Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.603
Filtrar
1.
Mol Cell Proteomics ; 22(1): 100478, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470533

RESUMO

To date, very few mass spectrometry (MS)-based proteomics studies are available on the anterior and posterior lobes of the pituitary. In the past, MS-based investigations have focused exclusively on the whole pituitary gland or anterior pituitary lobe. In this study, for the first time, we performed a deep MS-based analysis of five anterior and five posterior matched lobes to build the first lobe-specific pituitary proteome map, which documented 4090 proteins with isoforms, mostly mapped into chromosomes 1, 2, and 11. About 1446 differentially expressed significant proteins were identified, which were studied for lobe specificity, biological pathway enrichment, protein-protein interaction, regions specific to comparison of human brain and other neuroendocrine glands from Human Protein Atlas to identify pituitary-enriched proteins. Hormones specific to each lobe were also identified and validated with parallel reaction monitoring-based target verification. The study identified and validated hormones, growth hormone and thyroid-stimulating hormone subunit beta, exclusively to the anterior lobe whereas oxytocin-neurophysin 1 and arginine vasopressin to the posterior lobe. The study also identified proteins POU1F1 (pituitary-specific positive transcription factor 1), POMC (pro-opiomelanocortin), PCOLCE2 (procollagen C-endopeptidase enhancer 2), and NPTX2 (neuronal pentraxin-2) as pituitary-enriched proteins and was validated for their lobe specificity using parallel reaction monitoring. In addition, three uPE1 proteins, namely THEM6 (mesenchymal stem cell protein DSCD75), FSD1L (coiled-coil domain-containing protein 10), and METTL26 (methyltransferase-like 26), were identified using the NeXtProt database, and depicted tumor markers S100 proteins having high expression in the posterior lobe. In summary, the study documents the first matched anterior and posterior pituitary proteome map acting as a reference control for a better understanding of functional and nonfunctional pituitary adenomas and extrapolating the aim of the Human Proteome Project towards the investigation of the proteome of life.


Assuntos
Adeno-Hipófise , Neuro-Hipófise , Humanos , Proteoma/metabolismo , Adeno-Hipófise/metabolismo , Hipófise/metabolismo , Neuro-Hipófise/metabolismo
2.
Neuroendocrinology ; 114(7): 658-669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38643753

RESUMO

INTRODUCTION: Axons of magnocellular neurosecretory cells project from the hypothalamus to the posterior lobe (PL) of the pituitary. In the PL, a wide perivascular space exists between the outer basement membrane (BM), where nerve axons terminate, and the inner BM lining the fenestrated capillaries. Hypothalamic axon terminals and outer BMs in the PL form neurovascular junctions. We previously had found that collagen XIII is strongly localized in the outer BMs. In this study, we investigated the role of collagen XIII in the PL of rat pituitaries. METHODS: We first studied the expression of Col13a1, the gene encoding the α1 chains of collagen XIII, in rat pituitaries via quantitative real-time polymerase chain reaction and in situ hybridization. We observed the distribution of COL13A1 in the rat pituitary using immunohistochemistry and immunoelectron microscopy. We examined the expression of Col13a1 and the distribution of COL13A1 during the development of the pituitary. In addition, we examined the effects of water deprivation and arginine vasopressin (AVP) signaling on the expression of Col13a1 in the PL. RESULTS: Col13a1 was expressed in NG2-positive pericytes, and COL13A1 signals were localized in the outer BM of the PL. The expression of Col13a1 was increased by water deprivation and was regulated via the AVP/AVPR1A/Gαq/11 cascade in pericytes of the PL. CONCLUSION: These results suggest that pericytes surrounding fenestrated capillaries in the PL secrete COL13A1 and are involved in the construction of neurovascular junctions. COL13A1 is localized in the outer BM surrounding capillaries in the PL and may be involved in the connection between capillaries and axon terminals.


Assuntos
Colágeno Tipo XIII , Animais , Ratos , Masculino , Colágeno Tipo XIII/metabolismo , Sistemas Neurossecretores/metabolismo , Arginina Vasopressina/metabolismo , Ratos Wistar , Neuro-Hipófise/metabolismo , Hipófise/metabolismo , Pericitos/metabolismo , Membrana Basal/metabolismo
3.
J Reprod Dev ; 70(4): 213-222, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38684411

RESUMO

Understanding of central nervous system mechanisms underlying age-related infertility remains limited. Fibril α-synuclein, distinct from its monomeric form, is implicated in age-related diseases. Notably, fibril α-synuclein spreads among neurons, similar to prions, from damaged old neurons in cortex and hippocampus to healthy neurons. However, less is known whether α-synuclein propagates into oxytocin neurons, which play crucial roles in reproduction. We compared α-synuclein expression in the oxytocin neurons in suprachiasmatic nucleus (SCN), supraoptic nucleus (SON), paraventricular hypothalamic nucleus (PVN), and posterior pituitary (PP) gland of healthy heifers and aged cows to determine its role in age-related infertility. We analyzed mRNA and protein expression, along with Congo red histochemistry and fluorescent immunohistochemistry for oxytocin and α-synuclein, followed by confocal microscopy with Congo red staining. Both mRNA and protein expressions of α-synuclein were confirmed in the bovine cortex, hippocampus, SCN, SON, PVN, and PP tissues. Significant differences in α-synuclein mRNA expressions were observed in the cortex and hippocampus between young heifers and old cows. Western blots showed five bands of α-synuclein, probably reflecting monomers, dimers, and oligomers, in the cortex, hippocampus, SCN, SON, PVN, and PP tissues, and there were significant differences in some bands between the young heifers and old cows. Bright-field and polarized light microscopy did not detect obvious amyloid deposition in the aged hypothalami; however, higher-sensitive confocal microscopy unveiled strong positive signals for Congo red and α-synuclein in oxytocin neurons in the aged hypothalami. α-synuclein was expressed in oxytocin neurons, and some differences were observed between young and old hypothalami.


Assuntos
Encéfalo , Neurônios , Ocitocina , Núcleo Hipotalâmico Paraventricular , alfa-Sinucleína , Animais , Ocitocina/metabolismo , Bovinos , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Feminino , Núcleo Hipotalâmico Paraventricular/metabolismo , Encéfalo/metabolismo , Envelhecimento/metabolismo , Núcleo Supraóptico/metabolismo , Núcleo Supraquiasmático/metabolismo , RNA Mensageiro/metabolismo , Hipocampo/metabolismo , Neuro-Hipófise/metabolismo
4.
Neuroendocrinology ; 113(2): 168-178, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34438401

RESUMO

The hypothalamo-neurohypophysial system (HNS) is a brain peptidergic neurosecretory apparatus which is composed of arginine vasopressin (AVP) and oxytocin (OXT) magnocellular neurones and their neuronal processes in the posterior pituitary (PP). In response to specific stimuli, AVP and OXT are secreted into the systemic circulation at the neurovascular interface of the PP, where they act as hormones, but they can also behave as neurotransmitters when released at the somatodendritic compartment or by axon collaterals to other brain regions. Because these peptides are crucial for several physiological processes, including fluid homoeostasis and reproduction, it is of great importance to map the HNS connectome in its entirety in order to understand its functions. In recent years, advances in imaging technologies have provided considerable new information about the HNS. These approaches include the use of reporter proteins under the control of specific promoters, viral tracers, brain-clearing methods, genetically encoded indicators, sniffer cells, mass spectrometry imaging, and spatially resolved transcriptomics. In this review, we illustrate how these latest approaches have enhanced our understanding of the structure and function of the HNS and how they might contribute further in the coming years.


Assuntos
Neuro-Hipófise , Neuro-Hipófise/metabolismo , Ocitocina/metabolismo , Neurônios/metabolismo , Arginina Vasopressina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo
5.
Neuropathology ; 43(6): 472-478, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37147874

RESUMO

Granular cell tumors of the neurohypophysis (GCT) are rare benign neoplasms belonging, along with pituicytoma and spindle cell oncocytoma, to the family of TTF1-positive low-grade neoplasms of the posterior pituitary gland. GCT usually present as a solid sellar mass, slowly growing and causing compressive symptoms over time, occasionally with suprasellar extension. They comprise polygonal monomorphous cells with abundant granular cytoplasm, which is ultrastructurally filled with lysosomes. Here we report the case of a GCT presenting as a third ventricle mass, radiologically mimicking chordoid glioma, with aberrant expression of GFAP and Annexin-A, which lends itself as an example of an integrated diagnostic approach to sellar/suprasellar and third ventricle masses.


Assuntos
Neoplasias do Ventrículo Cerebral , Craniofaringioma , Glioma , Tumor de Células Granulares , Neuro-Hipófise , Neoplasias Hipofisárias , Terceiro Ventrículo , Humanos , Neuro-Hipófise/metabolismo , Neuro-Hipófise/patologia , Terceiro Ventrículo/diagnóstico por imagem , Terceiro Ventrículo/patologia , Tumor de Células Granulares/diagnóstico por imagem , Tumor de Células Granulares/patologia , Neoplasias do Ventrículo Cerebral/diagnóstico por imagem , Neoplasias do Ventrículo Cerebral/patologia , Neoplasias Hipofisárias/diagnóstico por imagem , Glioma/patologia
6.
Pituitary ; 24(3): 420-428, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33506439

RESUMO

PURPOSE: The syndrome of inappropriate secretion of antidiuretic hormone (SIADH) is a well-known complication of transsphenoidal pituitary surgery, related to inappropriate secretion of arginine vasopressin (AVP). Its diagnosis is based on hyponatremia, with a peak of occurrence around day 7 after surgery and, to date, no early marker has been reported. In particular, copeptin levels are not predictive of hyponatremia in this case. Oxytocin (OXT) is secreted into the peripheral blood by axon terminals adjacent to those of AVP neurons in the posterior pituitary. Besides its role in childbirth and lactation, recent evidences suggested a role for OXT in sodium balance. The contribution of this hormone in the dysnatremias observed after pituitary surgery has however never been investigated. METHODS: We analyzed the urinary output of OXT in patients subjected to transsphenoidal pituitary surgery. RESULTS: While OXT excretion remained stable in patients who presented a normonatremic postoperative course, patients who were later diagnosed with SIADH-related hyponatremia presented with a significantly increased urinary secretion of OXT 4 days after surgery. CONCLUSION: Taken together, these results show for the first time that urinary OXT output remains normally stable after transsphenoidal pituitary surgery. OXT excretion however becomes abnormally high on or around 4 days after surgery in patients later developing hyponatremia, suggesting that this abnormal dynamics of OXT secretion might serve as an early marker for transsphenoidal surgery-related hyponatremia attributed to SIADH.


Assuntos
Hiponatremia , Síndrome de Secreção Inadequada de HAD , Ocitocina/metabolismo , Doenças da Hipófise , Neuro-Hipófise , Arginina Vasopressina/metabolismo , Feminino , Humanos , Hiponatremia/etiologia , Síndrome de Secreção Inadequada de HAD/etiologia , Neuro-Hipófise/metabolismo
7.
BMC Med Genet ; 21(1): 96, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381069

RESUMO

BACKGROUND: Joubert syndrome (JBTS) is a genetically heterogeneous group of neurodevelopmental syndromes caused by primary cilia dysfunction. Usually the neurological presentation starts with abnormal neonatal breathing followed by muscular hypotonia, psychomotor delay, and cerebellar ataxia. Cerebral MRI shows mid- and hindbrain anomalies including the molar tooth sign. We report a male patient with atypical presentation of Joubert syndrome type 23, thus expanding the phenotype. CASE PRESENTATION: Clinical features were consistent with JBTS already from infancy, yet the syndrome was not suspected before cerebral MRI later in childhood showed the characteristic molar tooth sign and ectopic neurohypophysis. From age 11 years seizures developed and after few years became increasingly difficult to treat, also related to inadequate compliance to therapy. He died at 23 years of sudden unexpected death in epilepsy (SUDEP). The genetic diagnosis remained elusive for many years, despite extensive genetic testing. We reached the genetic diagnosis by performing whole genome sequencing of the family trio and analyzing the data with the combination of one analysis pipeline for single nucleotide variants (SNVs)/indels and one for structural variants (SVs). This lead to the identification of the most common variant detected in patients with JBTS23 (OMIM# 616490), rs534542684, in compound heterozygosity with a 8.3 kb deletion in KIAA0586, not previously reported. CONCLUSIONS: We describe for the first time ectopic neurohypophysis and SUDEP in JBTS23, expanding the phenotype of this condition and raising the attention on the possible severity of the epilepsy in this disease. We also highlight the diagnostic power of WGS, which efficiently detects SNVs/indels and in addition allows the identification of SVs.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ciclo Celular/genética , Cerebelo/anormalidades , Morte Súbita/patologia , Epilepsia/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Retina/anormalidades , Anormalidades Múltiplas/mortalidade , Anormalidades Múltiplas/patologia , Adulto , Cerebelo/patologia , Criança , Morte Súbita/epidemiologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/mortalidade , Deficiências do Desenvolvimento/patologia , Epilepsia/mortalidade , Epilepsia/patologia , Anormalidades do Olho/mortalidade , Anormalidades do Olho/patologia , Feminino , Heterozigoto , Humanos , Mutação INDEL , Doenças Renais Císticas/mortalidade , Doenças Renais Císticas/patologia , Masculino , Neuro-Hipófise/metabolismo , Neuro-Hipófise/patologia , Retina/patologia , Sequenciamento Completo do Genoma , Adulto Jovem
8.
Gen Comp Endocrinol ; 298: 113554, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687932

RESUMO

Estrogens play important regulatory roles in the pituitary of vertebrates. Two forms of estrogen receptor 2 (Esr2), namely Esr2a and Esr2b, are identified in teleosts, but their differential roles remain to be fully elucidated. In the present study, expression and potential functional roles of Esr2a and Esr2b were characterized in ricefield eels. esr2a and esr2b mRNA were broadly distributed in tissues, with high levels observed in the brain, pituitary, and gonads. In order to examine the cellular localization of Esr2a and Esr2b in the pituitary, specific antisera against ricefield eel Esr2a and Esr2b were generated, respectively. Interestingly, immunohistochemistry and Western blot analysis revealed that Esr2a and Esr2b were differentially distributed in the pituitary, with the former localized to the adenohypophysis while the latter to the neurohypophysis. Dual fluorescent immunostaining showed that immunoreactive Esr2a was present in Gh and Prl cells, but not in Lh and Fsh cells. Estradiol (E2) stimulated lhb and prl gene expression in dispersed pituitary cells of intersexual ricefield eels, but had no effects on gh, fshb, and gnrhr2 gene expression and Gh release. Results of the present study are helpful for further understanding the roles and mechanisms of estrogen signals in the pituitary.


Assuntos
Enguias/metabolismo , Receptor beta de Estrogênio/metabolismo , Hipófise/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Estradiol/farmacologia , Receptor beta de Estrogênio/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Soros Imunes/metabolismo , Hipófise/efeitos dos fármacos , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Neuro-Hipófise/efeitos dos fármacos , Neuro-Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual/efeitos dos fármacos
9.
Clin Neuropathol ; 39(6): 271-274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32589126

RESUMO

PURPOSE: The prevalence of basophilic invasion (BI) and degenerative changes in the neurohypophysis of humans with neurodegenerative disease is not established. MATERIALS AND METHODS: We evaluated 122 pituitary glands reviewed at autopsy including 45 with Alzheimer's disease (AD) Braak and Braak stage V or VI, 18 with Lewy body disease (LBD), and 59 age-matched controls for BI. In addition, pituitary glands from 51 patients including 25 patients with AD and 18 aged-matched controls were studied with a periodic acid Schiff (PAS) stain and immunohistochemistry with a polyclonal antibody to nestin. Samples were graded as negative (0) or positive (1). RESULTS: BI was seen in 35 of 45 patients with AD (0.78 ± 0.06 mean and SE: 78%) and was significantly higher than 30 of 59 controls (0.51 ± 0.07; 51%) (p = 0.0236). BI was seen in 7 of 18 patients with LBD (0.39 ± 0.12; 39%) compared to controls (p = 0.387). BI was also significantly higher in AD compared to LBD (p = 0.0001). Nestin immunoreactivity was detected in the neurohypophysis of all patients. Definite nestin was not found in BI but was seen in Herring body-like structures, in pituicytes and axons. Phospho-τ-immunoreactive Herring bodies were seen in 65% with AD but phospho-τ-immunoreactive neurofibrillary tangles were not found. CONCLUSION: BI is increased in AD compared to controls or LBD but not associated with nestin immunoreactivity. The significance and role of BI as a marker for AD warrants additional study.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Neuro-Hipófise/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Encéfalo/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Neuro-Hipófise/patologia , Proteínas tau/metabolismo
10.
Cell Tissue Res ; 375(1): 41-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30498946

RESUMO

Localization and distribution of hypothalamic neurons expressing the nonapeptide oxytocin has been extensively studied. Their projections to the neurohypophyseal system release oxytocin into the systemic circulation thus controlling endocrine events associated with reproduction in males and females. Oxytocinergic neurons seem to be confined to the ventral hypothalamus in all mammals. Groups of such cells located outside the supraoptic and the paraventricular nuclei are summarized as "accessory neurons." Although evolutionary probably associated with the classical magocellular nuclei, accessory oxytocin neurons seem to consist of rather heterogenous groups: Periventricular oxytocin neurons may gain contact to the third ventricle to secrete the peptide into the cerebrospinal fluid. Perivascular neurons may be involved in control of cerebral blood flow. They may also gain access to the portal circulation of the anterior pituitary lobe. Central projections of oxytocinergic neurons extend to portions of the limbic system, to the mesencephalon and to the brain stem. Such projections have been associated with control of behaviors, central stress response as well as motor and vegetative functions. Activity of the different oxytocinergic systems seems to be malleable to functional status, strongly influenced by systemic levels of steroid hormones.


Assuntos
Neurônios/metabolismo , Ocitocina/metabolismo , Animais , Humanos , Neuro-Hipófise/metabolismo
11.
J Pathol ; 244(4): 469-478, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377134

RESUMO

Autoimmune hypophysitis (AH) is thought to be an autoimmune disease characterized by lymphocytic infiltration of the pituitary gland. Among AH pathologies, lymphocytic infundibulo-neurohypophysitis (LINH) involves infiltration of the neurohypophysis and/or the hypothalamic infundibulum, causing central diabetes insipidus resulting from insufficiency of arginine vasopressin secretion. The pathophysiological and pathogenetic mechanisms underlying LINH are largely unknown. Clinically, differentiating LINH from other pituitary diseases accompanied by mass lesions, including tumours, has often been difficult, because of similar clinical manifestations. We recently reported that rabphilin-3A is an autoantigen and that anti-rabphilin-3A antibodies constitute a possible diagnostic marker for LINH. However, the involvement of rabphilin-3A in the pathogenesis of LINH remains to be elucidated. This study was undertaken to explore the role of rabphilin-3A in lymphocytic neurohypophysitis and to investigate the mechanism. We found that immunization of mice with rabphilin-3A led to neurohypophysitis. Lymphocytic infiltration was observed in the neurohypophysis and supraoptic nucleus 1 month after the first immunization. Mice immunized with rabphilin-3A showed an increase in the volume of urine that was hypotonic as compared with control mice. Administration of a cocktail of monoclonal anti-rabphilin-3A antibodies did not induce neurohypophysitis. However, abatacept, which is a chimeric protein that suppresses T-cell activation, decreased the number of T cells specific for rabphilin-3A in peripheral blood mononuclear cells (PBMCs). It ameliorated lymphocytic infiltration of CD3+ T cells in the neurohypophysis of mice that had been immunized with rabphilin-3A. Additionally, there was a linear association between the number of T cells specific for rabphilin-3A in PBMCs and the number of CD3+ T cells infiltrating the neurohypophysis. In conclusion, we suggest that rabphilin-3A is a pathogenic antigen, and that T cells specific for rabphilin-3A are involved in the pathogenesis of neurohypophysitis in mice. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Hipofisite Autoimune/induzido quimicamente , Autoimunidade , Proteínas do Tecido Nervoso , Neuro-Hipófise/metabolismo , Proteínas de Transporte Vesicular , Abatacepte/administração & dosagem , Animais , Anticorpos Monoclonais/administração & dosagem , Hipofisite Autoimune/imunologia , Hipofisite Autoimune/metabolismo , Hipofisite Autoimune/prevenção & controle , Autoimunidade/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Imunossupressores/administração & dosagem , Camundongos , Neuro-Hipófise/efeitos dos fármacos , Neuro-Hipófise/imunologia , Neuro-Hipófise/patologia , Núcleo Supraóptico/imunologia , Núcleo Supraóptico/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Micção , Rabfilina-3A
12.
Pituitary ; 22(3): 296-304, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30334138

RESUMO

Neurohypophysial dysfunction is common in the first days following traumatic brain injury (TBI), manifesting as dysnatremia in approximately 1 in 4 patients. Both hyponatremia and hypernatremia can impair recovery from TBI and in the case of hypernatremia, there is a significant association with excess mortality. Hyponatremia secondary to syndrome of inappropriate antidiuretic hormone secretion (SIAD) is the commonest electrolyte disturbance following TBI. Acute adrenocorticotropic hormone (ACTH)/cortisol deficiency occurs in 10-15% of TBI patients and can present with a biochemical picture identical to SIAD. For this reason, exclusion of glucocorticoid deficiency is of particular importance in post-TBI SIAD. Cerebral salt wasting is a rare cause of hyponatremia following TBI. Hyponatremia predisposes to seizures, reduced consciousness, and prolonged hospital stay. Diabetes insipidus (DI) occurs in 20% of cases following TBI; where diminished consciousness is present, appropriate fluid replacement of renal water losses is occasionally inadequate, leading to hypernatremia. Hypernatremia is strongly predictive of mortality following TBI. Most cases of DI are transient, but persistent DI is also predictive of mortality, irrespective of plasma sodium concentration. Persistent DI may herald rising intracranial pressure due to coning. True adipsic DI is rare following TBI, but patients are vulnerable to severe hypernatremic dehydration, exacerbation of neurologic deficits and hypothalamic complications, therefore clinicians should be aware of this possible variant of DI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Neuro-Hipófise/metabolismo , Animais , Lesões Encefálicas Traumáticas/patologia , Diabetes Insípido/metabolismo , Diabetes Insípido/patologia , Humanos , Doenças Hipotalâmicas/metabolismo , Doenças Hipotalâmicas/patologia , Neuro-Hipófise/patologia
13.
Pituitary ; 21(4): 379-383, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29594809

RESUMO

PURPOSE: To describe the prevalence of the posterior pituitary bright spot (PPBS) in the general population on 1.5 and 3T MRI examinations and on 2D-T1 spin-echo (SE) and 3D-T1 gradient-echo (GE) sequences. MATERIALS AND METHODS: 1017 subjects who received an MRI of the brain for aspecific neurological complaints were included. MRI was performed on 1.5T in 64.5% and on 3T in 35.5% of subjects. Presence of the PPBS was evaluated on sagittal 2D T1-SE echo images with slice thickness 3 mm in 67.5% and on sagittal 3D T1-GE with slice thickness 0.9 mm in 32.5% of subjects. RESULTS: The PPBS was detectable in 95.9% of subjects. After correction for sex and age, no statistically significant difference could be seen concerning PPBS detection between 1.5 and 3T MRI examinations (p = 0.533), nor between 2D T1-SE and 3D T1-GE sequences (p = 0.217). There was a statistically significant association between increasing age and the absence of the PPBS (p < 0.001). The PPBS could not be identified in 6.2% of male subjects, compared to 2.2% of female subjects (p = 0.01). DISCUSSION: Absence of the PPBS can be seen in 4.1% of patients undergoing MRI of the brain for non-endocrinological reasons. Neither field-strength nor the use of a thick-sliced 2D T1-SE versus a thin-sliced 3D T1-GE sequence influenced the detectability of the PPBS. There is a statistically significant association between increasing age and male sex and the absence of the PPBS.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neuro-Hipófise/diagnóstico por imagem , Adulto , Fatores Etários , Feminino , Humanos , Masculino , Neuro-Hipófise/metabolismo , Estudos Retrospectivos , Fatores Sexuais , Software , Vasopressinas/metabolismo
14.
Endocr J ; 65(3): 325-334, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29367474

RESUMO

The molecular mechanism involved in the exocytosis of arginine vasopressin (AVP) is not fully known. Rabphilin-3A has been suggested as a novel autoantigen in infundibulo-neurohypophysitis (LINH), which leads to central diabetes insipidus through insufficient secretion of AVP. However, the role of rabphilin-3A in the pathogenesis of LINH remains unclear. Thus, the aim of the present study was to identify proteins binding rabphilin-3A in the posterior pituitary. Using glutathione S-transferase (GST)-pulldown assays and proteomic analyses, cullin-associated NEDD8-dissociated protein 1 (CAND1) was identified as a rabphilin-3A-binding protein in the posterior pituitary. Co-immunoprecipitation assays indicated that CAND1 interacted endogenously with rabphilin-3A. In addition, immunohistochemistry experiments showed that CAND1 immunoreactivity was detected mainly in the posterior pituitary, intermediate lobe, and the supraoptic nucleus in the hypothalamus, and less in the anterior lobe, partially co-localizing with rabphilin-3A. Overexpression of CAND1 resulted in deubiquitylation of rabphilin-3A in PC12 cells. Moreover, overexpression of CAND1 in PC12 cells co-transfected with AVP enhanced both basal and KCl-stimulated AVP secretion. The findings indicate that CAND1 inhibits the ubiquitylation of rabphilin-3A and positively regulates AVP secretion. These data shed light on a novel potential mechanism involving rabphilin-3A in AVP secretion, and suggest a new role of CAND1 as a regulator of hormone or neurotransmitter secretion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arginina Vasopressina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuro-Hipófise/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Enzimas Desubiquitinantes/genética , Células PC12 , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Rabfilina-3A
15.
Clin Endocrinol (Oxf) ; 87(6): 725-732, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28734020

RESUMO

BACKGROUND: Mutations in PROP1, HESX1 and LHX3 are associated with combined pituitary hormone deficiency (CPHD) and orthotopic posterior pituitary lobe (OPP). OBJECTIVE: To identify mutations in PROP1, HESX1 and LHX3 in a large cohort of patients with CPHD and OPP (35 Brazilian, two Argentinian). DESIGN AND METHODS: We studied 23 index patients with CPHD and OPP (six familial and 17 sporadic) as well as 14 relatives. PROP1 was sequenced by the Sanger method in all except one sporadic case studied using a candidate gene panel. Multiplex ligation-dependent probe amplification (MLPA) was applied to one familial case in whom PROP1 failed to amplify by PCR. In the 13 patients without PROP1 mutations, HESX1 and LHX3 were sequenced by the Sanger method. RESULTS: We identified PROP1 mutations in 10 index cases. Three mutations were novel: one affecting the initiation codon (c.1A>G) and two affecting splicing sites, c.109+1G>A and c.342+1G>C. The known mutations, c.150delA (p.Arg53Aspfs*112), c.218G>A (p.Arg73His), c.263T>C (p.Phe88Ser) and c.301_302delAG (p.Leu102Cysfs*8), were also detected. MLPA confirmed complete PROP1 deletion in one family. We did not identify HESX1 and LHX3 mutations by Sanger. CONCLUSION: PROP1 mutations are a prevalent cause of congenital CPHD with OPP, and therefore, PROP1 sequencing must be the first step of molecular investigation in patients with CPHD and OPP, especially in populations with a high frequency of PROP1 mutations. In the absence of mutations, massively parallel sequencing is a promising approach. The high prevalence and diversity of PROP1 mutations is associated with the ethnic background of this cohort.


Assuntos
Proteínas de Homeodomínio/genética , Hipopituitarismo/genética , Proteínas com Homeodomínio LIM/genética , Mutação/genética , Neuro-Hipófise/metabolismo , Fatores de Transcrição/genética , Adolescente , Adulto , Brasil , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Eur Arch Psychiatry Clin Neurosci ; 267(5): 427-443, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28035472

RESUMO

The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.


Assuntos
Cistinil Aminopeptidase/metabolismo , Hipotálamo/enzimologia , Hipotálamo/patologia , Neurônios/enzimologia , Neuro-Hipófise/metabolismo , Esquizofrenia/patologia , Idoso , Autopsia , Doença Crônica , Feminino , Glutamato-Amônia Ligase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neurofisinas/metabolismo , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Núcleo Supraquiasmático/patologia , Vasopressinas/metabolismo
17.
Pituitary ; 20(2): 211-217, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27744503

RESUMO

PURPOSE: To analyse the antigen expression profiles of 27 cases of pituicytoma, spindle cell oncocytoma, and granular cell tumour of the sellar region concerning a common pituicytic origin of neoplastic cells. METHODS: Material from 12 female and 15 male patients (13 granular cell tumours of the sellar region, 10 pituicytomas, four spindle cell oncocytomas) collected in the German Registry of Pituitary Tumours between 1993 and 2015 was re-evaluated according to the current WHO classification of tumours of the central nervous system and supplementary immunohistochemistry including S100-protein, CD56, CD68, thyroid transcription factor-1 (TTF-1), and Ki-67 was performed. RESULTS: S100-protein was detected in all 27 tumours and TTF-1 in all 16 tumours that were assessed. Vimentin was expressed in all 13 cases investigated whereas broad spectrum cytokeratin was not detected in any of 14 evaluated cases. GFAP was observed in nine out of 21 cases. 15 out of 17 investigated lesions showed some CD68 expression and five out of 14 cases were labelled with CD56 antibodies. Proliferative activity did not differ significantly between the three tumour subgroups although one primary and one recurrent pituicytoma showed exceptionally high Ki-67-proliferation indices of 15.3 and 12.7 %, respectively (means: granular cell tumour of the sellar region 2.0 %, pituicytoma 2.8 %, spindle cell oncocytoma 2.7 %). CONCLUSIONS: The study confirms and expands earlier data and is in line with the notion that the three tumour types are variants of pituicytoma.


Assuntos
Biomarcadores Tumorais/metabolismo , Neuro-Hipófise/imunologia , Neuro-Hipófise/metabolismo , Neoplasias Hipofisárias/imunologia , Neoplasias Hipofisárias/metabolismo , Adulto , Idoso , Feminino , Tumor de Células Granulares/imunologia , Tumor de Células Granulares/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Proteínas S100/metabolismo , Sarcoma/imunologia , Sarcoma/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo , Vimentina/metabolismo , Adulto Jovem
18.
J Neurosci ; 35(13): 5144-55, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834041

RESUMO

The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Osmorregulação/fisiologia , Neuro-Hipófise/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Arginina Vasopressina/sangue , Arginina Vasopressina/efeitos dos fármacos , Bumetanida/farmacologia , Desidratação/fisiopatologia , Furosemida/farmacologia , Expressão Gênica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/citologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Núcleos da Linha Média do Tálamo/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Quiasma Óptico/fisiologia , Neuro-Hipófise/citologia , Neuro-Hipófise/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Membro 1 da Família 12 de Carreador de Soluto/biossíntese , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/fisiologia
19.
Development ; 140(11): 2299-309, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23674600

RESUMO

Tbx2 and Tbx3 are two highly related members of the T-box transcription factor gene family that regulate patterning and differentiation of a number of tissue rudiments in the mouse. Both genes are partially co-expressed in the ventral diencephalon and the infundibulum; however, a functional requirement in murine pituitary development has not been reported. Here, we show by genetic lineage tracing that Tbx2(+) cells constitute the precursor population of the neurohypophysis. However, Tbx2 is dispensable for neurohypophysis development as revealed by normal formation of this organ in Tbx2-deficient mice. By contrast, loss of Tbx3 from the ventral diencephalon results in a failure to establish the Tbx2(+) domain in this region, and a lack of evagination of the infundibulum and formation of the neurohypophysis. Rathke's pouch is severely hypoplastic, exhibits defects in dorsoventral patterning, and degenerates after E12.5. In Tbx3-deficient embryos, the ventral diencephalon is hyperproliferative and displays an abnormal cellular architecture, probably resulting from a failure to repress transcription of Shh. We further show that Tbx3 and Tbx2 repress Shh by sequestering the SRY box-containing transcription factor Sox2 away from a Shh forebrain enhancer (SBE2), thus preventing its activation. These data suggest that Tbx3 is required in the ventral diencephalon to establish a Shh(-) domain to allow formation of the infundibulum.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Neuro-Hipófise/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Encéfalo/embriologia , Células COS , Proliferação de Células , Chlorocebus aethiops , Diencéfalo/embriologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Hipófise/embriologia , Fatores de Tempo
20.
Ann Nutr Metab ; 68 Suppl 2: 24-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27299865

RESUMO

BACKGROUND: Type 2 diabetes and its cardiovascular disease complications are the major public health threats of our century. Although physical activity and dietary changes are the cornerstones in prevention of diabetes, their broad implementation is not elementary and other complementary lifestyle regimens are needed. SUMMARY: Vasopressin (VP) is the main regulator of body water homeostasis, and at insufficient water intake, normal plasma osmolality can be maintained by increased pituitary VP secretion through VP-2 receptor mediated renal water reabsorption. During the last 6 years several independent studies have shown that high circulating VP, measured by the stable VP marker copeptin, predicts development of type 2 diabetes as well as the metabolic syndrome, cardiovascular disease and premature mortality. Interestingly, VP stimulates adrenocorticotrophic hormone, and as a consequence cortisol secretion, through pituitary VP-1B receptors, which could explain why the 25% of the middle-aged population with high circulating VP have a mild Cushing's syndrome-like phenotype. In rats, high VP results in deterioration of glucose tolerance whereas low VP, obtained by high water intake, ameliorates the VP associated dysmetabolic state, suggesting that the relationship between high VP and risk of diabetes and cardiometabolic disease in humans may be causal and reversible by increasing water intake. KEY MESSAGES: With the emerging evidence that high VP, which is present in 25% of the population, is an independent risk factor for diabetes and cardiometabolic disease, VP reduction through water supplementation appears as an attractive candidate intervention to prevent diabetes and its cardiovascular complications.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Ingestão de Líquidos/fisiologia , Síndrome Metabólica , Vasopressinas/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/prevenção & controle , Glicopeptídeos/sangue , Humanos , Síndrome Metabólica/sangue , Síndrome Metabólica/prevenção & controle , Concentração Osmolar , Neuro-Hipófise/metabolismo , Receptores de Vasopressinas/fisiologia , Fatores de Risco , Vasopressinas/sangue , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa