Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.753
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(13): 2733-2747, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37352835

RESUMO

The cerebral cortex is the brain's outermost layer. It is responsible for processing motor and sensory information that support high-level cognitive abilities and shape personality. Its development and functional organization strongly rely on cell communication that is established via an intricate system of diffusible signals and physical contacts during development. Interfering with this cellular crosstalk can cause neurodevelopmental disorders. Here, we review how crosstalk between migrating cells and their environment influences cerebral cortex development, ranging from neurogenesis to synaptogenesis and assembly of cortical circuits.


Assuntos
Córtex Cerebral , Neurogênese , Comunicação Celular , Cognição
2.
Cell ; 186(18): 3826-3844.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37536338

RESUMO

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired. The associated genes encode neuronal determinants, including those engaged in axonal guidance and adhesion. These long-range associations occur in a large fraction of neurons but support transcription in only a subset of neurons. Meta-domains are formed by diverse transcription factors that are able to pair over long and flexible distances. We present evidence that two such factors, GAF and CTCF, play direct roles in this process. The relative simplicity of higher-order meta-domain interactions in Drosophila, compared with those previously described in mammals, allowed the demonstration that genomes can fold into highly specialized cell-type-specific scaffolds that enable megabase-scale regulatory associations.


Assuntos
Cromossomos de Insetos , Drosophila , Animais , Cromatina/genética , Empacotamento do DNA , Drosophila/genética , Mamíferos/genética , Neurogênese , Neurônios , Fatores de Transcrição , Proteínas de Drosophila , Genoma de Inseto , Regulação da Expressão Gênica
3.
Cell ; 185(20): 3645-3647, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179664

RESUMO

Fetal human brain stem cell niches that contain multipotent neural progenitors are progressively vascularized during development. Crouch et al. (Crouch et al., 2022) report endothelial and mural lineage trajectories that build developing prenatal vascular in second trimester fetal brain. This cerebral angiogenesis in neural progenitor zones occurs simultaneously with and can promote neurogenesis.


Assuntos
Neurogênese , Células-Tronco , Encéfalo , Linhagem da Célula , Feminino , Humanos , Gravidez
4.
Cell ; 185(20): 3770-3788.e27, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179669

RESUMO

Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.


Assuntos
Córtex Cerebral , Organoides , Diferenciação Celular , Córtex Cerebral/metabolismo , Humanos , Neurogênese , Neurônios , Organoides/metabolismo
5.
Cell ; 185(23): 4428-4447.e28, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318921

RESUMO

Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.


Assuntos
Neurogênese , Organoides , Gravidez , Feminino , Humanos , Adulto , Cromatina , Córtex Pré-Frontal , Análise de Célula Única , Redes Reguladoras de Genes
6.
Cell ; 185(1): 42-61, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34774127

RESUMO

The construction of the human nervous system is a distinctly complex although highly regulated process. Human tissue inaccessibility has impeded a molecular understanding of the developmental specializations from which our unique cognitive capacities arise. A confluence of recent technological advances in genomics and stem cell-based tissue modeling is laying the foundation for a new understanding of human neural development and dysfunction in neuropsychiatric disease. Here, we review recent progress on uncovering the cellular and molecular principles of human brain organogenesis in vivo as well as using organoids and assembloids in vitro to model features of human evolution and disease.


Assuntos
Transtorno do Espectro Autista/metabolismo , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Epilepsia/metabolismo , Neurogênese/fisiologia , Esquizofrenia/metabolismo , Animais , Transtorno do Espectro Autista/genética , Encéfalo/metabolismo , Epilepsia/genética , Humanos , Mutação , Neurônios/citologia , Neurônios/metabolismo , Organoides/embriologia , Organoides/crescimento & desenvolvimento , Esquizofrenia/genética
7.
Cell ; 185(1): 62-76, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963057

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transtornos Mentais/metabolismo , Plasticidade Neuronal/fisiologia , Neuropeptídeos/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Homeostase/fisiologia , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Neurogênese/fisiologia , Neuropeptídeos/genética , Psicotrópicos/farmacologia , Psicotrópicos/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Resultado do Tratamento
8.
Nat Immunol ; 25(7): 1158-1171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38902519

RESUMO

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19. Here we show that intranasal infection of C57BL/6J mice with SARS-CoV-2 Beta variant leads to central nervous system infiltration of Ly6Chi monocytes and microglial activation. Accordingly, SARS-CoV-2, but not H1N1 influenza virus, increases levels of brain IL-1ß and induces persistent IL-1R1-mediated loss of hippocampal neurogenesis, which promotes postacute cognitive deficits. Vaccination with a low dose of adenoviral-vectored spike protein prevents hippocampal production of IL-1ß during breakthrough SARS-CoV-2 infection, loss of neurogenesis and subsequent memory deficits. Our study identifies IL-1ß as one potential mechanism driving SARS-CoV-2-induced cognitive impairment in a new mouse model that is prevented by vaccination.


Assuntos
COVID-19 , Hipocampo , Interleucina-1beta , Transtornos da Memória , Camundongos Endogâmicos C57BL , Neurogênese , SARS-CoV-2 , Animais , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Camundongos , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Hipocampo/imunologia , Hipocampo/metabolismo , Transtornos da Memória/imunologia , Neurogênese/imunologia , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Humanos , Microglia/imunologia , Microglia/metabolismo , Modelos Animais de Doenças , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/genética , Monócitos/imunologia , Monócitos/metabolismo , Feminino
9.
Cell ; 184(24): 5869-5885.e25, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34758294

RESUMO

RTN4-binding proteins were widely studied as "NoGo" receptors, but their physiological interactors and roles remain elusive. Similarly, BAI adhesion-GPCRs were associated with numerous activities, but their ligands and functions remain unclear. Using unbiased approaches, we observed an unexpected convergence: RTN4 receptors are high-affinity ligands for BAI adhesion-GPCRs. A single thrombospondin type 1-repeat (TSR) domain of BAIs binds to the leucine-rich repeat domain of all three RTN4-receptor isoforms with nanomolar affinity. In the 1.65 Å crystal structure of the BAI1/RTN4-receptor complex, C-mannosylation of tryptophan and O-fucosylation of threonine in the BAI TSR-domains creates a RTN4-receptor/BAI interface shaped by unusual glycoconjugates that enables high-affinity interactions. In human neurons, RTN4 receptors regulate dendritic arborization, axonal elongation, and synapse formation by differential binding to glial versus neuronal BAIs, thereby controlling neural network activity. Thus, BAI binding to RTN4/NoGo receptors represents a receptor-ligand axis that, enabled by rare post-translational modifications, controls development of synaptic circuits.


Assuntos
Inibidores da Angiogênese/metabolismo , Encéfalo/metabolismo , Neurogênese , Neurônios/metabolismo , Proteínas Nogo/metabolismo , Receptores Nogo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipocinas/metabolismo , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Complemento C1q/metabolismo , Dendritos/metabolismo , Glicosilação , Células HEK293 , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Ligantes , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Deleção de Sequência , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
10.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765444

RESUMO

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Assuntos
Evolução Biológica , Encéfalo/citologia , Forma Celular/fisiologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Gorilla gorilla , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Organoides/citologia , Organoides/metabolismo , Pan troglodytes , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
11.
Cell ; 181(3): 536-556, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32359437

RESUMO

Developing neurons connect in specific and stereotyped ways to form the complex circuits that underlie brain function. By comparison to earlier steps in neural development, progress has been slow in identifying the cell surface recognition molecules that mediate these synaptic choices, but new high-throughput imaging, genetic, and molecular methods are accelerating progress. Over the past decade, numerous large and small gene families have been implicated in target recognition, including members of the immunoglobulin, cadherin, and leucine-rich repeat superfamilies. We review these advances and propose ways in which combinatorial use of multifunctional recognition molecules enables the complex neuron-neuron interactions that underlie synaptic specificity.


Assuntos
Rede Nervosa/metabolismo , Rede Nervosa/fisiologia , Sinapses/metabolismo , Animais , Caderinas/genética , Comunicação Celular , Membrana Celular/metabolismo , Humanos , Neurogênese , Neurônios/metabolismo , Neurônios/fisiologia , Sinapses/fisiologia
12.
Cell ; 181(3): 590-603.e16, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32272060

RESUMO

Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.


Assuntos
Neurogênese/fisiologia , Neuroglia/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Sistemas CRISPR-Cas/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Células Ganglionares da Retina/fisiologia
13.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31955847

RESUMO

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Assuntos
Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteômica/métodos , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Neurogênese/fisiologia , Nervo Olfatório/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Receptores de Lipoproteínas/metabolismo , Olfato/fisiologia
14.
Cell ; 182(3): 625-640.e24, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32702313

RESUMO

The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. VIDEO ABSTRACT.


Assuntos
Encéfalo/citologia , Linfócitos T CD4-Positivos/metabolismo , Feto/citologia , Microglia/citologia , Microglia/metabolismo , Sinapses/metabolismo , Adulto , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Escala de Avaliação Comportamental , Células Sanguíneas/citologia , Células Sanguíneas/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Criança , Feminino , Feto/embriologia , Humanos , Lectinas Tipo C/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurogênese/genética , Parabiose , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Análise de Célula Única , Baço/citologia , Baço/metabolismo , Sinapses/imunologia , Transcriptoma
15.
Cell ; 180(2): 323-339.e19, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31928845

RESUMO

Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance.


Assuntos
Proteínas do Tecido Nervoso/ultraestrutura , Receptores de Peptídeos/metabolismo , Tenascina/metabolismo , Animais , Adesão Celular/fisiologia , Cristalografia por Raios X/métodos , Células HEK293 , Humanos , Células K562 , Proteínas de Repetições Ricas em Leucina , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL/embriologia , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/ultraestrutura , Ligação Proteica/fisiologia , Proteínas/metabolismo , Proteínas/ultraestrutura , Receptores de Superfície Celular/metabolismo , Receptores de Peptídeos/ultraestrutura , Sinapses/metabolismo , Tenascina/ultraestrutura
16.
Cell ; 182(3): 594-608.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32679030

RESUMO

Human cerebral cortex size and complexity has increased greatly during evolution. While increased progenitor diversity and enhanced proliferative potential play important roles in human neurogenesis and gray matter expansion, the mechanisms of human oligodendrogenesis and white matter expansion remain largely unknown. Here, we identify EGFR-expressing "Pre-OPCs" that originate from outer radial glial cells (oRGs) and undergo mitotic somal translocation (MST) during division. oRG-derived Pre-OPCs provide an additional source of human cortical oligodendrocyte precursor cells (OPCs) and define a lineage trajectory. We further show that human OPCs undergo consecutive symmetric divisions to exponentially increase the progenitor pool size. Additionally, we find that the OPC-enriched gene, PCDH15, mediates daughter cell repulsion and facilitates proliferation. These findings indicate properties of OPC derivation, proliferation, and dispersion important for human white matter expansion and myelination.


Assuntos
Caderinas/metabolismo , Córtex Cerebral/citologia , Células Ependimogliais/metabolismo , Neurogênese/genética , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proliferação de Células/genética , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Ependimogliais/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Células Precursoras de Oligodendrócitos/citologia , RNA Interferente Pequeno , RNA-Seq , Análise de Célula Única , Substância Branca/citologia , Substância Branca/embriologia , Substância Branca/metabolismo
17.
Annu Rev Cell Dev Biol ; 37: 495-517, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34416113

RESUMO

With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution.


Assuntos
Evolução Biológica , Córtex Cerebral , Animais , Encéfalo/fisiologia , Córtex Cerebral/anatomia & histologia , Mamíferos , Neurogênese , Neurônios/metabolismo
18.
Cell ; 179(7): 1469-1482.e11, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835028

RESUMO

Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.


Assuntos
Pleiotropia Genética , Predisposição Genética para Doença , Transtornos Mentais/genética , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Humanos , Neurogênese
19.
Cell ; 178(6): 1287-1298, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491383

RESUMO

The genetic architecture of autism spectrum disorder (ASD) is itself a diverse allelic spectrum that consists of rare de novo or inherited variants in hundreds of genes and common polygenic risk at thousands of loci. ASD susceptibility genes are interconnected at the level of transcriptional and protein networks, and many function as genetic regulators of neurodevelopment or synaptic proteins that regulate neural activity. So that the core underlying neuropathologies can be further elucidated, we emphasize the importance of first defining subtypes of ASD on the basis of the phenotypic signatures of genes in model systems and humans.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Herança Multifatorial/genética , Animais , Células Cultivadas , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Redes Reguladoras de Genes , Humanos , Neurogênese
20.
Cell ; 179(2): 292-311, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585077

RESUMO

Microglia were first recognized as a distinct cell population in the CNS one century ago. For a long time, they were primarily considered to be phagocytes responsible for removing debris during CNS development and disease. More recently, advances in imaging and genetics and the advent of single-cell technologies provided new insights into the much more complex and fascinating biology of microglia. The ontogeny of microglia was identified, and their functions in health and disease were better defined. Although many questions about microglia and their roles in human diseases remain unanswered, the prospect of targeting microglia for the treatment of neurological and psychiatric disorders is tantalizing.


Assuntos
Microglia/metabolismo , Doenças Neurodegenerativas/etiologia , Neurogênese , Animais , Homeostase , Humanos , Microglia/citologia , Microglia/fisiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa