Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
1.
Development ; 147(4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31988190

RESUMO

Epibranchial placodes are the geniculate, petrosal and nodose placodes that generate parts of cranial nerves VII, IX and X, respectively. How the three spatially separated placodes are derived from the common posterior placodal area is poorly understood. Here, we reveal that the broad posterior placode area is first patterned into a Vgll2+/Irx5+ rostral domain and a Sox2+/Fgf3+/Etv5+ caudal domain relative to the first pharyngeal cleft. This initial rostral and caudal patterning is then sequentially repeated along each pharyngeal cleft for each epibranchial placode. The caudal domains give rise to the neuronal and non-neuronal cells in the placode, whereas the rostral domains are previously unrecognized structures, serving as spacers between the final placodes. Notch signalling regulates the balance between the rostral and caudal domains: high levels of Notch signalling expand the caudal domain at the expense of the rostral domain, whereas loss of Notch signalling produces the converse phenotype. Collectively, these data unravel a new patterning principle for the early phases of epibranchial placode development and a role for Notch signalling in orchestrating epibranchial placode segregation and differentiation.


Assuntos
Região Branquial/embriologia , Nervos Cranianos/embriologia , Ectoderma/embriologia , Receptores Notch/fisiologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Fenótipo , Domínios Proteicos , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética
2.
Semin Cell Dev Biol ; 91: 23-30, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30385045

RESUMO

Cranial foramina are holes in the skull through which nerves and blood vessels pass to reach both deep and superficial tissues. They are often overlooked in the literature; however they are complex structures that form within the developing cranial bones during embryogenesis and then remain open throughout life, despite the bone surrounding them undergoing constant remodelling. They are invaluable in assigning phylogeny in the fossil record and their size has been used, by some, to imply function of the nerve and/or blood vessel that they contained. Despite this, there are very few studies investigating the development or normal function of the cranial foramina. In this review, we will discuss the development of the cranial foramina and their subsequent maintenance, highlighting key gaps in the knowledge. We consider whether functional interpretations can be made from fossil material given a lack of knowledge regarding their contents and maintenance. Finally, we examine the significant role of malformation of foramina in congenital diseases such as craniosynostosis.


Assuntos
Encéfalo/anatomia & histologia , Nervos Cranianos/anatomia & histologia , Crânio/anatomia & histologia , Artéria Vertebral/anatomia & histologia , Animais , Evolução Biológica , Encéfalo/embriologia , Nervos Cranianos/embriologia , Encefalocele/embriologia , Humanos , Modelos Anatômicos , Crânio/irrigação sanguínea , Crânio/embriologia , Artéria Vertebral/embriologia
3.
Genesis ; 57(1): e23282, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30628162

RESUMO

Organs and structures of the vertebrate head perform a plethora of tasks including visualization, digestion, vocalization/communication, auditory functions, and respiration in response to neuronal input. This input is primarily derived from afferent and efferent fibers of the cranial nerves (sensory and motor respectively) and efferent fibers of the cervical sympathetic trunk. Despite their essential contribution to the function and integration of processes necessary for survival, how organ innervation is established remains poorly understood. Furthermore, while it has been appreciated for some time that innervation of organs by cranial nerves is regulated in part by secreted factors and cell surface ligands expressed by those organs, whether nerves also regulate the development of facial organs is only beginning to be elucidated. This review will provide an overview of cranial nerve development in relation to the organs they innervate, and outline their known contributions to craniofacial development, thereby providing insight into how nerves may shape the organs they innervate during development. Throughout, the interaction between different cell and tissue types will be highlighted.


Assuntos
Nervos Cranianos/embriologia , Morfogênese , Crista Neural/embriologia , Animais , Humanos , Crânio/embriologia
4.
Dev Biol ; 444 Suppl 1: S67-S78, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571614

RESUMO

The neural crest is a transient population of cells that forms within the developing central nervous system and migrates away to generate a wide range of derivatives throughout the body during vertebrate embryogenesis. These cells are of evolutionary and clinical interest, constituting a key defining trait in the evolution of vertebrates and alterations in their development are implicated in a high proportion of birth defects and craniofacial abnormalities. In the hindbrain and the adjacent cranial neural crest cells (cNCCs), nested domains of Hox gene expression provide a combinatorial'Hox-code' for specifying regional properties in the developing head. Hox genes have been shown to play important roles at multiple stages in cNCC development, including specification, migration, and differentiation. However, relatively little is known about the underlying gene-regulatory mechanisms involved, both upstream and downstream of Hox genes. Furthermore, it is still an open question as to how the genes of the neural crest GRN are linked to Hox-dependent pathways. In this review, we describe Hox gene expression, function and regulation in cNCCs with a view to integrating these genes within the emerging gene regulatory network for cNCC development. We highlight early roles for Hox1 genes in cNCC specification, proposing that this may be achieved, in part, by regulation of the balance between pluripotency and differentiation in precursor cells within the neuro-epithelium. We then describe what is known about the regulation of Hox gene expression in cNCCs and discuss this from the perspective of early vertebrate evolution.


Assuntos
Genes Homeobox/fisiologia , Cabeça/embriologia , Crista Neural/metabolismo , Animais , Evolução Biológica , Padronização Corporal/fisiologia , Diferenciação Celular , Movimento Celular , Sistema Nervoso Central/embriologia , Sequência Conservada , Nervos Cranianos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Genes Homeobox/genética , Humanos , Crista Neural/citologia , Crista Neural/embriologia , Tubo Neural , Neurônios , Rombencéfalo/metabolismo , Crânio , Vertebrados/embriologia , Vertebrados/genética
5.
J Anat ; 232(3): 431-439, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235648

RESUMO

There is growing evidence of a direct influence of vasculature on the development of neurons in the brain. The development of the cranial vasculature has been well described in zebrafish but its anatomical relationship with the adjacent developing sensory ganglia has not been addressed. Here, by 3D imaging of fluorescently labelled blood vessels and sensory ganglia, we describe for the first time the spatial organization of the cranial vasculature in relation to the cranial ganglia during zebrafish development. We show that from 24 h post-fertilization (hpf) onwards, the statoacoustic ganglion (SAG) develops in direct contact with two main blood vessels, the primordial hindbrain channel and the lateral dorsal aortae (LDA). At 48 hpf, the LDA is displaced medially, losing direct contact with the SAG. The relationship of the other cranial ganglia with the vasculature is evident for the medial lateral line ganglion and for the vagal ganglia that grow along the primary head sinus (PHS). We also observed that the innervation of the anterior macula runs over the PHS vessel. Our spatiotemporal anatomical map of the cranial ganglia and the head vasculature indicates physical interactions between both systems and suggests a possible functional interaction during development.


Assuntos
Vasos Sanguíneos/embriologia , Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Nervos Cranianos/irrigação sanguínea , Peixe-Zebra/embriologia , Animais , Nervos Cranianos/embriologia , Gânglios/irrigação sanguínea , Gânglios/embriologia
6.
J Anat ; 233(2): 222-242, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29797482

RESUMO

Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology.


Assuntos
Nervos Cranianos/embriologia , Proteínas de Homeodomínio/fisiologia , Palato/embriologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Fissura Palatina/genética , Nervos Cranianos/metabolismo , Feminino , Camundongos , Camundongos Transgênicos , Palato/metabolismo , Gravidez
7.
Dev Biol ; 415(2): 228-241, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26988119

RESUMO

We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth.


Assuntos
Nervos Cranianos/citologia , Células Receptoras Sensoriais/citologia , Animais , Apoptose , Axônios/fisiologia , Diferenciação Celular , Linhagem da Célula , Nervos Cranianos/embriologia , Ectoderma/citologia , Fatores de Crescimento de Fibroblastos/fisiologia , Gânglios Sensitivos/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/citologia , Neurogênese , Fatores de Transcrição/genética , Tretinoína/fisiologia , Proteína Wnt1/fisiologia
8.
BMC Dev Biol ; 15: 40, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26545946

RESUMO

BACKGROUND: TALE-class homeodomain transcription factors Meis and Pbx play important roles in formation of the embryonic brain, eye, heart, cartilage or hematopoiesis. Loss-of-function studies of Pbx1, 2 and 3 and Meis1 documented specific functions in embryogenesis, however, functional studies of Meis2 in mouse are still missing. We have generated a conditional allele of Meis2 in mice and shown that systemic inactivation of the Meis2 gene results in lethality by the embryonic day 14 that is accompanied with hemorrhaging. RESULTS: We show that neural crest cells express Meis2 and Meis2-defficient embryos display defects in tissues that are derived from the neural crest, such as an abnormal heart outflow tract with the persistent truncus arteriosus and abnormal cranial nerves. The importance of Meis2 for neural crest cells is further confirmed by means of conditional inactivation of Meis2 using crest-specific AP2α-IRES-Cre mouse. Conditional mutants display perturbed development of the craniofacial skeleton with severe anomalies in cranial bones and cartilages, heart and cranial nerve abnormalities. CONCLUSIONS: Meis2-null mice are embryonic lethal. Our results reveal a critical role of Meis2 during cranial and cardiac neural crest cells development in mouse.


Assuntos
Nervos Cranianos/embriologia , Coração/embriologia , Proteínas de Homeodomínio/genética , Crista Neural/embriologia , Crânio/embriologia , Animais , Cartilagem/anormalidades , Cartilagem/embriologia , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Hemorragia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crista Neural/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Fatores de Transcrição SOX9/biossíntese , Fatores de Transcrição SOX9/genética , Crânio/inervação
9.
J Anat ; 226(6): 560-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25994127

RESUMO

Cranial foramina are holes within the skull, formed during development, allowing entry and exit of blood vessels and nerves. Once formed they must remain open, due to the vital structures they contain, i.e. optic nerves, jugular vein, carotid artery, and other cranial nerves and blood vessels. Understanding cranial foramina development is essential as cranial malformations lead to the stenosis or complete closure of these structures, resulting in blindness, deafness, facial paralysis, raised intracranial pressure and lethality. Here we focus on describing early events in the formation of the jugular, carotid and hypoglossal cranial foramina that form in the mesoderm-derived, endochondral occipital bones at the base of the embryonic chick skull. Whole-mount skeletal staining of skulls indicates the appearance of these foramina from HH32/D7.5 onwards. Haematoxylin & eosin staining of sections shows that the intimately associated mesenchyme, neighbouring the contents of these cranial foramina, is initially very dense and gradually becomes sparser as development proceeds. Histological examination also revealed that these foramina initially contain relatively large-diameter nerves, which later become refined, and are closely associated with the blood vessel, which they also innervate within the confines of the foramina. Interestingly cranial foramina in the base of the skull contain blood vessels lacking smooth muscle actin, which suggests these blood vessels belong to glomus body structures within the foramina. The blood vessel shape also appears to dictate the overall shape of the resulting foramina. We initially hypothesised that cranial foramina development could involve targeted proliferation and local apoptosis to cause 'mesenchymal clearing' and the creation of cavities in a mechanism similar to joint cavitation. We find that this is not the case, and propose that a mechanism reliant upon local nerve/blood vessel-derived restriction of ossification may contribute to foramina formation during cranial development.


Assuntos
Forame Magno/embriologia , Mesoderma/embriologia , Osso Occipital/embriologia , Animais , Apoptose/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Nervos Cranianos/embriologia , Imuno-Histoquímica , Osso Occipital/irrigação sanguínea
10.
J Anat ; 227(1): 21-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26018729

RESUMO

Craniofacial malformations are common congenital defects caused by failed midline inductive signals. These midline defects are associated with exposure of the fetus to exogenous teratogens and with inborn genetic errors such as those found in Down, Patau, Edwards' and Smith-Lemli-Opitz syndromes. Yet, there are no studies that analyze contributions of synchronous neurocranial and neural development in these disorders. Here we present the first in-depth analysis of malformations of the basicranium of a holoprosencephalic (HPE) trisomy 18 (T18; Edwards' syndrome) fetus with synophthalmic cyclopia and alobar HPE. With a combination of traditional gross dissection and state-of-the-art computed tomography, we demonstrate the deleterious effects of T18 caused by a translocation at 18p11.31. Bony features included a single developmentally unseparated frontal bone, and complete dual absence of the anterior cranial fossa and ethmoid bone. From a superior view with the calvarium plates removed, there was direct visual access to the orbital foramen and hard palate. Both the eyes and the pituitary gland, normally protected by bony structures, were exposed in the cranial cavity and in direct contact with the brain. The middle cranial fossa was shifted anteriorly, and foramina were either missing or displaced to an abnormal location due to the absence or misplacement of its respective cranial nerve (CN). When CN development was conserved in its induction and placement, the respective foramen developed in its normal location albeit with abnormal gross anatomical features, as seen in the facial nerve (CNVII) and the internal acoustic meatus. More anteriorly localized CNs and their foramina were absent or heavily disrupted compared with posterior ones. The severe malformations exhibited in the cranial fossae, orbital region, pituitary gland and sella turcica highlight the crucial involvement of transcription factors such as TGIF, which is located on chromosome 18 and contributes to neural patterning, in the proper development of neural and cranial structures. Our study of a T18 specimen emphasizes the intricate interplay between bone and brain development in midline craniofacial abnormalities in general.


Assuntos
Nervos Cranianos , Holoprosencefalia/genética , Base do Crânio/anormalidades , Trissomia , Cadáver , Cromossomos Humanos Par 18 , Nervos Cranianos/diagnóstico por imagem , Nervos Cranianos/embriologia , Nervos Cranianos/patologia , Feto , Genótipo , Holoprosencefalia/patologia , Humanos , Base do Crânio/diagnóstico por imagem , Base do Crânio/embriologia , Tomografia Computadorizada por Raios X , Síndrome da Trissomía do Cromossomo 18
11.
Development ; 137(7): 1205-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20215354

RESUMO

Brain nuclei are spatially organized collections of neurons that share functional properties. Despite being central to vertebrate brain circuitry, little is known about how nuclei are generated during development. We have chosen the chick midbrain oculomotor complex (OMC) as a model with which to study the developmental mechanisms of nucleogenesis. The chick OMC comprises two distinct cell groups: a dorsal Edinger-Westphal nucleus of visceral oculomotor neurons and a ventral nucleus of somatic oculomotor neurons. Genetic studies in mice and humans have established that the homeobox transcription factor gene PHOX2A is required for midbrain motoneuron development. We probed, in forced expression experiments, the capacity of PHOX2A to generate a spatially organized midbrain OMC. We found that exogenous Phox2a delivery to embryonic chick midbrain can drive a complete OMC molecular program, including the production of visceral and somatic motoneurons. Phox2a overexpression was also able to generate ectopic motor nerves. The exit points of such auxiliary nerves were invested with ectopic boundary cap cells and, in four examples, the ectopic nerves were seen to innervate extraocular muscle directly. Finally, Phox2a delivery was able to direct ectopic visceral and somatic motoneurons to their correct native spatial positions, with visceral motoneurons settling close to the ventricular surface and somatic motoneurons migrating deeper into the midbrain. These findings establish that in midbrain, a single transcription factor can both specify motoneuron cell fates and orchestrate the construction of a spatially organized motoneuron nuclear complex.


Assuntos
Proteínas de Homeodomínio/metabolismo , Mesencéfalo , Neurônios Motores/fisiologia , Animais , Diferenciação Celular , Movimento Celular/fisiologia , Embrião de Galinha , Nervos Cranianos/anatomia & histologia , Nervos Cranianos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Humanos , Mesencéfalo/citologia , Mesencéfalo/embriologia , Camundongos , Neurônios Motores/citologia , Músculos Oculomotores/inervação , Ratos
12.
Dev Biol ; 357(2): 305-17, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21777575

RESUMO

The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining three branchiomeric nerves. For these nerves, the motor efferents form prior to the sensory afferents, and their pathfinding show no dependence on sensory axons, as ablation of cranial sensory neurons by ngn1 knockdown had no effect. In contrast, the sensory limbs of the IXth and Xth nerves (but not the Vth or VIIth) were misrouted in gli1 mutants, which lack hindbrain bmn, suggesting that the motor efferents are crucial for appropriate sensory axon projection in some branchiomeric nerves. For all four nerves, peripheral glia were the intermediate component added and had a critical role in nerve integrity but not in axon guidance, as foxd3 null mutants lacking peripheral glia exhibited defasciculation of gVII, gIX, and gX axons. The bmn efferents were unaffected in these mutants. These data demonstrate that multiple mechanisms underlie formation of the four branchiomeric nerves. For the Vth, sensory axons initiate nerve formation, for the VIIth the sensory and motor limbs are independent, and for the IXth/Xth the motor axons initiate formation. In all cases the glia are patterned by the initiating set of axons and are needed to maintain axon fasciculation. These results reveal that coordinated interactions between the three neural cell types in branchiomeric nerves differ according to their axial position.


Assuntos
Nervos Cranianos/embriologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Nervos Cranianos/citologia , Proteínas Hedgehog/metabolismo , Modelos Biológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Fatores de Tempo , Nervo Trigêmeo/citologia , Nervo Trigêmeo/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Dev Biol ; 359(2): 230-41, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21925156

RESUMO

Interaction of the axon guidance receptor Neuropilin-1 (Npn-1) with its repulsive ligand Semaphorin 3A (Sema3A) is crucial for guidance decisions, fasciculation, timing of growth and axon-axon interactions of sensory and motor projections in the embryonic limb. At cranial levels, Npn-1 is expressed in motor neurons and sensory ganglia and loss of Sema3A-Npn-1 signaling leads to defasciculation of the superficial projections to the head and neck. The molecular mechanisms that govern the initial fasciculation and growth of the purely motor projections of the hypoglossal and abducens nerves in general, and the role of Npn-1 during these events in particular are, however, not well understood. We show here that selective removal of Npn-1 from somatic motor neurons impairs initial fasciculation and assembly of hypoglossal rootlets and leads to reduced numbers of abducens and hypoglossal fibers. Ablation of Npn-1 specifically from cranial neural crest and placodally derived sensory tissues recapitulates the distal defasciculation of mixed sensory-motor nerves of trigeminal, facial, glossopharyngeal and vagal projections, which was observed in Npn-1(-/-) and Npn-1(Sema-) mutants. Surprisingly, the assembly and fasciculation of the purely motor hypoglossal nerve are also impaired and the number of Schwann cells migrating along the defasciculated axonal projections is reduced. These findings are corroborated by partial genetic elimination of cranial neural crest and embryonic placodes, where loss of Schwann cell precursors leads to aberrant growth patterns of the hypoglossal nerve. Interestingly, rostral turning of hypoglossal axons is not perturbed in any of the investigated genotypes. Thus, initial hypoglossal nerve assembly and fasciculation, but not later guidance decisions depend on Npn-1 expression and axon-Schwann cell interactions.


Assuntos
Movimento Celular , Nervos Cranianos/metabolismo , Fasciculação/metabolismo , Neuropilina-1/metabolismo , Células de Schwann/metabolismo , Nervo Abducente/embriologia , Nervo Abducente/metabolismo , Animais , Axônios/metabolismo , Nervos Cranianos/embriologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Fasciculação/genética , Feminino , Nervo Hipoglosso/embriologia , Nervo Hipoglosso/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Mutação , Crista Neural/embriologia , Crista Neural/metabolismo , Neuropilina-1/genética , Fatores de Transcrição SOXE/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
14.
Nat Rev Neurosci ; 8(11): 859-71, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17948031

RESUMO

The cranial motor nerves control muscles involved in eye, head and neck movements, feeding, speech and facial expression. The generic and specific properties of cranial motor neurons depend on a matrix of rostrocaudal and dorsoventral patterning information. Repertoires of transcription factors, including Hox genes, confer generic and specific properties on motor neurons, and endow subpopulations at various axial levels with the ability to navigate to their targets. Cranial motor axon projections are guided by diffusible cues and aided by guideposts, such as nerve exit points, glial cells and muscle primordia. The recent identification of genes that are mutated in human cranial dysinnervation disorders is now shedding light on the functional consequences of perturbations of cranial motor neuron development.


Assuntos
Axônios , Padronização Corporal/fisiologia , Nervos Cranianos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/citologia , Animais , Nervos Cranianos/fisiologia , Humanos , Neurônios Motores/fisiologia
15.
Acta Neurochir (Wien) ; 154(7): 1119-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22638594

RESUMO

BACKGROUND: Eagle's syndrome refers to a rare constellation of neuropathic and vascular occlusive symptoms caused by pathologic elongation or angulation of the styloid process and styloid chain. First described in 1652 by Italian surgeon Piertro Marchetti, the clinical syndrome was definitively outlined by Watt Eagle in the late 1940s and early 1950s. METHODS: This article reviews how underlying embryologic and anatomic pathology predicts clinical symptomatology, diagnosis, and ultimately treatment of the syndrome. RESULTS: The length and direction of the styloid process and styloid chain are highly variable. This variability leads to a wide range of relationships between the chain and the neurovascular elements of the neck, including cranial nerves 5, 7, 9, and 10 and the internal carotid artery. In the classic type of Eagle's syndrome, compressive cranial neuropathy most commonly leads to the sensation of a foreign body in the throat, odynophagia, and dysphagia. In the carotid type, compression over the internal carotid artery can cause pain in the parietal region of the skull or in the superior periorbital region, among other symptoms. CONCLUSIONS: Careful recording of the history of the present illness and review of systems is crucial to the diagnosis of Eagle's syndrome. After the clinical examination, the optimal imaging modality for styloid process pathology is spiral CT of the neck and skull base. Surgical interventions are considered only after noninvasive therapies have failed, the two most common being intraoral and external resection of the styloid process.


Assuntos
Ossificação Heterotópica/cirurgia , Angiografia , Animais , Artérias Carótidas/embriologia , Artérias Carótidas/patologia , Nervos Cranianos/embriologia , Nervos Cranianos/patologia , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Ossificação Heterotópica/embriologia , Ossificação Heterotópica/patologia , Filogenia , Base do Crânio/embriologia , Base do Crânio/patologia , Osso Temporal/anormalidades , Osso Temporal/embriologia , Osso Temporal/patologia , Osso Temporal/cirurgia , Tomografia Computadorizada por Raios X
16.
Cells Tissues Organs ; 193(4): 215-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20980719

RESUMO

The initial development of the cranial nerves was studied in 245 human embryos of stages 10-23 (4-8 postfertilizational weeks). Significant findings in the human embryo include the following. (1) Neuronal migration is a characteristic feature in the development of all the cranial nerves at stages 13-18, with the exception of the somatic efferent group. (2) The somatic efferent and the visceral efferent neurons are arranged respectively in ventrolateral and ventromedial columns (stages 13-17). (3) The ventrolateral column gives rise to somatic efferent nuclei; the neurons of the hypoglossal nerve develop rapidly and show a segmental organization as four roots that innervate three of the four occipital somites (stage 13); the abducent nucleus becomes displaced rostrally by a change in the rhombomeric pattern at stage 16. (4) The ventromedial column, originally continuous in rhombomeres 2-7, gives rise to visceral efferent and pharyngeal efferent nuclei. (5) All the 'true' cranial nerves (III-XII) are recognizable by stage 16. (6) In a primary migration the visceral efferent neurons proceed mediolaterally and accumulate dorsolaterally as nuclei (stages 13, 14); they differentiate into salivatory nuclei (stages 16, 17). (7) A secondary migration involves the pharyngeal efferent neurons (of nerves V and IX-XI), which also proceed mediolaterally and then form ventrolateral nuclei (stages 17, 18). (8) The facial complex shows a distinctive development in that its neural crest arises from the lateral wall of the neural folds/tube. Moreover, the migration of its pharyngeal efferent neurons is delayed, which may be related to the formation of the internal genu, and the motor nucleus begins to appear only at stage 23. (9) The sequence of appearance of afferent constituents is: cranial ganglia (stage 12), mesencephalic trigeminal nucleus (stage 15), vestibular nuclei (stages 18-22), and cochlear nuclei (stage 19). The unsatisfactory term special is avoided and the term pharyngeal for air-breathing vertebrates replaces branchial. The six functional categories used here are vestibulocochlear, somatic afferent, visceral afferent, visceral efferent, pharyngeal efferent, and somatic efferent, together with appropriate abbreviations. The cardiac and hypoglossal neural crests are included, and it is emphasized that all the ectodermal placodes develop within the 'ectodermal ring'.


Assuntos
Movimento Celular , Nervos Cranianos/embriologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Neurônios/citologia , Núcleo Celular/metabolismo , Nervos Cranianos/citologia , Humanos , Modelos Biológicos , Rombencéfalo/citologia , Rombencéfalo/embriologia
17.
Dev Dyn ; 239(4): 1155-61, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20235227

RESUMO

The parasympathetic reflex circuit is controlled by three basic neurons. In the vertebrate head, the sensory, and pre- and postganglionic neurons that comprise each circuit have stereotypic positions along the anteroposterior (AP) axis, suggesting that the circuit arises from a common developmental plan. Here, we show that precursors of the VIIth circuit are initially aligned along the AP axis, where the placode-derived sensory neurons provide a critical "guidepost" through which preganglionic axons and their neural crest-derived postganglionic targets navigate before reaching their distant target sites. In the absence of the placodal sensory ganglion, preganglionic axons terminate and the neural crest fated for postganglionic neurons undergo apoptosis at the site normally occupied by the placodal sensory ganglion. The stereotypic organization of the parasympathetic cranial sensory-motor circuit thus emerges from the initial alignment of its precursors along the AP axis, with the placodal sensory ganglion coordinating the formation of the motor pathway.


Assuntos
Encéfalo/fisiologia , Vias Eferentes/embriologia , Gânglios Sensitivos/fisiologia , Fibras Aferentes Viscerais/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/genética , Padronização Corporal/fisiologia , Encéfalo/embriologia , Região Branquial/fisiologia , Diferenciação Celular/genética , Nervos Cranianos/embriologia , Nervos Cranianos/metabolismo , Nervos Cranianos/fisiologia , Vias Eferentes/metabolismo , Embrião de Mamíferos , Gânglios Sensitivos/embriologia , Gânglios Sensitivos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Crista Neural/fisiologia , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Fibras Aferentes Viscerais/metabolismo
18.
Mol Cell Neurosci ; 40(4): 401-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19041397

RESUMO

The Nogo/Nogo66 receptor signaling pathway has been characterized as inhibitory for axon growth, regeneration, and structural plasticity in the adult mammalian central nervous system. Nogo and its receptor are highly expressed when axon growth is abundant, however, the function of this pathway in neural development is unclear. We have characterized zebrafish Nogo pathway members and examined their role in the developing nervous system using anti-sense morpholinos that inhibit protein synthesis. Depletion of the Nogo66 receptor or a Nogo isoform causes truncated outgrowth of peripheral nervous system (PNS) axons of the head and lateral line. PNS nerves also show increased defasciculation and numerous guidance defects, including axons invading regions along the body flank that are normally avoided. We propose that localized Nogo expression defines inhibitory territories that through repulsion restrict axon growth to permissive regions.


Assuntos
Axônios/metabolismo , Movimento Celular/fisiologia , Proteínas da Mielina/metabolismo , Sistema Nervoso Periférico , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Processamento Alternativo , Animais , Nervos Cranianos/anatomia & histologia , Nervos Cranianos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas da Mielina/genética , Proteínas Nogo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Sistema Nervoso Periférico/anatomia & histologia , Sistema Nervoso Periférico/embriologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superfície Celular/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
19.
Mol Biol Cell ; 18(4): 1143-52, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17229890

RESUMO

During their migration to the periphery, cranial neural crest cells (NCCs) are repulsed by an ErbB4-dependent cue(s) in the mesenchyme adjoining rhombomeres (r) 3 and 5, which are segmented hindbrain neuromeres. ErbB4 has many ligands, but which ligand functions in the above system has not yet been clearly determined. Here we found that a cornichon-like protein/cornichon homolog 2 (CNIL/CNIH2) gene was expressed in the developing chick r3 and r5. In a cell culture system, its product facilitated the secretion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), one of the ligands of ErbB4. When CNIL function was perturbed in chick embryos by forced expression of a truncated form of CNIL, the distribution of NCCs was affected, which resulted in abnormal nerve fiber connections among the cranial sensory ganglia. Also, knockdown of CNIL or HB-EGF with siRNAs yielded a similar phenotype. This phenotype closely resembled that of ErbB4 knockout mouse embryos. Because HB-EGF was uniformly expressed in the embryonic hindbrain, CNIL seems to confine the site of HB-EGF action to r3 and r5 in concert with ErbB4.


Assuntos
Nervos Cranianos/embriologia , Fator de Crescimento Epidérmico/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Embrião de Galinha , Clonagem Molecular , Nervos Cranianos/metabolismo , Nervos Cranianos/patologia , Proteínas do Ovo/genética , Proteínas do Ovo/metabolismo , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , RNA Interferente Pequeno , Receptor ErbB-4 , Rombencéfalo/embriologia , Rombencéfalo/patologia , Transdução de Sinais
20.
Gene Expr Patterns ; 9(3): 178-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19059364

RESUMO

Tmem16a, Tmem16c, Tmem16f, Tmem16h and Tmem16k belong to the newly identified Tmem16 gene family encoding eight-pass transmembrane proteins. We have analyzed the expression patterns of these genes during mouse cephalic development. In the central nervous system, Tmem16a transcripts were abundant in the ventricular neuroepithelium, whereas the other Tmem16 family members were readily detectable in the subventricular zone and differentiating fields. In the rostral spinal cord, Tmem16f expression was highest in the motor neuron area. In the developing eye, the highest amounts of Tmem16a transcripts were detected in the lens epithelium, hyaloid plexus and outer layer of the retina, while the other family members were abundant in the retinal ganglionic cell layer. Interestingly, throughout development, Tmem16a expression in the inner ear was robust and restricted to a subset of cells within the epithelium, which at later stages formed the organ of Corti. The stria vascularis was particularly rich in Tmem16a and Tmem16f mRNA. Other sites of Tmem16 expression included cranial nerve and dorsal root ganglia, meningeal precursors and the pituitary. Tmem16c and Tmem16f transcripts were also patent in the submandibular autonomic ganglia. A conspicuous feature of Tmem16a was its expression along the walls of blood vessels as well as in cells surrounding the trigeminal and olfactory nerve axons. In organs developing through epithelial-mesenchymal interactions, such as the palate, tooth and tongue, the above five Tmem16 family members showed interesting dynamic expression patterns as development proceeded. Finally and remarkably, osteoblasts and chondrocytes were particularly loaded with Tmem16a, Tmem16c and Tmem16f transcripts.


Assuntos
Canais de Cloreto , Neurogênese/genética , Animais , Anoctamina-1 , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Canais de Cloreto/biossíntese , Canais de Cloreto/genética , Condrócitos/metabolismo , Nervos Cranianos/embriologia , Nervos Cranianos/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Osteoblastos/metabolismo , Palato/embriologia , Palato/metabolismo , Retina/embriologia , Retina/metabolismo , Língua/embriologia , Língua/metabolismo , Dente/embriologia , Dente/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa