Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.110
Filtrar
1.
Cell ; 172(4): 683-695.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425490

RESUMO

Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning.


Assuntos
Sinalização do Cálcio/fisiologia , Interneurônios/metabolismo , Aprendizagem/fisiologia , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , N-Metilaspartato/metabolismo , Rede Nervosa/citologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
2.
J Biol Chem ; 300(3): 105744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354781

RESUMO

Synaptic plasticity is believed to be the cellular basis for experience-dependent learning and memory. Although long-term depression (LTD), a form of synaptic plasticity, is caused by the activity-dependent reduction of cell surface α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPA receptors) at postsynaptic sites, its regulation by neuronal activity is not completely understood. In this study, we showed that the inhibition of toll-like receptor-9 (TLR9), an innate immune receptor, suppresses N-methyl-d-aspartate (NMDA)-induced reduction of cell surface AMPA receptors in cultured hippocampal neurons. We found that inhibition of TLR9 also blocked NMDA-induced activation of caspase-3, which plays an essential role in the induction of LTD. siRNA-based knockdown of TLR9 also suppressed the NMDA-induced reduction of cell surface AMPA receptors, although the scrambled RNA had no effect on the NMDA-induced trafficking of AMPA receptors. Overexpression of the siRNA-resistant form of TLR9 rescued the AMPA receptor trafficking abolished by siRNA. Furthermore, NMDA stimulation induced rapid mitochondrial morphological changes, mitophagy, and the binding of mitochondrial DNA (mtDNA) to TLR9. Treatment with dideoxycytidine and mitochondrial division inhibitor-1, which block mtDNA replication and mitophagy, respectively, inhibited NMDA-dependent AMPA receptor internalization. These results suggest that mitophagy induced by NMDA receptor activation releases mtDNA and activates TLR9, which plays an essential role in the trafficking of AMPA receptors during the induction of LTD.


Assuntos
DNA Mitocondrial , Hipocampo , Depressão Sináptica de Longo Prazo , Receptor Toll-Like 9 , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Hipocampo/metabolismo , Imunidade Inata , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Interferente Pequeno/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células HEK293
3.
J Neurosci ; 43(46): 7730-7744, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37726169

RESUMO

NR2D subunit-containing NMDA receptors (NMDARs) gradually disappear during brain maturation but can be recruited by pathophysiological stimuli in the adult brain. Here, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication recruited NR2D subunit-containing NMDARs that generated an Mg2+-resistant tonic NMDA current (INMDA) in dopaminergic (DA) neurons in the midbrain of mature male mice. MPTP selectively generated an Mg2+-resistant tonic INMDA in DA neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Consistently, MPTP increased NR2D but not NR2B expression in the midbrain regions. Pharmacological or genetic NR2D interventions abolished the generation of Mg2+-resistant tonic INMDA in SNpc DA neurons, and thus attenuated subsequent DA neuronal loss and gait deficits in MPTP-treated mice. These results show that extrasynaptic NR2D recruitment generates Mg2+-resistant tonic INMDA and exacerbates DA neuronal loss, thus contributing to MPTP-induced Parkinsonism. The state-dependent NR2D recruitment could be a novel therapeutic target for mitigating cell type-specific neuronal death in neurodegenerative diseases.SIGNIFICANCE STATEMENT NR2D subunit-containing NMDA receptors (NMDARs) are widely expressed in the brain during late embryonic and early postnatal development, and then downregulated during brain maturation and preserved at low levels in a few regions of the adult brain. Certain stimuli can recruit NR2D subunits to generate tonic persistent NMDAR currents in nondepolarized neurons in the mature brain. Our results show that MPTP intoxication recruits NR2D subunits in midbrain dopaminergic (DA) neurons, which leads to tonic NMDAR current-promoting dopaminergic neuronal death and consequent abnormal gait behavior in the MPTP mouse model of Parkinson's disease (PD). This is the first study to indicate that extrasynaptic NR2D recruitment could be a target for preventing neuronal death in neurodegenerative diseases.


Assuntos
Doença de Parkinson , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Substância Negra/metabolismo
4.
Mol Pain ; 20: 17448069241230258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246915

RESUMO

The anterior cingulate cortex (ACC) is a key cortical area for pain perception, emotional fear and anxiety. Cortical excitation is thought to be the major mechanism for chronic pain and its related emotional disorders such as anxiety and depression. GluN2B (or called NR2B) containing NMDA receptors play critical roles for such excitation. Not only does the activation of GluN2B contributes to the induction of the postsynaptic form of LTP (post-LTP), long-term upregulation of GluN2B subunits through tyrosine phosphorylation were also detected after peripheral injury. In addition, it has been reported that presynaptic NMDA receptors may contribute to the modulation of the release of glutamate from presynaptic terminals in the ACC. It is believed that inhibiting subtypes of NMDA receptors and/or downstream signaling proteins may serve as a novel therapeutic mechanism for future treatment of chronic pain, anxiety, and depression.


Assuntos
Dor Crônica , Giro do Cíngulo , Humanos , Giro do Cíngulo/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Dor Crônica/metabolismo , Sinapses/metabolismo , Potenciação de Longa Duração/fisiologia
5.
PLoS Pathog ; 18(9): e1010766, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067266

RESUMO

Wound infections are often polymicrobial in nature, biofilm associated and therefore tolerant to antibiotic therapy, and associated with delayed healing. Escherichia coli and Staphylococcus aureus are among the most frequently cultured pathogens from wound infections. However, little is known about the frequency or consequence of E. coli and S. aureus polymicrobial interactions during wound infections. Here we show that E. coli kills Staphylococci, including S. aureus, both in vitro and in a mouse excisional wound model via the genotoxin, colibactin. Colibactin biosynthesis is encoded by the pks locus, which we identified in nearly 30% of human E. coli wound infection isolates. While it is not clear how colibactin is released from E. coli or how it penetrates target cells, we found that the colibactin intermediate N-myristoyl-D-Asn (NMDA) disrupts the S. aureus membrane. We also show that the BarA-UvrY two component system (TCS) senses the environment created during E. coli and S. aureus mixed species interaction, leading to upregulation of pks island genes. Further, we show that BarA-UvrY acts via the carbon storage global regulatory (Csr) system to control pks expression. Together, our data demonstrate the role of colibactin in interspecies competition and show that it is regulated by BarA-UvrY TCS during interspecies competition.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Proteínas de Membrana , Fosfotransferases , Policetídeos , Staphylococcus aureus , Fatores de Transcrição , Animais , Antibacterianos/metabolismo , Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mutagênicos/metabolismo , N-Metilaspartato/metabolismo , Peptídeos , Fosfotransferases/genética , Policetídeos/metabolismo , Staphylococcus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Fatores de Transcrição/metabolismo , Infecção dos Ferimentos/microbiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38521869

RESUMO

For most quadrupeds, locomotion involves alternating movements of the fore- and hindlimbs. In birds, however, while walking generally involves alternating movements of the legs, to generate lift and thrust, the wings are moved synchronously with each other. Neural circuits in the spinal cord, referred to as central pattern generators (CPGs), are the source of the basic locomotor rhythms and patterns. Given the differences in the patterns of movement of the wings and legs, it is likely that the neuronal components and connectivity of the CPG that coordinates wing movements differ from those that coordinate leg movements. In this study, we used in vitro preparations of embryonic chicken spinal cords (E11-E14) to compare the neural responses of spinal CPGs that control and coordinate wing flapping with those that control alternating leg movements. We found that in response to N-methyl-D-aspartate (NMDA) or a combination of NMDA and serotonin (5-HT), the intact chicken spinal cord produced rhythmic outputs that were synchronous both bilaterally and between the wing and leg segments. Despite this, we found that this rhythmic output was disrupted by an antagonist of glycine receptors in the lumbosacral (legs), but not the brachial (wing) segments. Thus, our results provide evidence of differences between CPGs that control the wings and legs in the spinal cord of birds.


Assuntos
Geradores de Padrão Central , N-Metilaspartato , Serotonina , Medula Espinal , Animais , Medula Espinal/fisiologia , Embrião de Galinha , Geradores de Padrão Central/fisiologia , Serotonina/metabolismo , Serotonina/farmacologia , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Asas de Animais/fisiologia , Locomoção/fisiologia , Periodicidade , Membro Posterior/fisiologia , Membro Posterior/inervação , Neurônios Motores/fisiologia , Potenciais de Ação/fisiologia
7.
Neurochem Res ; 49(2): 363-378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814133

RESUMO

Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Canabidiol , Ratos , Animais , Topiramato/uso terapêutico , Topiramato/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Maleato de Dizocilpina/metabolismo , N-Metilaspartato/metabolismo , Hipocampo/metabolismo , Transdução de Sinais , Córtex Pré-Frontal/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Amnésia/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
8.
Behav Pharmacol ; 35(6): 327-337, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39051912

RESUMO

Emerging evidence suggests that crocin rescues stress-induced depressive symptoms in mice via stimulation of hippocampal neurogenesis. Glutamate modulators mainly involving N-methyl- d -aspartate (NMDA) receptors (NMDARs) have highlighted a role in neural development, synaptic plasticity, and depression. The research presented here was designed to appraise the interaction between NMDAR agents and crocin on depressive-related behaviors in the NMRI male mice exposed to acute restraint stress (ARS) for a period of 4 h. The mice were submitted to the splash test, forced swimming test, and tail suspension test to evaluate depressive-like behavior. The ARS decreased the grooming duration in the splash test and increased immobility time in the forced swimming test and tail suspension test, suggesting a depressive-like phenotype. NMDA (0.25 and 0.5 µg/mouse, intracerebroventricular) did not alter depression-related profiles in both non-acute restraint stress (NARS) and ARS mice, while the same doses of NMDAR antagonist D-AP5 potentiated the antidepressive-like activities in the ARS mice compared with the NARS mice. Moreover, a low dose of NMDA did not change depression-related parameters in the crocin-treated NARS or ARS mice, while D-AP5 enhanced the crocin response in the NARS and ARS mice. Isobologram analysis noted a synergism between crocin and D-AP5 on antidepressive-like behavior in the NARS and ARS mice. Collectively, the combination of crocin and D-AP5 was shown to mitigate depression symptoms and can be potentially used for the treatment of depression disorders.


Assuntos
Antidepressivos , Carotenoides , Depressão , Sinergismo Farmacológico , Restrição Física , Estresse Psicológico , Animais , Masculino , Camundongos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Carotenoides/farmacologia , 2-Amino-5-fosfonovalerato/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Comportamento Animal/efeitos dos fármacos , Natação , Relação Dose-Resposta a Droga
9.
Cereb Cortex ; 33(5): 2342-2360, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35732315

RESUMO

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptors are driving forces for synaptic transmission and plasticity at neocortical synapses. However, their distribution pattern in the adult rat neocortex is largely unknown and was quantified using freeze fracture replication combined with postimmunogold-labeling. Both receptors were co-localized at layer (L)4 and L5 postsynaptic densities (PSDs). At L4 dendritic shaft and spine PSDs, the number of gold grains detecting AMPA was similar, whereas at L5 shaft PSDs AMPA-receptors outnumbered those on spine PSDs. Their number was significantly higher at L5 vs. L4 PSDs. At L4 and L5 dendritic shaft PSDs, the number of gold grains detecting GluN1 was ~2-fold higher than at spine PSDs. The number of gold grains detecting the GluN1-subunit was higher for both shaft and spine PSDs in L5 vs. L4. Both receptors showed a large variability in L4 and L5. A high correlation between the number of gold grains and PSD size for both receptors and targets was observed. Both receptors were distributed over the entire PSD but showed a layer- and target-specific distribution pattern. The layer- and target-specific distribution of AMPA and GluN1 glutamate receptors partially contribute to the observed functional differences in synaptic transmission and plasticity in the neocortex.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , N-Metilaspartato/metabolismo , Córtex Somatossensorial/metabolismo , Elétrons , Receptores de Glutamato/metabolismo , Sinapses/metabolismo
10.
Metab Brain Dis ; 39(1): 67-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966694

RESUMO

Brain damage caused by ethanol abuse may lead to permanent damage, including severe dementia. The aim of this study was to investigate the effects of ginger powder on ethanol-induced cognitive disorders by examining oxidative damage and inflammation status, and the gene expression of N-methyl-D-aspartate (NMDA) and γ-Aminobutyric acid (GABA)-A receptors in the hippocampus of male rats. 24 adult male Sprague-Dawley rats were allocated randomly to four groups as follows control, ethanol (4g/kg/day, by gavage), ginger (1g/kg/day, by gavage), and ginger-ethanol. At the end of the study, memory and learning were evaluated by the shuttle box test. Moreover, to explore mechanisms involved in ethanol-induced cognitive impairment and the protective effect of ginger, the expression of Nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), NMDA receptor, and GABA-A receptor was measured along with inflammatory and oxidative biomarkers in the hippocampus tissue. The results showed that ethanol could induce cognitive impairment in the ethanol group, while pretreatment with ginger could reverse it. The gene expression of the NF-κB/ Tumor necrosis factor (TNF)-α/Interleukin (IL)-1ß pathway and NMDA and GABA-A receptors significantly increased in the ethanol group compared to the control group. While pretreatment with ginger could significantly improve ethanol-induced cognitive impairment through these pathways in the ginger-ethanol group compared to the ethanol group (P < 0.05). It can be concluded that ginger powder could ameliorate ethanol-induced cognitive impairment by modulating the expression of NMDA and GABA-A receptors and inhibiting oxidative damage and the NF-κB/TNF-α/IL-1ß pathway in the rat hippocampus.


Assuntos
Disfunção Cognitiva , Zingiber officinale , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Etanol/toxicidade , NF-kappa B/metabolismo , Receptores de GABA/metabolismo , Pós/metabolismo , Pós/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Hipocampo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301882

RESUMO

The dendrites of neocortical pyramidal neurons are excitable. However, it is unknown how synaptic inputs engage nonlinear dendritic mechanisms during sensory processing in vivo, and how they in turn influence action potential output. Here, we provide a quantitative account of the relationship between synaptic inputs, nonlinear dendritic events, and action potential output. We developed a detailed pyramidal neuron model constrained by in vivo dendritic recordings. We drive this model with realistic input patterns constrained by sensory responses measured in vivo and connectivity measured in vitro. We show mechanistically that under realistic conditions, dendritic Na+ and NMDA spikes are the major determinants of neuronal output in vivo. We demonstrate that these dendritic spikes can be triggered by a surprisingly small number of strong synaptic inputs, in some cases even by single synapses. We predict that dendritic excitability allows the 1% strongest synaptic inputs of a neuron to control the tuning of its output. Active dendrites therefore allow smaller subcircuits consisting of only a few strongly connected neurons to achieve selectivity for specific sensory features.


Assuntos
Potenciais de Ação , Dendritos/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Células Piramidais/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Sinalização do Cálcio , Potenciais Pós-Sinápticos Excitadores , Camundongos , N-Metilaspartato/metabolismo , Orientação , Ratos , Sódio/metabolismo
12.
J Biol Chem ; 298(9): 102299, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872016

RESUMO

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates long-term potentiation or depression (LTP or LTD) after distinct stimuli of hippocampal NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD prevails in juvenile mice, but a mechanistically different form of LTD can be readily induced in adults by instead stimulating metabotropic glutamate receptors (mGluRs). However, the role that CaMKII plays in the mGluR-dependent form of LTD is not clear. Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation (pT286), which induces Ca2+-independent autonomous kinase activity. In addition, we compared the role of pT286 among three forms of long-term plasticity (NMDAR-dependent LTP and LTD, and mGluR-dependent LTD) using simultaneous live imaging of endogenous CaMKII together with synaptic marker proteins. We determined that after LTP stimuli, pT286 autophosphorylation accelerated CaMKII movement to excitatory synapses. After NMDAR-LTD stimuli, pT286 was strictly required for any movement to inhibitory synapses. Similar to NMDAR-LTD, we found the mGluR-LTD stimuli did not induce CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, we demonstrate that the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Thus, despite its prominent role in LTP, we conclude that CaMKII T286 autophosphorylation is also required for both major forms of hippocampal LTD, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Hipocampo , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico , Sinapses , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , N-Metilaspartato/metabolismo , Fosforilação , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia
13.
J Cell Biochem ; 124(5): 743-752, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947703

RESUMO

Glucose-regulated protein-78 (Grp78) is an endoplasmic reticulum chaperone, which is secreted by cells and associates with cell surfaces, where it functions as a receptor for activated α2 -macroglobulin (α2 M) and tissue-type plasminogen activator (tPA). In macrophages, α2 M and tPA also bind to the transmembrane receptor, LDL receptor-related protein-1 (LRP1), activating a cell-signaling receptor assembly that includes the NMDA receptor (NMDA-R) to suppress innate immunity. Herein, we demonstrate that an antibody targeting Grp78 (N88) inhibits NFκB activation and expression of proinflammatory cytokines in bone marrow-derived macrophages (BMDMs) treated with the toll-like receptor-4 (TLR4) ligand, lipopolysaccharide, or with agonists that activate TLR2, TLR7, or TLR9. Pharmacologic inhibition of the NMDA-R or deletion of the gene encoding LRP1 (Lrp1) in BMDMs neutralizes the activity of N88. The fibrinolysis protease inhibitor, plasminogen activator inhibitor-1 (PAI1), has been implicated in diverse diseases including metabolic syndrome, cardiovascular disease, and type 2 diabetes. Deletion of Lrp1 independently increased expression of PAI1 and PAI2 in BMDMs, as did treatment of wild-type BMDMs with TLR agonists. tPA, α2 M, and N88 inhibited expression of PAI1 and PAI2 in BMDMs treated with TLR-activating agents. Inhibiting Src family kinases blocked the ability of both N88 and tPA to function as anti-inflammatory agents, suggesting that the cell-signaling pathway activated by tPA and N88, downstream of LRP1 and the NMDA-R, may be equivalent. We conclude that targeting cell-surface Grp78 may be effective in suppressing innate immunity by a mechanism that requires LRP1 and the NMDA-R.


Assuntos
Citocinas , Diabetes Mellitus Tipo 2 , Humanos , Citocinas/metabolismo , Proteínas de Membrana/metabolismo , Inativadores de Plasminogênio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Chaperona BiP do Retículo Endoplasmático , N-Metilaspartato/metabolismo , Macrófagos/metabolismo , Anticorpos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
14.
Genet Med ; 25(11): 100922, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37403762

RESUMO

PURPOSE: RPH3A encodes a protein involved in the stabilization of GluN2A subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptors at the cell surface, forming a complex essential for synaptic plasticity and cognition. We investigated the effect of variants in RPH3A in patients with neurodevelopmental disorders. METHODS: By using trio-based exome sequencing, GeneMatcher, and screening of 100,000 Genomes Project data, we identified 6 heterozygous variants in RPH3A. In silico and in vitro models, including rat hippocampal neuronal cultures, have been used to characterize the effect of the variants. RESULTS: Four cases had a neurodevelopmental disorder with untreatable epileptic seizures [p.(Gln73His)dn; p.(Arg209Lys); p.(Thr450Ser)dn; p.(Gln508His)], and 2 cases [p.(Arg235Ser); p.(Asn618Ser)dn] showed high-functioning autism spectrum disorder. Using neuronal cultures, we demonstrated that p.(Thr450Ser) and p.(Asn618Ser) reduce the synaptic localization of GluN2A; p.(Thr450Ser) also increased the surface levels of GluN2A. Electrophysiological recordings showed increased GluN2A-dependent NMDA ionotropic glutamate receptor currents for both variants and alteration of postsynaptic calcium levels. Finally, expression of the Rph3AThr450Ser variant in neurons affected dendritic spine morphology. CONCLUSION: Overall, we provide evidence that missense gain-of-function variants in RPH3A increase GluN2A-containing NMDA ionotropic glutamate receptors at extrasynaptic sites, altering synaptic function and leading to a clinically variable neurodevelopmental presentation ranging from untreatable epilepsy to autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Animais , Humanos , Ratos , Transtorno do Espectro Autista/genética , Epilepsia/genética , Mutação de Sentido Incorreto/genética , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Rabfilina-3A
15.
PLoS Biol ; 18(11): e3000680, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253166

RESUMO

Proopiomelanocortin (POMC) neurons are major regulators of energy balance and glucose homeostasis. In addition to being regulated by hormones and nutrients, POMC neurons are controlled by glutamatergic input originating from multiple brain regions. However, the factors involved in the formation of glutamatergic inputs and how they contribute to bodily functions remain largely unknown. Here, we show that during the development of glutamatergic inputs, POMC neurons exhibit enriched expression of the Efnb1 (EphrinB1) and Efnb2 (EphrinB2) genes, which are known to control excitatory synapse formation. In vivo loss of Efnb1 in POMC-expressing progenitors decreases the amount of glutamatergic inputs, associated with a reduced number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits and excitability of these cells. We found that mice lacking Efnb1 in POMC-expressing progenitors display impaired glucose tolerance due to blunted vagus nerve activity and decreased insulin secretion. However, despite reduced excitatory inputs, mice lacking Efnb2 in POMC-expressing progenitors showed no deregulation of insulin secretion and only mild alterations in feeding behavior and gluconeogenesis. Collectively, our data demonstrate the role of ephrins in controlling excitatory input amount into POMC-expressing progenitors and show an isotype-specific role of ephrins on the regulation of glucose homeostasis and feeding.


Assuntos
Efrina-B1/metabolismo , Glucose/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Efrina-B1/fisiologia , Efrina-B2/metabolismo , Efrina-B2/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
16.
Chin J Physiol ; 66(5): 326-334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929343

RESUMO

Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder, and there is an association between it and the development of cardiovascular disease. The aim of this study was to explore whether there is a glutamatergic pathway connecting the medial habenula (MHb) with the rostral ventrolateral medulla (RVLM) that is involved in the regulation of cardiovascular function in a rat model of PTSD. Vesicular glutamate transporter 2 (VGLUT2)-positive neurons in the MHb region were retrogradely labeled with FluoroGold (FG) by the double-labeling technique of VGLUT2 immunofluorescence and FG retrograde tracing. Rats belonging to the PTSD model group were microinjected with artificial cerebrospinal fluid (ACSF) or kynurenic acid (KYN; a nonselective glutamate receptor blocker) into their RVLM. Subsequently, with electrical stimulation of MHb, the discharge frequency of the RVLM neurons, heart rate, and blood pressure were found to be significantly increased after microinjection of ACSF using an in vivo multichannel synchronous recording technology; however, this effect was inhibited by injection of KYN. The expression of N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits was significantly increased in RVLM of PTSD model rats analyzed by the Western blotting technique. These findings suggest that there may be a glutamatergic pathway connection between MHb and RVLM and that this pathway may be involved in the regulation of cardiovascular function in the PTSD model rats, by acting on NMDA and AMPA receptors in the RVLM.


Assuntos
Habenula , Transtornos de Estresse Pós-Traumáticos , Humanos , Ratos , Animais , Transtornos de Estresse Pós-Traumáticos/metabolismo , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Habenula/metabolismo , Bulbo/metabolismo , Pressão Sanguínea , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia
17.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37834353

RESUMO

Autoantibodies against NMDA and AMPA receptors have been identified in the central nervous system of patients suffering from brain disorders characterized by neurological and psychiatric symptoms. It has been demonstrated that these autoantibodies can affect the functions and/or the expression of the targeted receptors, altering synaptic communication. The importance to clarify, in preclinical models, the molecular mechanisms involved in the autoantibody-mediated effects has emerged in order to understand their pathogenic role in central disorders, but also to propose new therapeutic approaches for preventing the deleterious central consequences. In this review, we describe some of the available preclinical literature concerning the impact of antibodies recognizing NMDA and AMPA receptors in neurons. This review discusses the cellular events that would support the detrimental roles of the autoantibodies, also illustrating some contrasting findings that in our opinion deserve attention and further investigations before translating the preclinical observations to clinic.


Assuntos
N-Metilaspartato , Receptores de AMPA , Humanos , Receptores de AMPA/metabolismo , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismo , Autoanticorpos
18.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958669

RESUMO

N-methyl-D-aspartate (NMDA) receptors are inhibited by many amidine and guanidine compounds. In this work, we studied the mechanisms of their inhibition by sepimostat-an amidine-containing serine protease inhibitor with neuroprotective properties. Sepimostat inhibited native NMDA receptors in rat hippocampal CA1 pyramidal neurons with IC50 of 3.5 ± 0.3 µM at -80 mV holding voltage. It demonstrated complex voltage dependence with voltage-independent and voltage-dependent components, suggesting the presence of shallow and deep binding sites. At -80 mV holding voltage, the voltage-dependent component dominates, and we observed pronounced tail currents and overshoots evidencing a "foot-in-the-door" open channel block. At depolarized voltages, the voltage-independent inhibition by sepimostat was significantly attenuated by the increase of agonist concentration. However, the voltage-independent inhibition was non-competitive. We further compared the mechanisms of the action of sepimostat with those of structurally-related amidine and guanidine compounds-nafamostat, gabexate, furamidine, pentamidine, diminazene, and DAPI-investigated previously. The action of all these compounds can be described by the two-component mechanism. All compounds demonstrated similar affinity to the shallow site, which is responsible for the voltage-independent inhibition, with binding constants in the range of 3-30 µM. In contrast, affinities to the deep site differed dramatically, with nafamostat, furamidine, and pentamidine being much more active.


Assuntos
Pentamidina , Receptores de N-Metil-D-Aspartato , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Pentamidina/metabolismo , Guanidinas/farmacologia , Guanidinas/metabolismo , Hipocampo/metabolismo , Células Cultivadas , N-Metilaspartato/metabolismo
19.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069032

RESUMO

Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Receptores de N-Metil-D-Aspartato , Ratos , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Vanádio/toxicidade , Vanádio/metabolismo , Morte Celular , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Hipocampo/metabolismo
20.
Ann Pharm Fr ; 81(3): 457-465, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36252868

RESUMO

BACKGROUND: The excess amount of glutamate in neurons is associated with the excitotoxicity and neurodegenerative diseases. Glutamate induces neurotoxicity primarily by immense influx of Ca2+ arising from overstimulation of the NMDA subtype of glutamate receptors. The neuronal death induced by the overstimulation of glutamate receptors depends critically on a sustained increase in mitochondrial Ca2+ influx and impairment in mitochondrial functions. The mitochondrial impairment is an important contributor to the glutamate-induced neuronal toxicity and thus provides an important target for the intervention. The present study investigates the effects of high glutamate concentrations on mitochondrial functions. RESULTS: Here, we have shown that the higher concentration of glutamate treatment caused a significant elevation in the N-methyl-D-aspartate (NMDA) receptors expression and elevated the intra-mitochondrial calcium accumulation in SHSY5Y neuronal cells. As a result of an accumulation of intra-mitochondrial calcium, there is a concentration-dependent elevation in ROS in the mitochondria. Tyrosine nitration of several mitochondrial proteins was increased while the mitochondrial membrane potential was dissipated. Furthermore, glutamate treatments also resulted in mitochondrial membrane permeability transition. CONCLUSIONS: These findings suggest that treatment of high glutamate concentration causes impairment of mitochondrial functions by an increase in intra-mitochondrial calcium, ROS production, dissipation of mitochondrial membrane potential and mitochondrial permeability transition pore opening in human neuroblastoma SHSY5Y cells.


Assuntos
Ácido Glutâmico , Neuroblastoma , Humanos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Neuroblastoma/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Glutamato/metabolismo , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa