Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.194
Filtrar
1.
PLoS Biol ; 22(5): e3002628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814940

RESUMO

The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.


Assuntos
Trifosfato de Adenosina , Divisão Celular , Proteínas de Escherichia coli , Escherichia coli , Peptidoglicano , Peptidoglicano/metabolismo , Hidrólise , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Parede Celular/metabolismo , Conformação Proteica , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Proteínas da Membrana Bacteriana Externa , Transportadores de Cassetes de Ligação de ATP , Regulador de Condutância Transmembrana em Fibrose Cística , Lipoproteínas , Proteínas de Ciclo Celular
2.
PLoS Biol ; 21(1): e3001990, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716340

RESUMO

Competence development in the human pathogen Streptococcus pneumoniae controls several features such as genetic transformation, biofilm formation, and virulence. Competent bacteria produce so-called "fratricins" such as CbpD that kill noncompetent siblings by cleaving peptidoglycan (PGN). CbpD is a choline-binding protein (CBP) that binds to phosphorylcholine residues found on wall and lipoteichoic acids (WTA and LTA) that together with PGN are major constituents of the pneumococcal cell wall. Competent pneumococci are protected against fratricide by producing the immunity protein ComM. How competence and fratricide contribute to virulence is unknown. Here, using a genome-wide CRISPRi-seq screen, we show that genes involved in teichoic acid (TA) biosynthesis are essential during competence. We demonstrate that LytR is the major enzyme mediating the final step in WTA formation, and that, together with ComM, is essential for immunity against CbpD. Importantly, we show that key virulence factors PspA and PspC become more surface-exposed at midcell during competence, in a CbpD-dependent manner. Together, our work supports a model in which activation of competence is crucial for host adherence by increased surface exposure of its various CBPs.


Assuntos
Streptococcus pneumoniae , Fatores de Virulência , Humanos , Streptococcus pneumoniae/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Colina/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
3.
Nature ; 578(7796): 582-587, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32051588

RESUMO

Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections1. Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family2. Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter2. Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics-the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin-that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins-essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.


Assuntos
Antibacterianos , Descoberta de Drogas , Peptídeos Cíclicos , Peptidoglicano/efeitos dos fármacos , Peptidoglicano/metabolismo , Actinobacteria/química , Actinobacteria/genética , Actinobacteria/metabolismo , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Vias Biossintéticas/genética , Parede Celular/metabolismo , Clorofenóis/química , Clorofenóis/metabolismo , Clorofenóis/farmacologia , Modelos Animais de Doenças , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Família Multigênica , N-Acetil-Muramil-L-Alanina Amidase/antagonistas & inibidores , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/farmacologia , Filogenia , Pele/microbiologia , Infecções Estafilocócicas/microbiologia
4.
Proc Natl Acad Sci U S A ; 120(12): e2301414120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920922

RESUMO

Peptidoglycan hydrolases, or autolysins, play a critical role in cell wall remodeling and degradation, facilitating bacterial growth, cell division, and cell separation. In Staphylococcus aureus, the so-called "major" autolysin, Atl, has long been associated with host adhesion; however, the molecular basis underlying this phenomenon remains understudied. To investigate, we used the type V glycopeptide antibiotic complestatin, which binds to peptidoglycan and blocks the activity of autolysins, as a chemical probe of autolysin function. We also generated a chromosomally encoded, catalytically inactive variant of the Atl enzyme. Autolysin-mediated peptidoglycan hydrolysis, in particular Atl-mediated daughter cell separation, was shown to be critical for maintaining optimal surface levels of S. aureus cell wall-anchored proteins, including the fibronectin-binding proteins (FnBPs) and protein A (Spa). As such, disrupting autolysin function reduced the affinity of S. aureus for host cell ligands, and negatively impacted early stages of bacterial colonization in a systemic model of S. aureus infection. Phenotypic studies revealed that Spa was sequestered at the septum of complestatin-treated cells, highlighting that autolysins are required to liberate Spa during cell division. In summary, we reveal the hydrolytic activities of autolysins are associated with the surface display of S. aureus cell wall-anchored proteins. We demonstrate that by blocking autolysin function, type V glycopeptide antibiotics are promising antivirulence agents for the development of strategies to control S. aureus infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/química , Peptidoglicano/metabolismo , Hidrólise , Antibacterianos/metabolismo , Glicopeptídeos/metabolismo , Infecções Estafilocócicas/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(24): e2302580120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276423

RESUMO

AmiA and AmiB are peptidoglycan-hydrolyzing enzymes from Escherichia coli that are required to break the peptidoglycan layer during bacterial cell division and maintain integrity of the cell envelope. In vivo, the activity of AmiA and AmiB is tightly controlled through their interactions with the membrane-bound FtsEX-EnvC complex. Activation of AmiA and AmiB requires access to a groove in the amidase-activating LytM domain of EnvC which is gated by ATP-driven conformational changes in FtsEX-EnvC complex. Here, we present a high-resolution structure of the isolated AmiA protein, confirming that it is autoinhibited in the same manner as AmiB and AmiC, and a complex of the AmiB enzymatic domain bound to the activating EnvC LytM domain. In isolation, the active site of AmiA is blocked by an autoinhibitory helix that binds directly to the catalytic zinc and fills the volume expected to accommodate peptidoglycan binding. In the complex, binding of the EnvC LytM domain induces a conformational change that displaces the amidase autoinhibitory helix and reorganizes the active site for activity. Our structures, together with complementary mutagenesis work, defines the conformational changes required to activate AmiA and/or AmiB through their interaction with their cognate activator EnvC.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Escherichia coli/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(21): e2301897120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186861

RESUMO

The peptidoglycan (PG) cell wall produced by the bacterial division machinery is initially shared between the daughters and must be split to promote cell separation and complete division. In gram-negative bacteria, enzymes that cleave PG called amidases play major roles in the separation process. To prevent spurious cell wall cleavage that can lead to cell lysis, amidases like AmiB are autoinhibited by a regulatory helix. Autoinhibition is relieved at the division site by the activator EnvC, which is in turn regulated by the ATP-binding cassette (ABC) transporter-like complex called FtsEX. EnvC is also known to be autoinhibited by a regulatory helix (RH), but how its activity is modulated by FtsEX and the mechanism by which it activates the amidases have remained unclear. Here, we investigated this regulation by determining the structure of Pseudomonas aeruginosa FtsEX alone with or without bound ATP, in complex with EnvC, and in a FtsEX-EnvC-AmiB supercomplex. In combination with biochemical studies, the structures reveal that ATP binding is likely to activate FtsEX-EnvC and promote its association with AmiB. Furthermore, the AmiB activation mechanism is shown to involve a RH rearrangement. In the activated state of the complex, the inhibitory helix of EnvC is released, freeing it to associate with the RH of AmiB, which liberates its active site for PG cleavage. These regulatory helices are found in many EnvC proteins and amidases throughout gram-negative bacteria, suggesting that the activation mechanism is broadly conserved and a potential target for lysis-inducing antibiotics that misregulate the complex.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Hidrólise , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Amidoidrolases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Parede Celular/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo , Endopeptidases/metabolismo , Proteínas de Escherichia coli/metabolismo
7.
PLoS Pathog ; 19(8): e1011563, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585473

RESUMO

Trichomonas vaginalis is a human protozoan parasite that causes trichomoniasis, a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a shift to a dysbiotic vaginal microbiome that is depleted of lactobacilli. Studies on co-cultures have shown that vaginal bacteria in eubiosis (e.g. Lactobacillus gasseri) have antagonistic effects on T. vaginalis pathogenesis, suggesting that the parasite might benefit from shaping the microbiome to dysbiosis (e.g. Gardnerella vaginalis among other anaerobes). We have recently shown that T. vaginalis has acquired NlpC/P60 genes from bacteria, expanding them to a repertoire of nine TvNlpC genes in two distinct clans, and that TvNlpCs of clan A are active against bacterial peptidoglycan. Here, we expand this characterization to TvNlpCs of clan B. In this study, we show that the clan organisation of NlpC/P60 genes is a feature of other species of Trichomonas, and that Histomonas meleagridis has sequences related to one clan. We characterized the 3D structure of TvNlpC_B3 alone and with the inhibitor E64 bound, probing the active site of these enzymes for the first time. Lastly, we demonstrated that TvNlpC_B3 and TvNlpC_B5 have complementary activities with the previously described TvNlpCs of clan A and that exogenous expression of these enzymes empower this mucosal parasite to take over populations of vaginal lactobacilli in mixed cultures. TvNlpC_B3 helps control populations of L. gasseri, but not of G. vaginalis, which action is partially inhibited by E64. This study is one of the first to show how enzymes produced by a mucosal protozoan parasite may contribute to a shift on the status of a microbiome, helping explain the link between trichomoniasis and vaginal dysbiosis. Further understanding of this process might have significant implications for treatments in the future.


Assuntos
Tricomoníase , Vaginite por Trichomonas , Trichomonas vaginalis , Feminino , Humanos , Trichomonas vaginalis/genética , Lactobacillus/genética , Peptidoglicano , N-Acetil-Muramil-L-Alanina Amidase , Disbiose , Bactérias
8.
PLoS Pathog ; 19(4): e1011306, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018381

RESUMO

As a facultative intracellular pathogen, Salmonella enterica serovar Typhimurium is one of the leading causes of food-borne diseases in humans. With the ingestion of fecal contaminated food or water, S. Typhimurium reaches the intestine. Here, the pathogen efficiently invades intestinal epithelial cells of the mucosal epithelium by the use of multiple virulence factors. Recently, chitinases have been described as emerging virulence factors of S. Typhimurium that contribute to the attachment and invasion of the intestinal epithelium, prevent immune activation, and modulate the host glycome. Here we find that the deletion of chiA leads to diminished adhesion and invasion of polarized intestinal epithelial cells (IEC) compared to wild-type S. Typhimurium. Interestingly, no apparent impact on interaction was detected when using non-polarized IEC or HeLa epithelial cells. In concordance, we demonstrate that chiA gene and ChiA protein expression was solely induced when bacteria gain contact with polarized IEC. The induction of chiA transcripts needs the specific activity of transcriptional regulator ChiR, which is co-localized with chiA in the chitinase operon. Moreover, we established that after chiA is induced, a major portion of the bacterial population expresses chiA, analyzed by flow cytometry. Once expressed, we found ChiA in the bacterial supernatants using Western blot analyses. ChiA secretion was completely abolished when accessory genes within the chitinase operon encoding for a holin and a peptidoglycan hydrolase were deleted. Holins, peptidoglycan hydrolases, and large extracellular enzymes in close proximity have been described as components of the bacterial holin/peptidoglycan hydrolase-dependent protein secretion system or Type 10 Secretion System. Overall, our results confirm that chitinase A is an important virulence factor, tightly regulated by ChiR, that promotes adhesion and invasion upon contact with polarized IEC and is likely secreted by a Type 10 Secretion System (T10SS).


Assuntos
Quitinases , Fatores de Virulência , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Salmonella typhimurium , Quitinases/genética , Quitinases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Sorogrupo , Mucosa Intestinal/microbiologia , Sistemas de Secreção Bacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
Proc Natl Acad Sci U S A ; 119(26): e2201141119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733252

RESUMO

Construction and remodeling of the bacterial peptidoglycan (PG) cell wall must be carefully coordinated with cell growth and division. Central to cell wall construction are hydrolases that cleave bonds in peptidoglycan. These enzymes also represent potential new antibiotic targets. One such hydrolase, the amidase LytH in Staphylococcus aureus, acts to remove stem peptides from PG, controlling where substrates are available for insertion of new PG strands and consequently regulating cell size. When it is absent, cells grow excessively large and have division defects. For activity, LytH requires a protein partner, ActH, that consists of an intracellular domain, a large rhomboid protease domain, and three extracellular tetratricopeptide repeats (TPRs). Here, we demonstrate that the amidase-activating function of ActH is entirely contained in its extracellular TPRs. We show that ActH binding stabilizes metals in the LytH active site and that LytH metal binding in turn is needed for stable complexation with ActH. We further present a structure of a complex of the extracellular domains of LytH and ActH. Our findings suggest that metal cofactor stabilization is a general strategy used by amidase activators and that ActH houses multiple functions within a single protein.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Metais , N-Acetil-Muramil-L-Alanina Amidase , Proteínas de Bactérias/química , Parede Celular/química , Ativação Enzimática , Estabilidade Enzimática , Proteínas de Membrana/química , Metais/química , N-Acetil-Muramil-L-Alanina Amidase/química , Peptidoglicano/química , Ligação Proteica , Domínios Proteicos
10.
Proc Natl Acad Sci U S A ; 119(50): e2214599119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469781

RESUMO

The bacterial cell wall is a multi-layered mesh, whose major component is peptidoglycan (PG), a sugar polymer cross-linked by short peptide stems. During cell division, a careful balance of PG synthesis and degradation, precisely coordinated both in time and space, is necessary to prevent uncontrolled destruction of the cell wall. In Corynebacteriales, the D,L endopeptidase RipA has emerged as a major PG hydrolase for cell separation, and RipA defaults have major implications for virulence of the human pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. However, the precise mechanisms by which RipA mediates cell separation remain elusive. Here we report phylogenetic, biochemical, and structural analysis of the Corynebacterium glutamicum homologue of RipA, Cg1735. The crystal structures of full-length Cg1735 in two different crystal forms revealed the C-terminal NlpC/P60 catalytic domain obtruded by its N-terminal conserved coiled-coil domain, which locks the enzyme in an autoinhibited state. We show that this autoinhibition is relieved by the extracellular core domain of the transmembrane septal protein Cg1604. The crystal structure of Cg1604 revealed a (ß/α) protein with an overall topology similar to that of receiver domains from response regulator proteins. The atomic model of the Cg1735-Cg1604 complex, based on bioinformatical and mutational analysis, indicates that a conserved, distal-membrane helical insertion in Cg1604 is responsible for Cg1735 activation. The reported data provide important insights into how intracellular cell division signal(s), yet to be identified, control PG hydrolysis during RipA-mediated cell separation in Corynebacteriales.


Assuntos
Actinomycetales , Proteínas de Bactérias , Actinomycetales/citologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo , Filogenia
11.
Proc Natl Acad Sci U S A ; 119(43): e2210912119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252016

RESUMO

The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.


Assuntos
Bactérias Gram-Positivas , Piridonas , Enterococos Resistentes à Vancomicina , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Piridonas/farmacologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos
12.
PLoS Genet ; 18(5): e1010222, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604931

RESUMO

Insertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. Since most bacteria carry multiple enzymes carrying the same type of PG hydrolytic activity, we know little about the specific function of given enzymes. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that PBP4 interacts with NlpI and the FtsEX-interacting protein EnvC, an activator of amidases AmiA and AmiB, which are needed to generate denuded glycan strands to recruit the initiator of septal PG synthesis, FtsN. The domain 3 of PBP4 is needed for the interaction with NlpI and EnvC, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that the interaction of PBP4 with EnvC, whilst not absolutely necessary for mid-cell recruitment of either protein, coordinates the activities of PBP4 and the amidases, which affects the formation of denuded glycan strands that attract FtsN. Consistent with this model, we found that the divisome assembly at midcell was premature in cells lacking PBP4, illustrating how the complexity of interactions affect the timing of cell division initiation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Transportadores de Cassetes de Ligação de ATP/metabolismo , Amidoidrolases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endopeptidases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo
13.
J Bacteriol ; 206(3): e0045623, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38426722

RESUMO

Actinoplanes missouriensis is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing N-acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in A. missouriensis; sporangia of the gsmA null mutant (ΔgsmA) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation. AsmA was predicted to have a signal peptide for the general secretion pathway and an N-acetylmuramoyl-l-alanine amidase domain. The transcript level of asmA increased during the early stages of sporangium formation. The asmA null mutant (ΔasmA) strain showed phenotypes similar to those of the wild-type strain, but sporangia of the ΔgsmAΔasmA double mutant released longer spore chains than those from the ΔgsmA sporangia. Furthermore, a weak interaction between AsmA and GsmA was detected in a bacterial two-hybrid assay using Escherichia coli as the host. Based on these results, we propose that AsmA is an enzyme that hydrolyzes peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in cooperation with GsmA in A. missouriensis.IMPORTANCEActinoplanes missouriensis produces sporangiospores as dormant cells. The spores inside the sporangia are assumed to be formed from prespores generated by the compartmentalization of intrasporangium hyphae via septation. Previously, we identified GsmA as a cell wall hydrolase responsible for the separation of adjacent spores inside sporangia. However, we predicted that an additional cell wall hydrolase(s) is inevitably involved in the maturation process of sporangiospores because the sporangia of the gsmA null mutant strain released not only tandemly connected spore chains (2-20 spores) but also single spores. In this study, we successfully identified a putative cell wall hydrolase (AsmA) that is involved in sporangiospore maturation in A. missouriensis.


Assuntos
Actinoplanes , N-Acetil-Muramil-L-Alanina Amidase , Esporos , Hidrolases , Parede Celular
14.
EMBO J ; 39(5): e102246, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32009249

RESUMO

The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Lipoproteínas/metabolismo , Complexos Multienzimáticos , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Parede Celular/enzimologia , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo
15.
PLoS Pathog ; 18(6): e1010516, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731836

RESUMO

Synthesis of the capsular polysaccharide, a major virulence factor for many pathogenic bacteria, is required for bacterial survival within the infected host. In Streptococcus pneumoniae, Wze, an autophosphorylating tyrosine kinase, and Wzd, a membrane protein required for Wze autophosphorylation, co-localize at the division septum and guarantee the presence of capsule at this subcellular location. To determine how bacteria regulate capsule synthesis, we studied pneumococcal proteins that interact with Wzd and Wze using bacterial two hybrid assays and fluorescence microscopy. We found that Wzd interacts with Wzg, the putative ligase that attaches capsule to the bacterial cell wall, and recruits it to the septal area. This interaction required residue V56 of Wzd and both the transmembrane regions and DNA-PPF domain of Wzg. When compared to the wild type, Wzd null pneumococci lack capsule at midcell, bind the peptidoglycan hydrolase LytA better and are more susceptible to LytA-induced lysis, and are less virulent in a zebrafish embryo infection model. In this manuscript, we propose that the Wzd/Wze pair guarantees full encapsulation of pneumococcal bacteria by recruiting Wzg to the division septum, ensuring that capsule attachment is coordinated with peptidoglycan synthesis. Impairing the encapsulation process, at localized subcellular sites, may facilitate elimination of bacteria by strategies that target the pneumococcal peptidoglycan.


Assuntos
N-Acetil-Muramil-L-Alanina Amidase , Streptococcus pneumoniae , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Streptococcus pneumoniae/metabolismo , Peixe-Zebra/metabolismo
16.
PLoS Pathog ; 18(8): e1010765, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35921364

RESUMO

Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Epitélio , Camundongos , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Suínos , Junções Íntimas/metabolismo , Vimentina/genética , Vimentina/metabolismo
17.
BMC Microbiol ; 24(1): 77, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459514

RESUMO

BACKGROUND: Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. RESULTS: AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. CONCLUSIONS: In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active.


Assuntos
N-Acetil-Muramil-L-Alanina Amidase , Staphylococcus , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus/genética , Staphylococcus/metabolismo
18.
BMC Microbiol ; 24(1): 101, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532329

RESUMO

BACKGROUND: N-acetylmuramyl-L-alanine amidases are cell wall modifying enzymes that cleave the amide bond between the sugar residues and stem peptide in peptidoglycan. Amidases play a vital role in septal cell wall cleavage and help separate daughter cells during cell division. Most amidases are zinc metalloenzymes, and E. coli cells lacking amidases grow as chains with daughter cells attached to each other. In this study, we have characterized two amidase enzymes from Deinococcus indicus DR1. D. indicus DR1 is known for its high arsenic tolerance and unique cell envelope. However, details of their cell wall biogenesis remain largely unexplored. RESULTS: We have characterized two amidases Ami1Di and Ami2Di from D. indicus DR1. Both Ami1Di and Ami2Di suppress cell separation defects in E. coli amidase mutants, suggesting that these enzymes are able to cleave septal cell wall. Ami1Di and Ami2Di proteins possess the Amidase_3 catalytic domain with conserved -GHGG- motif and Zn2+ binding sites. Zn2+- binding in Ami1Di is crucial for amidase activity. AlphaFold2 structures of both Ami1Di and Ami2Di were predicted, and Ami1Di was a closer homolog to AmiA of E. coli. CONCLUSION: Our results indicate that Ami1Di and Ami2Di enzymes can cleave peptidoglycan, and structural prediction studies revealed insights into the activity and regulation of these enzymes in D. indicus DR1.


Assuntos
Deinococcus , Escherichia coli , N-Acetil-Muramil-L-Alanina Amidase , Escherichia coli/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Alanina , Peptidoglicano/metabolismo , Amidoidrolases/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716264

RESUMO

Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.


Assuntos
Parede Celular/fisiologia , Peptidoglicano/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Homeostase , Meticilina/farmacologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Vancomicina/farmacologia
20.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785593

RESUMO

Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Lipídeos/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase , Peptidoglicano/biossíntese , Fosfatos de Poli-Isoprenil , Streptococcus pneumoniae/efeitos dos fármacos , Ácidos Teicoicos/química , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa