In addition to transmitting information to others, social networks provide an emotional buffer for distressed individuals. Our understanding about the cellular mechanisms that contribute to buffering is poor. Stress has consequences for the entire organism, including a robust change in synaptic plasticity at glutamate synapses onto corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN). In females, however, this stress-induced metaplasticity is buffered by the presence of a naive partner. This buffering may be because of discrete behavioral interactions, signals in the context in which the interaction occurs (i.e., olfactory cues), or it may be influenced by local signaling events in the PVN. Here, we show that local vasopressin (VP) signaling in PVN buffers the short-term potentiation (STP) at glutamate synapses after stress. This social buffering of metaplasticity, which requires the presence of another individual, was prevented by pharmacological inhibition of the VP 1a receptor (V1aR) in female mice. Exogenous VP mimicked the effects of social buffering and reduced STP in CRHPVN neurons from females but not males. These findings implicate VP as a potential mediator of social buffering in female mice.SIGNIFICANCE STATEMENT In many organisms, including rodents and humans, social groups are beneficial to overall health and well-being. Moreover, it is through these social interactions that the harmful effects of stress can be mitigated, a phenomenon known as social buffering. In the present study, we describe a critical role for the neuropeptide vasopressin (VP) in social buffering of synaptic metaplasticity in stress-responsive corticotropin-releasing hormone (CRH) neurons in female mice. These effects of VP do not extend to social buffering of stress behaviors, suggesting this is a very precise and local form of sex-specific neuropeptide signaling.


Assuntos
Estresse Psicológico/fisiopatologia , Sinapses , Vasopressinas , Animais , Hormônio Liberador da Corticotropina , Sinais (Psicologia) , Feminino , Asseio Animal , Técnicas In Vitro , Masculino , Camundongos , Plasticidade Neuronal , Neurônios , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Receptores de N-Metil-D-Aspartato , Receptores de Vasopressinas/efeitos dos fármacos , Caracteres Sexuais , Olfato , Meio Social , Estresse Psicológico/psicologia
5.
J Neurosci ; 40(11): 2282-2295, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32024781

RESUMO

Oxytocin (OT) is critical for the expression of social behavior across a wide array of species; however, the role of this system in the encoding of socially relevant information is not well understood. In the present study, we show that chemogenetic activation of OT neurons within the paraventricular nucleus of the hypothalamus (PVH) of male mice (OT-Ires-Cre) enhanced social investigation during a social choice test, while chemogenetic inhibition of these neurons abolished typical social preferences. These data suggest that activation of the OT system is necessary to direct behavior preferentially toward social stimuli. To determine whether the presence of a social stimulus is sufficient to induce activation of PVH-OT neurons, we performed the first definitive recording of OT neurons in awake mice using two-photon calcium imaging. These recordings demonstrate that social stimuli activate PVH-OT neurons and that these neurons differentially encode social and nonsocial stimuli, suggesting that PVH-OT neurons may act to convey social salience of environmental stimuli. Finally, an attenuation of social salience is associated with social disorders, such as autism. We therefore also examined possible OT system dysfunction in a mouse model of autism, Shank3b knock-out (KO) mice. Male Shank3b KO mice showed a marked reduction in PVH-OT neuron number and administration of an OT receptor agonist improved social deficits. Overall, these data suggest that the presence of a social stimulus induces activation of the PVH-OT neurons to promote adaptive social behavior responses.SIGNIFICANCE STATEMENT Although the oxytocin (OT) system is well known to regulate a diverse array of social behaviors, the mechanism in which OT acts to promote the appropriate social response is poorly understood. One hypothesis is that the presence of social conspecifics activates the OT system to generate an adaptive social response. Here, we selectively recorded from OT neurons in the paraventricular hypothalamic nucleus (PVH) to show that social stimulus exposure indeed induces activation of the OT system. We also show that activation of the OT system is necessary to promote social behavior and that mice with abnormal social behavior have reduced numbers of PVH-OT neurons. Finally, aberrant social behavior in these mice was rescued by administration of an OT receptor agonist.


Assuntos
Neurônios/fisiologia , Ocitocina/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Comportamento Social , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Apetitivo/efeitos dos fármacos , Comportamento Apetitivo/fisiologia , Transtorno Autístico/fisiopatologia , Benzodiazepinas/farmacologia , Sinalização do Cálcio , Clozapina/farmacologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Genes Reporter , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Ocitocina/análise , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Técnicas de Patch-Clamp , Pirazóis/farmacologia , Receptores de Ocitocina/agonistas , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/fisiologia , Vigília
6.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R213-R225, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264070

RESUMO

Depression is an independent nontraditional risk factor for cardiovascular disease and mortality. The chronic unpredictable mild stress (CMS) rat model is a validated model of depression. Within the paraventricular nucleus (PVN), vasopressin (VP) via V1aR and V1bR have been implicated in stress and neurocardiovascular dysregulation. We hypothesized that in conscious, unrestrained CMS rats versus control, unstressed rats, PVN VP results in elevated arterial pressure (MAP), heart rate, and renal sympathetic nerve activity (RSNA) via activation of V1aR and/or V1bR. Male rats underwent 4 wk of CMS or control conditions. They were then equipped with hemodynamic telemetry transmitters, PVN cannula, and left renal nerve electrode. V1aR or V1bR antagonism dose-dependently inhibited MAP after VP injection. V1aR or V1bR blockers at their ED50 doses did not alter baseline parameters in either control or CMS rats but attenuated the pressor response to VP microinjected into PVN by ∼50%. Combined V1aR and V1bR inhibition completely blocked the pressor response to PVN VP in control but not CMS rats. CMS rats required combined maximally inhibitory doses to block either endogenous VP within the PVN or responses to microinjected VP. Compared with unstressed control rats, CMS rats had higher plasma VP levels and greater abundance of V1aR and V1bR transcripts within PVN. Thus, the CMS rat model of depression results in higher resting MAP, heart rate, and RSNA, which can be mitigated by inhibiting vasopressinergic mechanisms involving both V1aR and V1bR within the PVN. Circulating VP may also play a role in the pressor response.


Assuntos
Pressão Arterial , Sistema Cardiovascular/inervação , Hipertensão/etiologia , Rim/inervação , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Vasopressinas/metabolismo , Estresse Psicológico/complicações , Sistema Nervoso Simpático/fisiopatologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Pressão Arterial/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , Frequência Cardíaca , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Sprague-Dawley , Receptores de Vasopressinas/efeitos dos fármacos , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Vasopressinas/farmacologia
7.
Toxicol Appl Pharmacol ; 429: 115701, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34453990

RESUMO

Gut dysbiosis and dysregulation of gut-brain communication have been identified in hypertensive patients and animal models. Previous studies have shown that probiotic or prebiotic treatments exert positive effects on the pathophysiology of hypertension. This study aimed to examine the hypothesis that the microbiota-gut-brain axis is involved in the antihypertensive effects of curcumin, a potential prebiotic obtained from Curcuma longa. Male 8- to 10-week-old spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were divided into four groups: WKY rats and SHRs treated with vehicle and SHRs treated with curcumin in dosage of 100 or 300 mg/kg/day for 12 weeks. Our results show that the elevated blood pressure of SHRs was markedly decreased in both curcumin-treated groups. Curcumin treatment also altered the gut microbial composition and improved intestinal pathology and integrity. These factors were associated with reduced neuroinflammation and oxidative stress in the hypothalamus paraventricular nucleus (PVN). Moreover, curcumin treatment increased butyrate levels in the plasma, which may be the result of increased butyrate-producing gut microorganisms. In addition, curcumin treatment also activated G protein-coupled receptor 43 (GPR 43) in the PVN. These results indicate that curcumin reshapes the composition of the gut microbiota and ameliorates the dysregulation of the gut-brain communication to induce antihypertensive effects.


Assuntos
Anti-Hipertensivos/farmacologia , Bactérias/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Curcumina/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Butiratos/sangue , Cardiomegalia/metabolismo , Cardiomegalia/microbiologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Modelos Animais de Doenças , Disbiose , Hipertensão/metabolismo , Hipertensão/microbiologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G/metabolismo
8.
Circ Res ; 124(5): 727-736, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30612527

RESUMO

RATIONALE: Increased microglial activation and neuroinflammation within autonomic brain regions have been implicated in sustained hypertension, and their inhibition by minocycline-an anti-inflammatory antibiotic-produces beneficial effects. These observations led us to propose a dysfunctional brain-gut communication hypothesis for hypertension. However, it has been difficult to reconcile whether an anti-inflammatory or antimicrobial action is the primary beneficial effect of minocycline in hypertension. Accordingly, we utilized chemically modified tetracycline-3 (CMT-3)-a derivative of tetracycline that has potent anti-inflammatory activity-to address this question. OBJECTIVE: Test the hypothesis that central administration of CMT-3 would inhibit microglial activation, attenuate neuroinflammation, alter selective gut microbial communities, protect the gut wall from developing hypertension-associated pathology, and attenuate hypertension. METHODS AND RESULTS: Rats were implanted with radiotelemetry devices for recording mean arterial pressure. Ang II (angiotensin II) was infused subcutaneously using osmotic mini-pumps to induce hypertension. Another osmotic mini-pump was surgically implanted to infuse CMT-3 intracerebroventricularly. Intracerebroventricular CMT- 3 infusion was also investigated in SHR (spontaneously hypertensive rats). Physiological, pathological, immunohistological parameters, and fecal microbiota were analyzed. Intracerebroventricular CMT-3 significantly inhibited Ang II-induced increases in number of microglia, their activation, and proinflammatory cytokines in the paraventricular nucleus of hypothalamus. Further, intracerebroventricular CMT-3 attenuated increased mean arterial pressure, normalized sympathetic activity, and left ventricular hypertrophy in Ang II rats, as well as in the SHR. Finally, CMT-3 beneficially restored certain gut microbial communities altered by Ang II and attenuated pathological alterations in gut wall. CONCLUSIONS: These observations demonstrate that inhibition of microglial activation alone was sufficient to induce significant antihypertensive effects. This was associated with unique changes in gut microbial communities and profound attenuation of gut pathology. They suggest, for the first time, a link between microglia and certain microbial communities that may have implications for treatment of hypertension.


Assuntos
Anti-Hipertensivos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Intestinos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Tetraciclinas/administração & dosagem , Angiotensina II , Animais , Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/fisiopatologia , Modelos Animais de Doenças , Hipertensão/microbiologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Infusões Intraventriculares , Intestinos/inervação , Intestinos/microbiologia , Intestinos/patologia , Masculino , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
9.
J Cardiovasc Pharmacol ; 77(2): 170-181, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33538532

RESUMO

ABSTRACT: Oxidative stress, the renin-angiotensin system (RAS), and inflammation are some of the mechanisms involved in the pathogenesis of hypertension. The aim of this study is to examine the protective effect of the chronic administration of astaxanthin, which is extracted from the shell of crabs and shrimps, into hypothalamic paraventricular nucleus (PVN) in spontaneously hypertensive rats. Animals were randomly assigned to 2 groups and treated with bilateral PVN infusion of astaxanthin or vehicle (artificial cerebrospinal fluid) through osmotic minipumps (Alzet Osmotic Pumps, Model 2004, 0.25 µL/h) for 4 weeks. Spontaneously hypertensive rats had higher mean arterial pressure and plasma level of norepinephrine and proinflammatory cytokine; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1ß, IL-6, ACE, and AT1-R; and lower PVN levels of IL-10 and Cu/Zn SOD, Mn SOD, ACE2, and Mas receptors than Wistar-Kyoto rats. Our data showed that chronic administration of astaxanthin into PVN attenuated the overexpression of reactive oxygen species, NOX2, NOX4, inflammatory cytokines, and components of RAS within the PVN and suppressed hypertension. The present results revealed that astaxanthin played a role in the brain. Our findings demonstrated that astaxanthin had protective effect on hypertension by improving the balance between inflammatory cytokines and components of RAS.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Hipertensivos/administração & dosagem , Pressão Arterial/efeitos dos fármacos , Citocinas/metabolismo , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Infusões Parenterais , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Tempo , Xantofilas/administração & dosagem
10.
Molecules ; 26(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207980

RESUMO

Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular-coerulear excitatory interactions in prenatally undernourished young-adult rats.


Assuntos
Hipertensão/patologia , Hipotálamo/metabolismo , Desnutrição/complicações , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Feminino , Frequência Cardíaca , Hipertensão/etiologia , Hipertensão/fisiopatologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos
11.
Pflugers Arch ; 472(3): 325-334, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31925527

RESUMO

The ablation of renal nerves, by destroying both the sympathetic and afferent fibers, has been shown to be effective in lowering blood pressure in resistant hypertensive patients. However, experimental studies have reported that the removal of sympathetic fibers may lead to side effects, such as the impairment of compensatory cardiorenal responses during a hemodynamic challenge. In the present study, we evaluated the effects of the selective removal of renal afferent fibers on arterial hypertension, renal sympathetic nerve activity, and renal changes in a model of renovascular hypertension. After 4 weeks of clipping the left renal artery, afferent renal denervation (ARD) was performed by exposing the left renal nerve to a 33 mM capsaicin solution for 15 min. After 2 weeks of ARD, we found reduced MAP (~ 18%) and sympathoexcitation to both the ischemic and contralateral kidneys in the hypertensive group. Moreover, a reduction in reactive oxygen species was observed in the ischemic (76%) and contralateral (27%) kidneys in the 2K1C group. In addition, ARD normalized renal function markers and proteinuria and podocin in the contralateral kidney. Taken altogether, we show that the selective removal of afferent fibers is an effective method to reduce MAP and improve renal changes without compromising the function of renal sympathetic fibers in the 2K1C model. Renal afferent nerves may be a new target in neurogenic hypertension and renal dysfunction.


Assuntos
Vias Aferentes/fisiopatologia , Hipertensão Renovascular/fisiopatologia , Isquemia/fisiopatologia , Nefropatias/fisiopatologia , Rim/fisiopatologia , Animais , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Masculino , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos , Ratos Wistar , Sistema Nervoso Simpático/fisiopatologia
12.
Am J Physiol Heart Circ Physiol ; 319(6): H1197-H1207, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946261

RESUMO

Elevated sympathetic vasomotor tone seen in heart failure (HF) may involve dysfunction of the hypothalamic paraventricular nucleus neurons that project to the rostral ventrolateral medulla (PVN-RVLM neurons). This study aimed to elucidate the role of PVN-RVLM neurons in the maintenance of resting renal sympathetic nerve activity (RSNA) after myocardial infarction (MI). In male rats, the left coronary artery was chronically ligated to induce MI. The rats received PVN microinjections of an adeno-associated viral (AAV) vector encoding archaerhodopsin T (ArchT) with the reporter yellow fluorescence protein (eYFP). The ArchT rats had abundant distributions of eYFP-labeled, PVN-derived axons in the RVLM. In anesthetized ArchT rats with MI (n = 12), optogenetic inhibition of the PVN-RVLM pathway achieved by 532-nm-wavelength laser illumination to the RVLM significantly decreased RSNA. This effect was not found in sham-operated ArchT rats (n = 6). Other rat groups received RVLM microinjections of a retrograde AAV vector encoding the red light-drivable halorhodopsin Jaws (Jaws) with the reporter green fluorescence protein (GFP) and showed expression of GFP-labeled cell bodies and dendrites in the PVN. Laser illumination of the PVN at a 635 nm wavelength elicited significant renal sympathoinhibition in Jaws rats with MI (n = 9) but not in sham-operated Jaws rats (n = 8). These results indicate that sympathoexcitatory input from PVN-RVLM neurons is enhanced after MI, suggesting that this monosynaptic pathway is part of the central nervous system circuitry that plays a critical role in generating an elevated sympathetic vasomotor tone commonly seen with HF.NEW & NOTEWORTHY Using optogenetics in rats, we report that sympathoexcitatory input from hypothalamic paraventricular nucleus neurons that project to the rostral ventrolateral medulla is enhanced after myocardial infarction. It is suggested that this monosynaptic pathway makes up a key part of central nervous system circuitry underlying sympathetic hyperactivation commonly seen in heart failure.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Rim/inervação , Bulbo/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Sistema Vasomotor/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Bulbo/metabolismo , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Técnicas de Rastreamento Neuroanatômico , Optogenética , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos Sprague-Dawley , Sistema Nervoso Simpático/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 318(1): H34-H48, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675258

RESUMO

Obstructive sleep apnea is characterized by interrupted breathing that leads to cardiovascular sequelae including chronic hypertension that can persist into the waking hours. Chronic intermittent hypoxia (CIH), which models the hypoxemia associated with sleep apnea, is sufficient to cause a sustained increase in blood pressure that involves the central nervous system. The median preoptic nucleus (MnPO) is an integrative forebrain region that contributes to blood pressure regulation and neurogenic hypertension. The MnPO projects to the paraventricular nucleus (PVN), a preautonomic region. We hypothesized that pathway-specific lesions of the projection from the MnPO to the PVN would attenuate the sustained component of chronic intermittent hypoxia-induced hypertension. Adult male Sprague-Dawley rats (250-300 g) were anesthetized with isoflurane and stereotaxically injected bilaterally in the PVN with a retrograde Cre-containing adeno-associated virus (AAV; AAV9.CMV.HI.eGFP-Cre.WPRE.SV40) and injected in the MnPO with caspase-3 (AAV5-flex-taCasp3-TEVp) or control virus (AAV5-hSyn-DIO-mCherry). Three weeks after the injections the rats were exposed to a 7-day intermittent hypoxia protocol. During chronic intermittent hypoxia, controls developed a diurnal hypertension that was blunted in rats with caspase lesions. Brain tissue processed for FosB immunohistochemistry showed decreased staining with caspase-induced lesions of MnPO and downstream autonomic-regulating nuclei. Chronic intermittent hypoxia significantly increased plasma levels of advanced oxidative protein products in controls, but this increase was blocked in caspase-lesioned rats. The results indicate that PVN-projecting MnPO neurons play a significant role in blood pressure regulation in the development of persistent chronic intermittent hypoxia hypertension.NEW & NOTEWORTHY Chronic intermittent hypoxia associated with obstructive sleep apnea increases oxidative stress and leads to chronic hypertension. Sustained hypertension may be mediated by angiotensin II-induced neural plasticity of excitatory median preoptic neurons in the forebrain that project to the paraventricular nucleus of the hypothalamus. Selective caspase lesions of these neurons interrupt the drive for sustained hypertension and cause a reduction in circulating oxidative protein products. This indicates that a functional connection between the forebrain and hypothalamus is necessary to drive diurnal hypertension associated with intermittent hypoxia. These results provide new information about central mechanisms that may contribute to neurogenic hypertension.


Assuntos
Apoptose , Pressão Arterial , Caspase 3/metabolismo , Hipertensão/prevenção & controle , Hipóxia/complicações , Núcleo Hipotalâmico Paraventricular/enzimologia , Área Pré-Óptica/enzimologia , Animais , Caspase 3/genética , Ritmo Circadiano , Modelos Animais de Doenças , Frequência Cardíaca , Hipertensão/enzimologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipóxia/enzimologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Estresse Oxidativo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Área Pré-Óptica/patologia , Área Pré-Óptica/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
14.
Am J Physiol Heart Circ Physiol ; 318(1): H124-H134, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834836

RESUMO

Elabela (ELA) is a newly discovered peptide that acts as a novel endogenous ligand of angiotensin receptor-like 1 (APJ) receptor. This study was designed to evaluate the effects of ELA-21 in paraventricular nucleus (PVN) on blood pressure and sympathetic nerve activity in spontaneously hypertensive rats (SHR). Experiments were performed in male Wistar-Kyoto rats (WKY) and SHR. ELA expression was upregulated in PVN of SHR. PVN microinjection of ELA-21 increased renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR), plasma norepinephrine, and arginine vasopressin (AVP) levels in SHR. Intravenous injection of ELA-21 significantly decreased MAP and HR in both WKY and SHR, but only induced a slight decrease in RSNA. APJ antagonist F13A in PVN abolished the effects of ELA-21 on RSNA, MAP and HR. Intravenous infusion of both ganglionic blocker hexamethonium and AVP V1a receptor antagonist SR49059 caused significant reduction in the effects of ELA-21 on RSNA, MAP and HR in SHR, while combined administration of hexamethonium and SR49059 abolished the effects of ELA-21. ELA-21 microinjection stimulated Akt and p85α subunit of phosphatidylinositol 3-kinase (PI3K) phosphorylation in PVN, whereas PI3K inhibitor LY294002 or Akt inhibitor MK-2206 almost abolished the effects of ELA-21 on RSNA, MAP, and HR. Chronic PVN infusion of ELA-21 induced sympathetic activation, hypertension, and AVP release accompanied with cardiovascular remodeling in normotensive WKY. In conclusion, ELA-21 in PVN induces exacerbated pressor and sympathoexcitatory effects in hypertensive rats via PI3K-Akt pathway.NEW & NOTEWORTHY We demonstrated that PVN microinjection of ELA-21 increases sympathetic nerve activity and blood pressure, which can be abolished by pretreatment of APJ antagonist. This is the first demonstration that central ELA can induce hypertension. The pressor effects in PVN are mediated by both sympathetic activation and vasopressin release via PI3K-Akt pathway. Our data confirm that ELA is upregulated in the PVN of SHR and so may be involved in the pressor and sympathoexcitatory effects in hypertension.


Assuntos
Pressão Arterial/efeitos dos fármacos , Hipertensão/induzido quimicamente , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Hormônios Peptídicos/administração & dosagem , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Arginina Vasopressina/sangue , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Injeções Intravenosas , Masculino , Microinjeções , Norepinefrina/sangue , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Hormônios Peptídicos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia
15.
J Cardiovasc Pharmacol ; 76(2): 197-206, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32433359

RESUMO

Previous studies have shown that melatonin (Mel) can effectively ameliorate myocardial ischemia/reperfusion (MI/R) injury, but the mechanism is yet to be fully elucidated. Mel receptors are expressed in the paraventricular nucleus (PVN), which is also involved in regulating cardiac sympathetic nerve activity. The aim of this study was to examine whether Mel receptors in the PVN are involved in the protective effects of Mel against MI/R injury. The results of quantitative polymerase chain reaction, western blot, and immunofluorescence assays indicated that Mel receptor 2 (MT2) expression in the PVN was upregulated after MI/R. Intraperitoneal administration of Mel significantly improved post-MI/R cardiac function and reduced the infarct size, whereas shRNA silencing of MT2 in the PVN partially blocked this effect. Intraperitoneal administration of Mel reduced sympathetic nerve overexcitation caused by MI/R, whereas shRNA silencing of MT2 in the PVN partially diminished this effect. Furthermore, enzyme-linked immunosorbent assay and western blot results indicated that intraperitoneal administration of Mel lowered the levels of inflammatory cytokines in the PVN after MI/R injury, whereas the application of sh-MT2 in the PVN reduced this effect of Mel. Mel significantly reduced the levels of NF-κB after astrocyte oxygen and glucose deprivation/reoxygenation injury, and this effect was offset when MT2 was silenced. The above experimental results suggest that MT2 in the PVN partially mediated the protective effects of Mel against MI/R injury, and its underlying mechanisms may be related to postactivation amelioration of PVN inflammation and reduction of cardiac sympathetic nerve overexcitation.


Assuntos
Astrócitos/efeitos dos fármacos , Coração/inervação , Melatonina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Receptor MT2 de Melatonina/agonistas , Sistema Nervoso Simpático/fisiopatologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Glucose/deficiência , Masculino , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais
16.
BMC Cardiovasc Disord ; 20(1): 60, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024466

RESUMO

BACKGROUND: Malignant ventricular arrhythmia (VA) is the most common cause of death associated with acute myocardial infarction (MI). Recent studies have revealed direct involvement of the paraventricular nucleus (PVN) in the occurrence of VA. However, the underlying mechanisms remain incompletely understood. In this study, we investigated changes in the interleukin-6 (IL-6)-glycoprotein 130-signal transducer and activator of transcription 3 (STAT3) pathway in the PVN during acute MI and the effects of this pathway on ventricular stability. METHODS: Rats were divided into a control group, a MI group, a PVN-injected anti-IL-6 antibody group and a PVN-injected SC144 group to observe how IL-6 and its downstream glycoprotein 130-STAT3 pathway in the PVN affect ventricular stability. The left anterior descending coronary artery was ligated to induce MI. After that, an anti-IL-6 antibody and SC144 were injected into the PVNs of rats. All data are expressed as the mean ± SE and were analysed by ANOVA with a post hoc LSD test. p < 0.05 was considered to indicate statistical significance. RESULTS: After MI, the concentration of the inflammatory factor IL-6 increased, and its downstream glycoprotein 130-STAT3 pathway was activated in the PVN. After injection of MI rat PVNs with the anti-IL-6 antibody or glycoprotein 130 inhibitor (SC144), glutamate levels increased and γ-aminobutyric acid (GABA) levels decreased in the PVN. Plasma norepinephrine concentrations also increased after treatment, which increased the vulnerability to VA. CONCLUSIONS: In summary, IL-6 in the PVN exerts a protective effect in MI rats, and the glycoprotein 130-STAT3 pathway plays a key role in this process. We anticipate that our findings will provide new ideas for the prevention and treatment of arrhythmia after MI.


Assuntos
Receptor gp130 de Citocina/metabolismo , Frequência Cardíaca , Interleucina-6/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Fator de Transcrição STAT3/metabolismo , Fibrilação Ventricular/prevenção & controle , Função Ventricular Esquerda , Potenciais de Ação , Animais , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Norepinefrina/sangue , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Sprague-Dawley , Transdução de Sinais , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/metabolismo , Fibrilação Ventricular/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
17.
Gen Comp Endocrinol ; 299: 113558, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707241

RESUMO

Neuropeptide S (NPS), a 20-amino acid neuropeptide, is produced in the brain and is associated with appetite suppression.Our group was the first to report this anorexigenic effect in birds using chicken as a model, although a hypothalamic molecular mechanism remains to be elucidated. Thus, we designed the present study using Japanese quail(Coturnix japonica).In Experiment 1, quail intracerebroventricularly injected with NPS reduced both food and water intake. In Experiment 2, food-restricted quail injected with NPS displayed a reduction in water intake.In Experiment 3, NPS-injected quail reduced their feeding and exploratory pecks.In Experiment 4, we quantified the number of cells expressing the early intermediate gene product c-Fos (as a marker of neuronal activation) in appetite associated hypothalamic nuclei and found that immunoreactivity was increased in the paraventricular nucleus (PVN). In Experiment 5, we utilized real-time PCR to screen for neuropeptide changes within the PVN of NPS-injected quail. Mesotocin and corticotropin-releasing factor (CRF) mRNAs increased in response to NPS injection. In Experiment 6, co-injection of astressin, a CRF receptor antagonist, was sufficient to block the food intake-suppressive effects of NPS, but in Experiment 7, co-injection of an oxytocin receptor antagonist was not sufficient to block the food intake-suppressive effects of NPS. Collectively, results support that NPS induces an anorexigenic response in Japanese quail that is mediated within the PVN and is associated with CRF.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Neuropeptídeos/uso terapêutico , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Resposta de Saciedade/fisiologia , Animais , Humanos , Masculino , Neuropeptídeos/farmacologia , Codorniz , Ratos , Ratos Wistar
18.
Med Sci Monit ; 26: e926807, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33199674

RESUMO

BACKGROUND The neuroinflammation of paraventricular nucleus (PVN) of the hypothalamus has been implicated in the development of hypertension. The promoted invasion of peripheral immune cells into PVN may be attributed to the upregulation of chemokines, then exacerbating neuroinflammation. We studied the expressions of chemokines, activation of microglial cells, and inflammatory mediators in PVN of rats with stress-induced hypertension (SIH). MATERIAL AND METHODS SIH was induced by electrical foot shock combined with noise for 2 h twice a day, at an interval of 4 h for 14 consecutive days. At the end of the 14th day, fresh PVN tissues were collected to measure the expressions of chemokines using the RayBiotech antibody array. RESULTS We are the first to report that the expression of CXCL7 was extremely high in PVN of control rats, and was significantly lower in SIH rats. The expressions of CCL2 and CX3CL1 in PVN of SIH rats significantly exceeded those of control rats. The numbers of CX3CR1 (receptor of CX3CL1)-immunostained cells and oxycocin-42 (OX-42, marker of microglia)-positive cells increased in PVN of the SIH rats. The stress enhanced the protein expressions of proinflammatory cytokines IL-6 and IL-17 and reduced those of anti-inflammatory cytokines TGF-ß and IL-10 in PVN. CONCLUSIONS In PVN of SIH rats, chronic stress induced neuroinflammation characterized by the activated microglia and upregulated proinflammatory cytokines. Expressions of chemokines CXCL7, CX3CL1, and CCL2 were altered. The causal link of chemokines to PVN neuroinflammation and hypertension remain to be determined.


Assuntos
Quimiocinas/genética , Hipertensão/etiologia , Hipertensão/genética , Núcleo Hipotalâmico Paraventricular/patologia , Estresse Psicológico/complicações , Regulação para Cima/genética , Animais , Pressão Sanguínea/fisiologia , Quimiocinas/metabolismo , Frequência Cardíaca/fisiologia , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Microglia/patologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos Sprague-Dawley , Estresse Psicológico/fisiopatologia
19.
Addict Biol ; 25(2): e12708, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623532

RESUMO

Drug addiction is a chronic disorder that is characterized by compulsive drug seeking and involves cycling between periods of compulsive drug use, abstinence, and relapse. In both human addicts and animal models of addiction, chronic food restriction has been shown to increase rates of relapse. Previously, our laboratory has demonstrated a robust increase in drug seeking following a period of withdrawal in chronically food-restricted rats compared with sated rats. To date, the neural mechanisms that mediate the effect of chronic food restriction on drug seeking have not been elucidated. However, the paraventricular nucleus of the thalamus (PVT) appears to be a promising target to investigate. The objective of the current study was to examine the role of the PVT in the augmentation of heroin seeking induced by chronic food restriction. Male Long-Evans rats were trained to self-administer heroin for 10 days. Rats were then removed from the training chambers and experienced a 14-day withdrawal period with either unrestricted (sated) or mildly restricted (FDR) access to food. On day 14, rats underwent a 1-hour heroin-seeking test under extinction conditions, during which neural activity in the PVT was either inhibited or increased using pharmacological or chemogenetic approaches. Unexpectedly, inhibition of the PVT did not alter heroin seeking in food-restricted or sated rats, while enhancing neural activity in the PVT-attenuated heroin seeking in food-restricted rats. These results indicate that PVT activity can modulate heroin seeking induced by chronic food restriction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Privação de Alimentos/fisiologia , Dependência de Heroína/fisiopatologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Animais , Modelos Animais de Doenças , Heroína/farmacologia , Dependência de Heroína/psicologia , Masculino , Ratos , Ratos Long-Evans
20.
J Cell Physiol ; 234(8): 13534-13543, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30609027

RESUMO

Chronic intermittent hypoxia (CIH) is known to induce hypertension, but the mechanism is not well understood. We hypothesized that sensory plasticity of the carotid body (CB) and oxidative stress in the paraventricular nucleus (PVN) are involved in CIH-induced hypertension. In this study, rats were exposed to CIH for 28 days (intermittent hypoxia of 21% O2 for 60 s and 5% O2 for 30 s, cyclically repeated for 8 hr/day) and then randomly grouped for intracerebroventricular injection of 5-HT2 receptor antagonist ritanserin, Rho-associated protein kinase (ROCK) inhibitor Y-27632, and NADPH oxidase (NOX) inhibitor diphenyleneiodonium (DPI), respectively. We found that CIH increased blood pressure (BP), elevated carotid sinus nerve (CSN) and renal sympathetic nerve (RSN) activities, oxidative stress, and cell apoptosis in PVN. NOX-derived reactive oxygen species (ROS) production and cell apoptosis decreased when CIH-induced activation of 5-HT/5-HT2AR/PKC signaling was inhibited by ritanserin. In addition, RhoA expression was downregulated when oxidative stress was attenuated by DPI, while Y-27632 decreased the expression of endothelin-1, which is overexpressed in the vascular wall during hypertension. Moreover, treatment with ritanserin, DPI or Y-27632 attenuated the sensory plasticity and sympathetic hyperactivity as well as CIH-induced elevation of BP. In conclusion, CIH-induced activation of 5-HT/5-HT2AR/PKC signaling contributes to NOX-derived oxidative stress in PVN, which may cause sensory plasticity of CB, RSN hyperactivity, and elevated BP.


Assuntos
Corpo Carotídeo/fisiopatologia , Hipóxia/fisiopatologia , Plasticidade Neuronal/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Amidas/farmacologia , Animais , Apoptose/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Corpo Carotídeo/efeitos dos fármacos , Modelos Animais de Doenças , Endotelina-1/metabolismo , Inibidores Enzimáticos/farmacologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Hipóxia/complicações , Masculino , NADPH Oxidases/antagonistas & inibidores , Plasticidade Neuronal/efeitos dos fármacos , Oniocompostos/farmacologia , Estresse Oxidativo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/patologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/metabolismo , Transdução de Sinais , Quinases Associadas a rho/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa