Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.938
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(8): 1541-1563, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059064

RESUMO

Recent identification of oncogenic cells within healthy tissues and the prevalence of indolent cancers found incidentally at autopsies reveal a greater complexity in tumor initiation than previously appreciated. The human body contains roughly 40 trillion cells of 200 different types that are organized within a complex three-dimensional matrix, necessitating exquisite mechanisms to restrain aberrant outgrowth of malignant cells that have the capacity to kill the host. Understanding how this defense is overcome to trigger tumorigenesis and why cancer is so extraordinarily rare at the cellular level is vital to future prevention therapies. In this review, we discuss how early initiated cells are protected from further tumorigenesis and the non-mutagenic pathways by which cancer risk factors promote tumor growth. By nature, the absence of permanent genomic alterations potentially renders these tumor-promoting mechanisms clinically targetable. Finally, we consider existing strategies for early cancer interception with perspectives on the next steps for molecular cancer prevention.


Assuntos
Neoplasias , Humanos , Carcinogênese , Transformação Celular Neoplásica , Genômica/métodos , Neoplasias/epidemiologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Risco
3.
CA Cancer J Clin ; 74(1): 12-49, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38230766

RESUMO

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries (through 2020) and mortality data collected by the National Center for Health Statistics (through 2021). In 2024, 2,001,140 new cancer cases and 611,720 cancer deaths are projected to occur in the United States. Cancer mortality continued to decline through 2021, averting over 4 million deaths since 1991 because of reductions in smoking, earlier detection for some cancers, and improved treatment options in both the adjuvant and metastatic settings. However, these gains are threatened by increasing incidence for 6 of the top 10 cancers. Incidence rates increased during 2015-2019 by 0.6%-1% annually for breast, pancreas, and uterine corpus cancers and by 2%-3% annually for prostate, liver (female), kidney, and human papillomavirus-associated oral cancers and for melanoma. Incidence rates also increased by 1%-2% annually for cervical (ages 30-44 years) and colorectal cancers (ages <55 years) in young adults. Colorectal cancer was the fourth-leading cause of cancer death in both men and women younger than 50 years in the late-1990s but is now first in men and second in women. Progress is also hampered by wide persistent cancer disparities; compared to White people, mortality rates are two-fold higher for prostate, stomach and uterine corpus cancers in Black people and for liver, stomach, and kidney cancers in Native American people. Continued national progress will require increased investment in cancer prevention and access to equitable treatment, especially among American Indian and Alaska Native and Black individuals.


Assuntos
Melanoma , Neoplasias , Masculino , Adulto Jovem , Humanos , Feminino , Estados Unidos/epidemiologia , Neoplasias/epidemiologia , Neoplasias/terapia , Sistema de Registros , Incidência , Fumar , Brancos
4.
CA Cancer J Clin ; 74(2): 136-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37962495

RESUMO

In 2021, the American Cancer Society published its first biennial report on the status of cancer disparities in the United States. In this second report, the authors provide updated data on racial, ethnic, socioeconomic (educational attainment as a marker), and geographic (metropolitan status) disparities in cancer occurrence and outcomes and contributing factors to these disparities in the country. The authors also review programs that have reduced cancer disparities and provide policy recommendations to further mitigate these inequalities. There are substantial variations in risk factors, stage at diagnosis, receipt of care, survival, and mortality for many cancers by race/ethnicity, educational attainment, and metropolitan status. During 2016 through 2020, Black and American Indian/Alaska Native people continued to bear a disproportionately higher burden of cancer deaths, both overall and from major cancers. By educational attainment, overall cancer mortality rates were about 1.6-2.8 times higher in individuals with ≤12 years of education than in those with ≥16 years of education among Black and White men and women. These disparities by educational attainment within each race were considerably larger than the Black-White disparities in overall cancer mortality within each educational attainment, ranging from 1.03 to 1.5 times higher among Black people, suggesting a major role for socioeconomic status disparities in racial disparities in cancer mortality given the disproportionally larger representation of Black people in lower socioeconomic status groups. Of note, the largest Black-White disparities in overall cancer mortality were among those who had ≥16 years of education. By area of residence, mortality from all cancer and from leading causes of cancer death were substantially higher in nonmetropolitan areas than in large metropolitan areas. For colorectal cancer, for example, mortality rates in nonmetropolitan areas versus large metropolitan areas were 23% higher among males and 21% higher among females. By age group, the racial and geographic disparities in cancer mortality were greater among individuals younger than 65 years than among those aged 65 years and older. Many of the observed racial, socioeconomic, and geographic disparities in cancer mortality align with disparities in exposure to risk factors and access to cancer prevention, early detection, and treatment, which are largely rooted in fundamental inequities in social determinants of health. Equitable policies at all levels of government, broad interdisciplinary engagement to address these inequities, and equitable implementation of evidence-based interventions, such as increasing health insurance coverage, are needed to reduce cancer disparities.


Assuntos
Etnicidade , Neoplasias , Masculino , Humanos , Feminino , Estados Unidos/epidemiologia , American Cancer Society , Neoplasias/epidemiologia , Neoplasias/terapia , Atenção à Saúde , População Negra , Disparidades nos Níveis de Saúde , Disparidades em Assistência à Saúde
5.
CA Cancer J Clin ; 74(3): 229-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572751

RESUMO

This article presents global cancer statistics by world region for the year 2022 based on updated estimates from the International Agency for Research on Cancer (IARC). There were close to 20 million new cases of cancer in the year 2022 (including nonmelanoma skin cancers [NMSCs]) alongside 9.7 million deaths from cancer (including NMSC). The estimates suggest that approximately one in five men or women develop cancer in a lifetime, whereas around one in nine men and one in 12 women die from it. Lung cancer was the most frequently diagnosed cancer in 2022, responsible for almost 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers globally), followed by cancers of the female breast (11.6%), colorectum (9.6%), prostate (7.3%), and stomach (4.9%). Lung cancer was also the leading cause of cancer death, with an estimated 1.8 million deaths (18.7%), followed by colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers. Breast cancer and lung cancer were the most frequent cancers in women and men, respectively (both cases and deaths). Incidence rates (including NMSC) varied from four-fold to five-fold across world regions, from over 500 in Australia/New Zealand (507.9 per 100,000) to under 100 in Western Africa (97.1 per 100,000) among men, and from over 400 in Australia/New Zealand (410.5 per 100,000) to close to 100 in South-Central Asia (103.3 per 100,000) among women. The authors examine the geographic variability across 20 world regions for the 10 leading cancer types, discussing recent trends, the underlying determinants, and the prospects for global cancer prevention and control. With demographics-based predictions indicating that the number of new cases of cancer will reach 35 million by 2050, investments in prevention, including the targeting of key risk factors for cancer (including smoking, overweight and obesity, and infection), could avert millions of future cancer diagnoses and save many lives worldwide, bringing huge economic as well as societal dividends to countries over the forthcoming decades.


Assuntos
Saúde Global , Neoplasias , Humanos , Neoplasias/epidemiologia , Neoplasias/mortalidade , Masculino , Feminino , Incidência , Saúde Global/estatística & dados numéricos , Adulto , Pessoa de Meia-Idade , Idoso , Criança , Adolescente , Pré-Escolar , Lactente , Adulto Jovem , Distribuição por Sexo , Recém-Nascido , Idoso de 80 Anos ou mais
6.
CA Cancer J Clin ; 73(1): 17-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633525

RESUMO

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence and outcomes using incidence data collected by central cancer registries and mortality data collected by the National Center for Health Statistics. In 2023, 1,958,310 new cancer cases and 609,820 cancer deaths are projected to occur in the United States. Cancer incidence increased for prostate cancer by 3% annually from 2014 through 2019 after two decades of decline, translating to an additional 99,000 new cases; otherwise, however, incidence trends were more favorable in men compared to women. For example, lung cancer in women decreased at one half the pace of men (1.1% vs. 2.6% annually) from 2015 through 2019, and breast and uterine corpus cancers continued to increase, as did liver cancer and melanoma, both of which stabilized in men aged 50 years and older and declined in younger men. However, a 65% drop in cervical cancer incidence during 2012 through 2019 among women in their early 20s, the first cohort to receive the human papillomavirus vaccine, foreshadows steep reductions in the burden of human papillomavirus-associated cancers, the majority of which occur in women. Despite the pandemic, and in contrast with other leading causes of death, the cancer death rate continued to decline from 2019 to 2020 (by 1.5%), contributing to a 33% overall reduction since 1991 and an estimated 3.8 million deaths averted. This progress increasingly reflects advances in treatment, which are particularly evident in the rapid declines in mortality (approximately 2% annually during 2016 through 2020) for leukemia, melanoma, and kidney cancer, despite stable/increasing incidence, and accelerated declines for lung cancer. In summary, although cancer mortality rates continue to decline, future progress may be attenuated by rising incidence for breast, prostate, and uterine corpus cancers, which also happen to have the largest racial disparities in mortality.


Assuntos
Neoplasias Pulmonares , Melanoma , Neoplasia Endócrina Múltipla Tipo 1 , Neoplasias , Masculino , Humanos , Feminino , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Idoso , Neoplasias/epidemiologia , Sistema de Registros , Incidência , Grupos Raciais , Neoplasias Pulmonares/epidemiologia
7.
CA Cancer J Clin ; 72(2): 112-143, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34878180

RESUMO

In this report, the authors provide comprehensive and up-to-date US data on disparities in cancer occurrence, major risk factors, and access to and utilization of preventive measures and screening by sociodemographic characteristics. They also review programs and resources that have reduced cancer disparities and provide policy recommendations to further mitigate these inequalities. The overall cancer death rate is 19% higher among Black males than among White males. Black females also have a 12% higher overall cancer death rate than their White counterparts despite having an 8% lower incidence rate. There are also substantial variations in death rates for specific cancer types and in stage at diagnosis, survival, exposure to risk factors, and receipt of preventive measures and screening by race/ethnicity, socioeconomic status, and geographic location. For example, kidney cancer death rates by sex among American Indian/Alaska Native people are ≥64% higher than the corresponding rates in each of the other racial/ethnic groups, and the 5-year relative survival for all cancers combined is 14% lower among residents of poorer counties than among residents of more affluent counties. Broad and equitable implementation of evidence-based interventions, such as increasing health insurance coverage through Medicaid expansion or other initiatives, could substantially reduce cancer disparities. However, progress will require not only equitable local, state, and federal policies but also broad interdisciplinary engagement to elevate and address fundamental social inequities and longstanding systemic racism.


Assuntos
Etnicidade , Neoplasias , American Cancer Society , Feminino , Humanos , Masculino , Medicaid , Neoplasias/epidemiologia , Neoplasias/terapia , Grupos Raciais , Estados Unidos/epidemiologia
8.
CA Cancer J Clin ; 71(1): 7-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433946

RESUMO

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2017) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2018) were collected by the National Center for Health Statistics. In 2021, 1,898,160 new cancer cases and 608,570 cancer deaths are projected to occur in the United States. After increasing for most of the 20th century, the cancer death rate has fallen continuously from its peak in 1991 through 2018, for a total decline of 31%, because of reductions in smoking and improvements in early detection and treatment. This translates to 3.2 million fewer cancer deaths than would have occurred if peak rates had persisted. Long-term declines in mortality for the 4 leading cancers have halted for prostate cancer and slowed for breast and colorectal cancers, but accelerated for lung cancer, which accounted for almost one-half of the total mortality decline from 2014 to 2018. The pace of the annual decline in lung cancer mortality doubled from 3.1% during 2009 through 2013 to 5.5% during 2014 through 2018 in men, from 1.8% to 4.4% in women, and from 2.4% to 5% overall. This trend coincides with steady declines in incidence (2.2%-2.3%) but rapid gains in survival specifically for nonsmall cell lung cancer (NSCLC). For example, NSCLC 2-year relative survival increased from 34% for persons diagnosed during 2009 through 2010 to 42% during 2015 through 2016, including absolute increases of 5% to 6% for every stage of diagnosis; survival for small cell lung cancer remained at 14% to 15%. Improved treatment accelerated progress against lung cancer and drove a record drop in overall cancer mortality, despite slowing momentum for other common cancers.


Assuntos
Mortalidade/tendências , Neoplasias/epidemiologia , Programa de SEER/estatística & dados numéricos , American Cancer Society , Humanos , Incidência , Neoplasias/terapia , Estados Unidos/epidemiologia
9.
CA Cancer J Clin ; 71(3): 209-249, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33538338

RESUMO

This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.


Assuntos
Países Desenvolvidos/estatística & dados numéricos , Países em Desenvolvimento/estatística & dados numéricos , Saúde Global/estatística & dados numéricos , Neoplasias/epidemiologia , Dinâmica Populacional , África/epidemiologia , América/epidemiologia , Ásia/epidemiologia , Bases de Dados Factuais , Europa (Continente) , Feminino , Humanos , Incidência , Internacionalidade , Masculino , Neoplasias/mortalidade , Oceania/epidemiologia , Fatores de Risco , Distribuição por Sexo
10.
CA Cancer J Clin ; 70(1): 7-30, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31912902

RESUMO

Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.


Assuntos
American Cancer Society , Neoplasias/epidemiologia , Sistema de Registros , Programa de SEER/estatística & dados numéricos , Adulto , Idoso , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia , Adulto Jovem
11.
CA Cancer J Clin ; 70(1): 31-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31661164

RESUMO

Although cancer mortality rates declined in the United States in recent decades, some populations experienced little benefit from advances in cancer prevention, early detection, treatment, and survivorship care. In fact, some cancer disparities between populations of low and high socioeconomic status widened during this period. Many potentially preventable cancer deaths continue to occur, and disadvantaged populations bear a disproportionate burden. Reducing the burden of cancer and eliminating cancer-related disparities will require more focused and coordinated action across multiple sectors and in partnership with communities. This article, part of the American Cancer Society's Cancer Control Blueprint series, introduces a framework for understanding and addressing social determinants to advance cancer health equity and presents actionable recommendations for practice, research, and policy. The article aims to accelerate progress toward eliminating disparities in cancer and achieving health equity.


Assuntos
Equidade em Saúde/normas , Política de Saúde , Disparidades nos Níveis de Saúde , Neoplasias/epidemiologia , Determinantes Sociais da Saúde/normas , Terapia Combinada , Saúde Global , Humanos , Morbidade/tendências , Neoplasias/terapia , Taxa de Sobrevida/tendências
12.
CA Cancer J Clin ; 70(6): 443-459, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940362

RESUMO

Cancer statistics for adolescents and young adults (AYAs) (aged 15-39 years) are often presented in aggregate, masking important heterogeneity. The authors analyzed population-based cancer incidence and mortality for AYAs in the United States by age group (ages 15-19, 20-29, and 30-39 years), sex, and race/ethnicity. In 2020, there will be approximately 89,500 new cancer cases and 9270 cancer deaths in AYAs. Overall cancer incidence increased in all AYA age groups during the most recent decade (2007-2016), largely driven by thyroid cancer, which rose by approximately 3% annually among those aged 20 to 39 years and 4% among those aged 15 to 19 years. Incidence also increased in most age groups for several cancers linked to obesity, including kidney (3% annually across all age groups), uterine corpus (3% in the group aged 20-39 years), and colorectum (0.9%-1.5% in the group aged 20-39 years). Rates declined dramatically for melanoma in the group aged 15 to 29 years (4%-6% annually) but remained stable among those aged 30 to 39 years. Overall cancer mortality declined during 2008 through 2017 by 1% annually across age and sex groups, except for women aged 30 to 39 years, among whom rates were stable because of a flattening of declines in female breast cancer. Rates increased for cancers of the colorectum and uterine corpus in the group aged 30 to 39 years, mirroring incidence trends. Five-year relative survival in AYAs is similar across age groups for all cancers combined (range, 83%-86%) but varies widely for some cancers, such as acute lymphocytic leukemia (74% in the group aged 15-19 years vs 51% in the group aged 30-39 years) and brain tumors (77% vs 66%), reflecting differences in histologic subtype distribution and treatment. Progress in reducing cancer morbidity and mortality among AYAs could be addressed through more equitable access to health care, increasing clinical trial enrollment, expanding research, and greater alertness among clinicians and patients for early symptoms and signs of cancer. Further progress could be accelerated with increased disaggregation by age in research on surveillance, etiology, basic biology, and survivorship.


Assuntos
Neoplasias/epidemiologia , Adolescente , Adulto , Distribuição por Idade , Feminino , Humanos , Incidência , Masculino , Neoplasias/etnologia , Neoplasias/mortalidade , Grupos Raciais/estatística & dados numéricos , Distribuição por Sexo , Taxa de Sobrevida , Estados Unidos/epidemiologia , Adulto Jovem
13.
CA Cancer J Clin ; 70(3): 182-199, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32311776

RESUMO

Patient-generated health data (PGHD), or health-related data gathered from patients to help address a health concern, are used increasingly in oncology to make regulatory decisions and evaluate quality of care. PGHD include self-reported health and treatment histories, patient-reported outcomes (PROs), and biometric sensor data. Advances in wireless technology, smartphones, and the Internet of Things have facilitated new ways to collect PGHD during clinic visits and in daily life. The goal of the current review was to provide an overview of the current clinical, regulatory, technological, and analytic landscape as it relates to PGHD in oncology research and care. The review begins with a rationale for PGHD as described by the US Food and Drug Administration, the Institute of Medicine, and other regulatory and scientific organizations. The evidence base for clinic-based and remote symptom monitoring using PGHD is described, with an emphasis on PROs. An overview is presented of current approaches to digital phenotyping or device-based, real-time assessment of biometric, behavioral, self-report, and performance data. Analytic opportunities regarding PGHD are envisioned in the context of big data and artificial intelligence in medicine. Finally, challenges and solutions for the integration of PGHD into clinical care are presented. The challenges include electronic medical record integration of PROs and biometric data, analysis of large and complex biometric data sets, and potential clinic workflow redesign. In addition, there is currently more limited evidence for the use of biometric data relative to PROs. Despite these challenges, the potential benefits of PGHD make them increasingly likely to be integrated into oncology research and clinical care.


Assuntos
Inteligência Artificial , Pesquisa Biomédica/métodos , Atenção à Saúde/estatística & dados numéricos , Oncologia/métodos , Neoplasias/terapia , Humanos , Morbidade , Neoplasias/epidemiologia , Estados Unidos/epidemiologia
14.
CA Cancer J Clin ; 70(3): 165-181, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32202312

RESUMO

Lack of health insurance coverage is strongly associated with poor cancer outcomes in the United States. The uninsured are less likely to have access to timely and effective cancer prevention, screening, diagnosis, treatment, survivorship, and end-of-life care than their counterparts with health insurance coverage. On March 23, 2010, the Patient Protection and Affordable Care Act (ACA) was signed into law, representing the largest change to health care delivery in the United States since the introduction of the Medicare and Medicaid programs in 1965. The primary goals of the ACA are to improve health insurance coverage, the quality of care, and patient outcomes, and to maintain or lower costs by catalyzing changes in the health care delivery system. In this review, we describe the main components of the ACA, including health insurance expansions, coverage reforms, and delivery system reforms, provisions within these components, and their relevance to cancer screening and early detection, care, and outcomes. We then highlight selected, well-designed studies examining the effects of the ACA provisions on coverage, access to cancer care, and disparities throughout the cancer control continuum. Finally, we identify research gaps to inform evaluation of current and emerging health policies related to cancer outcomes.


Assuntos
Detecção Precoce de Câncer/economia , Acessibilidade aos Serviços de Saúde/economia , Neoplasias/economia , Patient Protection and Affordable Care Act , Humanos , Seguro Saúde/economia , Pessoas sem Cobertura de Seguro de Saúde/estatística & dados numéricos , Morbidade/tendências , Neoplasias/epidemiologia , Estados Unidos/epidemiologia
15.
Annu Rev Med ; 75: 1-11, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37625124

RESUMO

The COVID-19 pandemic led to disruption of health services around the world, including cancer services. We carried out a narrative review of the effect of the pandemic on cancer prevention services, including screening. Services were severely affected in the early months of the pandemic, and in some areas are still recovering. Large numbers of additional cancers or additional late-stage cancers have been predicted to arise over the coming years as a result of this disruption. To minimize the effects on cancer outcomes, it is necessary to return as quickly as possible to prepandemic levels of screening and prevention activity or indeed to exceed these levels. The recovery of services should address health inequalities.


Assuntos
COVID-19 , Neoplasias , Humanos , Pandemias/prevenção & controle , Neoplasias/epidemiologia , Neoplasias/prevenção & controle
16.
Am J Hum Genet ; 110(8): 1249-1265, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506692

RESUMO

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.


Assuntos
Hiperlipoproteinemia Tipo II , Neoplasias , Humanos , Oregon/epidemiologia , Detecção Precoce de Câncer , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Neoplasias/genética
17.
Blood ; 143(3): 233-242, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595287

RESUMO

ABSTRACT: We evaluated malignancy-associated hemophagocytic lymphohistiocytosis (mal-HLH) in Sweden regarding population-based incidence, clinical features, and survival. From 1997 to 2018, we identified 307 adults (≥18 years old) and 9 children (209 males, 107 females; P < .001) with both an HLH-related diagnosis and malignant disease, corresponding to 0.19 per 100 000 adults annually (0.15/100 000 for the entire population), increasing from 0.026 (1997-2007) to 0.34 (2008-2018) (P < .001). In the latest 7-year period (2012-2018), the annual incidence was 0.45 per 100 000 adults (n = 246). This incidence varied between the 6 health care regions in Sweden, from 0.18 to 0.71 (Region Stockholm) per 100 000 adults annually (P < .001), likely due to variable awareness. Mal-HLH was reported in 0.6% of all hematological malignancies, with the highest proportion (2.5%) in young males. Among the 316 patients, the 1-month probability of survival, likely representing the HLH episode, increased significantly from 52% (95% confidence interval [CI], 40-63) (1997-2007) to 71% (95% CI, 65-76) (2008-2018), whereas 2-year survival remained poor (25%; 95% CI, 20-30). Altogether, 52% were lymphomas, 29% leukemias, 8% other hematological malignancies, and 11% solid tumors. Males were more affected than females by mal-HLH, also taking the over-representation of males with hematological malignancies into account (P = .0012). Validation by medical-file reviews revealed 13% over-reporting of HLH. We conclude that the annual mal-HLH incidence has increased 10-fold and was at least 0.71 per 100 000 adults from 2012 to 2018, that is, 0.62 per 100 000 adults considering 13% estimated HLH over-reporting, and that early survival improved significantly, likely due to increased awareness and more HLH-directed therapy.


Assuntos
Neoplasias Hematológicas , Linfo-Histiocitose Hemofagocítica , Neoplasias , Adulto , Masculino , Criança , Feminino , Humanos , Adolescente , Linfo-Histiocitose Hemofagocítica/diagnóstico , Suécia/epidemiologia , Incidência , Neoplasias/complicações , Neoplasias/epidemiologia , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/tratamento farmacológico , Estudos Retrospectivos
20.
CA Cancer J Clin ; 69(6): 485-496, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31594027

RESUMO

There are nearly 70,000 new cancer diagnoses made annually in adolescents and young adults (AYAs) in the United States. Historically, AYA patients with cancer, aged 15 to 39 years, have not shown the same improved survival as older or younger cohorts. This article reviews the contemporary cancer incidence and survival data through 2015 for the AYA patient population based on the National Cancer Institute's Surveillance, Epidemiology, and End Results registry program and the North American Association of Central Cancer Registries. Mortality data through 2016 from the Centers for Disease Control and Prevention's National Center for Health Statistics are also described. Encouragingly, absolute and relative increases in 5-year survival for AYA cancers have paralleled those of childhood cancers since the year 2000. There has been increasing attention to these vulnerable patients and improved partnerships and collaboration between adult and pediatric oncology; however, obstacles to the care of this population still occur at multiple levels. These vulnerabilities fall into 3 significant categories: research efforts and trial enrollment directed toward AYA malignancies, access to care and insurance coverage, and AYA-specific psychosocial support. It is critical for providers and health care delivery systems to recognize that the AYA population remains vulnerable to provider and societal complacency.


Assuntos
Oncologia/tendências , Neoplasias/epidemiologia , Adolescente , Adulto , Fatores Etários , Humanos , Incidência , Oncologia/métodos , Neoplasias/psicologia , Neoplasias/terapia , Programa de SEER , Taxa de Sobrevida , Estados Unidos/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa