Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.128
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 83-102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941606

RESUMO

Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens-chrono-immunotherapies-that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.


Assuntos
Ritmo Circadiano , Neoplasias , Humanos , Ritmo Circadiano/imunologia , Animais , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Imunidade Inata , Imunidade Adaptativa
2.
Annu Rev Immunol ; 42(1): 647-677, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424658

RESUMO

Lymphocytes spanning the entire innate-adaptive spectrum can stably reside in tissues and constitute an integral component of the local defense network against immunological challenges. In tight interactions with the epithelium and endothelium, tissue-resident lymphocytes sense antigens and alarmins elicited by infectious microbes and abiotic stresses at barrier sites and mount effector responses to restore tissue homeostasis. Of note, such a host cell-directed immune defense system has been recently demonstrated to surveil epithelial cell transformation and carcinoma development, as well as cancer cell metastasis at selected distant organs, and thus represents a primordial cancer immune defense module. Here we review how distinct lineages of tissue-resident innate lymphoid cells, innate-like T cells, and adaptive T cells participate in a form of multilayered cancer immunity in murine models and patients, and how their convergent effector programs may be targeted through both shared and private regulatory pathways for cancer immunotherapy.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Animais , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos/imunologia , Linfócitos/metabolismo , Microambiente Tumoral/imunologia , Imunidade Adaptativa , Imunoterapia/métodos
3.
Annu Rev Immunol ; 42(1): 179-206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38166256

RESUMO

T cell responses must be balanced to ensure adequate protection against malignant transformation and an array of pathogens while also limiting damage to healthy cells and preventing autoimmunity. T cell exhaustion serves as a regulatory mechanism to limit the activity and effector function of T cells undergoing chronic antigen stimulation. Exhausted T cells exhibit poor proliferative potential; high inhibitory receptor expression; altered transcriptome, epigenome, and metabolism; and, most importantly, reduced effector function. While exhaustion helps to restrain damage caused by aberrant T cells in settings of autoimmune disease, it also limits the ability of cells to respond against persistent infection and cancer, leading to disease progression. Here we review the process of T cell exhaustion, detailing the key characteristics and drivers as well as highlighting our current understanding of the underlying transcriptional and epigenetic programming. We also discuss how exhaustion can be targeted to enhance T cell functionality in cancer.


Assuntos
Neoplasias , Linfócitos T , Humanos , Animais , Neoplasias/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Epigênese Genética , Ativação Linfocitária/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Exaustão das Células T
4.
Annu Rev Immunol ; 42(1): 521-550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382538

RESUMO

Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/etiologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Animais , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Epigênese Genética
5.
Annu Rev Immunol ; 42(1): 455-488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360546

RESUMO

Ten-eleven translocation (TET) proteins are iron-dependent and α-ketoglutarate-dependent dioxygenases that sequentially oxidize the methyl group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). All three epigenetic modifications are intermediates in DNA demethylation. TET proteins are recruited by transcription factors and by RNA polymerase II to modify 5mC at enhancers and gene bodies, thereby regulating gene expression during development, cell lineage specification, and cell activation. It is not yet clear, however, how the established biochemical activities of TET enzymes in oxidizing 5mC and mediating DNA demethylation relate to the known association of TET deficiency with inflammation, clonal hematopoiesis, and cancer. There are hints that the ability of TET deficiency to promote cell proliferation in a signal-dependent manner may be harnessed for cancer immunotherapy. In this review, we draw upon recent findings in cells of the immune system to illustrate established as well as emerging ideas of how TET proteins influence cellular function.


Assuntos
Desmetilação do DNA , Dioxigenases , Imunoterapia , Inflamação , Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Inflamação/metabolismo , Inflamação/imunologia , Imunoterapia/métodos , Dioxigenases/metabolismo , Sistema Imunitário/metabolismo , Sistema Imunitário/imunologia , Epigênese Genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/genética
6.
Annu Rev Immunol ; 37: 571-597, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30698999

RESUMO

CRISPR technology has opened a new era of genome interrogation and genome engineering. Discovered in bacteria, where it protects against bacteriophage by cleaving foreign nucleic acid sequences, the CRISPR system has been repurposed as an adaptable tool for genome editing and multiple other applications. CRISPR's ease of use, precision, and versatility have led to its widespread adoption, accelerating biomedical research and discovery in human cells and model organisms. Here we review CRISPR-based tools and discuss how they are being applied to decode the genetic circuits that control immune function in health and disease. Genetic variation in immune cells can affect autoimmune disease risk, infectious disease pathogenesis, and cancer immunotherapies. CRISPR provides unprecedented opportunities for functional mechanistic studies of coding and noncoding genome sequence function in immunity. Finally, we discuss the potential of CRISPR technology to engineer synthetic cellular immunotherapies for a wide range of human diseases.


Assuntos
Doenças Autoimunes/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Infecções/imunologia , Neoplasias/imunologia , Animais , Doenças Autoimunes/genética , Sistemas CRISPR-Cas , Edição de Genes , Predisposição Genética para Doença , Variação Genética , Humanos , Imunidade , Infecções/genética , Neoplasias/genética
7.
Annu Rev Immunol ; 37: 457-495, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676822

RESUMO

Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Imunoterapia/métodos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/fisiologia , Viroses/imunologia , Animais , Senescência Celular , Doença Crônica , Anergia Clonal , Epigênese Genética , Humanos , Neoplasias/terapia , Viroses/terapia
8.
Annu Rev Immunol ; 37: 145-171, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30526160

RESUMO

Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimeric antigen receptor (CAR) T cells were recently approved by the US Food and Drug Administration and are poised to enter the practice of medicine for leukemia and lymphoma, demonstrating that engineered immune cells can serve as a powerful new class of cancer therapeutics. The emergence of synthetic biology approaches for cellular engineering provides a broadly expanded set of tools for programming immune cells for enhanced function. Advances in T cell engineering, genetic editing, the selection of optimal lymphocytes, and cell manufacturing have the potential to broaden T cell-based therapies and foster new applications beyond oncology, in infectious diseases, organ transplantation, and autoimmunity.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Imunoterapia Adotiva/tendências , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/fisiologia , Animais , Engenharia Genética , Humanos , Neoplasias/imunologia , Linfócitos T/transplante , Estados Unidos , United States Food and Drug Administration
9.
Annu Rev Immunol ; 37: 173-200, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30550719

RESUMO

Malignant transformation of cells depends on accumulation of DNA damage. Over the past years we have learned that the T cell-based immune system frequently responds to the neoantigens that arise as a consequence of this DNA damage. Furthermore, recognition of neoantigens appears an important driver of the clinical activity of both T cell checkpoint blockade and adoptive T cell therapy as cancer immunotherapies. Here we review the evidence for the relevance of cancer neoantigens in tumor control and the biological properties of these antigens. We discuss recent technological advances utilized to identify neoantigens, and the T cells that recognize them, in individual patients. Finally, we discuss strategies that can be employed to exploit cancer neoantigens in clinical interventions.


Assuntos
Antígenos de Neoplasias/imunologia , Autoantígenos/imunologia , Vacinas Anticâncer/imunologia , Epitopos de Linfócito T/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/genética , Autoantígenos/genética , Epitopos de Linfócito T/genética , Humanos , Imunidade Celular , Ativação Linfocitária , Medicina de Precisão , Linfócitos T/transplante
10.
Annu Rev Immunol ; 35: 229-253, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446063

RESUMO

The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.


Assuntos
Alergia e Imunologia , Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Biologia Sintética , Linfócitos T/imunologia , Animais , Engenharia Genética , Humanos , Ativação Linfocitária , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/transplante
11.
Annu Rev Immunol ; 35: 199-228, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28142322

RESUMO

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.


Assuntos
Imunidade Inata , Imunoterapia/métodos , Mucosa Intestinal/imunologia , Microbiota/imunologia , Neoplasias/imunologia , Imunidade Adaptativa , Animais , Antineoplásicos/uso terapêutico , Carcinogênese , Humanos , Inflamação , Neoplasias/microbiologia , Neoplasias/terapia , Cicatrização
12.
Cell ; 187(3): 624-641.e23, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211590

RESUMO

The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.


Assuntos
Granzimas , Imunidade Inata , Linfócitos , Neoplasias , Animais , Humanos , Camundongos , Apoptose , Citocinas , Neoplasias/imunologia , Neoplasias/terapia
13.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
14.
Cell ; 187(2): 375-389.e18, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242085

RESUMO

Immune checkpoint inhibition treatment using aPD-1 monoclonal antibodies is a promising cancer immunotherapy approach. However, its effect on tumor immunity is narrow, as most patients do not respond to the treatment or suffer from recurrence. We show that the crosstalk between conventional type I dendritic cells (cDC1) and T cells is essential for an effective aPD-1-mediated anti-tumor response. Accordingly, we developed a bispecific DC-T cell engager (BiCE), a reagent that facilitates physical interactions between PD-1+ T cells and cDC1. BiCE treatment promotes the formation of active dendritic/T cell crosstalk in the tumor and tumor-draining lymph nodes. In vivo, single-cell and physical interacting cell analysis demonstrates the distinct and superior immune reprogramming of the tumors and tumor-draining lymph nodes treated with BiCE as compared to conventional aPD-1 treatment. By bridging immune cells, BiCE potentiates cell circuits and communication pathways needed for effective anti-tumor immunity.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Biespecíficos/uso terapêutico , Células Dendríticas/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia
15.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447573

RESUMO

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Assuntos
Apresentação de Antígeno , Neoplasias , Neutrófilos , Animais , Humanos , Camundongos , Antígenos de Neoplasias , Leucina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neutrófilos/metabolismo , Linfócitos T , Análise da Expressão Gênica de Célula Única
16.
Cell ; 187(7): 1651-1665.e21, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490195

RESUMO

The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Lactobacillus , Neoplasias , Humanos , Lactobacillus/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Indóis/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico
17.
Cell ; 187(13): 3231-3232, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906099

RESUMO

Numerous studies have evaluated the gut microbiome as a biomarker for predicting cancer immunotherapy, but the heterogeneity among different studies has hindered its applications. In this issue of Cell, Derosa et al. report a biomarker based on the ecological topology of the gut microbiota that can predict immunotherapy efficacy effectively.


Assuntos
Microbioma Gastrointestinal , Imunoterapia , Neoplasias , Publicações Periódicas como Assunto , Humanos , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Microbioma Gastrointestinal/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia
18.
Cell ; 187(9): 2305-2323.e33, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614099

RESUMO

Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.


Assuntos
Complexo CD3 , Ativação Linfocitária , Linfócitos T , Evasão Tumoral , Microambiente Tumoral , Animais , Complexo CD3/metabolismo , Complexo CD3/imunologia , Humanos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Cães , Neoplasias/imunologia , Linhagem Celular Tumoral , Feminino , Ligação Proteica , Proteína-Tirosina Quinase ZAP-70/metabolismo , Anticorpos Neutralizantes/imunologia , Camundongos Endogâmicos C57BL
19.
Cell ; 187(11): 2703-2716.e23, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657602

RESUMO

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.


Assuntos
Imunidade Inata , Imunoterapia , Células Matadoras Naturais , Neoplasias , Animais , Feminino , Humanos , Camundongos , Apresentação de Antígeno , Linhagem Celular Tumoral , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia
20.
Cell ; 187(15): 3885-3887, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059365

RESUMO

Immunosenescence poses a significant challenge to tumor immunotherapy in elderly individuals. In this issue of Cell, Zhivaki et al. elucidate that dendritic cells "hyperactivated" by specific adjuvants elicit TH1-skewed CD4+ T cell responses in a manner contingent on the NLRP3 inflammasome, which can eliminate tumors in aged mice.


Assuntos
Células Dendríticas , Animais , Células Dendríticas/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/imunologia , Imunoterapia/métodos , Linfócitos T CD4-Positivos/imunologia , Humanos , Envelhecimento/imunologia , Células Th1/imunologia , Imunossenescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa