Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Mov Disord ; 38(9): 1728-1736, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544016

RESUMO

BACKGROUND: Neurturin is a member of the glial cell line-derived neurotrophic factor family of neurotrophic factors and has the potential to protectdegenerating dopaminergic neurons. OBJECTIVE: Here, we performed post-mortem studies on two patients with advanced Parkinson's disease that survived 10 years following AAV-neurturin gene (Cere120) delivery to verify long-term effects of trophic factor neurturin. METHODS: Cere120 was delivered to the putamen bilaterally in one case and to the putamen plus substantia nigra bilaterally in the second. Immunohistochemistry was used to examine neurturin, Rearranged during transfection(RET), phosphor-S6, and tyrosine hydroxylase expressions, inflammatory reactions, and α-synuclein accumulation. RESULTS: In both patients there was persistent, albeit limited, neurturin expression in the putamen covering 1.31% to 5.92% of the putamen. Dense staining of tyrosine hydroxylase-positive fibers was observed in areas that contained detectable neurturin expression. In substantia nigra, neurturin expression was detected in 11% of remaining melanin-containing neurons in the patient with combined putamenal and nigral gene delivery, but not in the patient with putamenal gene delivery alone. Tyrosine hydroxylase positive neurons were 66% to 84% of remaining neuromelanin neurons in substantia nigra with Cere120 delivery and 23% to 24% in substantia nigra without gene delivery. More RET and phosphor-S6 positive neurons were observed in substantia nigra following nigral Cere120. Inflammatory and Lewy pathologies were similar in substantia nigra with or without Cere120 delivery. CONCLUSIONS: This study provides evidence of long-term persistent transgene expression and bioactivity following gene delivery to the nigrostriatal system. Therefore, future efforts using gene therapy for neurodegenerative diseases should consider means to enhance remaining dopamine neuron function and stop pathological propagation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Neurturina/genética , Neurturina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Neurônios/metabolismo , Terapia Genética , Substância Negra/metabolismo
2.
J Cell Physiol ; 236(12): 8184-8196, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34170009

RESUMO

Airway smooth muscle (ASM) cells modulate the local airway milieu via production of inflammatory mediators and growth factors including classical neurotrophins, such as brain-derived neurotrophic factor (BDNF). The glial cell-derived neurotrophic factor (GDNF) family of ligands (GFLs) are nonclassical neurotrophins and their role in the airway is barely understood. The major GFLs, GDNF and Neurturin (NRTN) bind to GDNF family receptor (GFR) α1 and α2 respectively that pair with Ret receptor to accomplish signaling. In this study, we found GDNF is expressed in human lung and increased in adult asthma, while human ASM expresses GDNF and its receptors. Accordingly, we used human ASM cells to test the hypothesis that ASM expression and autocrine signaling by GFLs regulate [Ca2+ ]i . Serum-deprived ASM cells from non-asthmatics were exposed to 10 ng/ml GDNF or NRTN for 15 min (acute) or 24 h (chronic). In fura-2 loaded cells, acute GDNF or NRTN alone induced [Ca2+ ]i responses, and further enhanced responses to 1 µM ACh or 10 µM histamine. Ret inhibitor (SPP86; 10 µM) or specific GDNF chelator GFRα1-Fc (1 µg/ml) showed roles of these receptors in GDNF effects. In contrast, NRTN did not enhance [Ca2+ ]i response to histamine. Furthermore, conditioned media of nonasthmatic and asthmatic ASM cells showed GDNF secretion. SPP86, Ret inhibitor and GFRα1-Fc chelator markedly decreased [Ca2+ ]i response compared with vehicle, highlighting autocrine effects of secreted GDNF. Chronic GDNF treatment increased histamine-induced myosin light chain phosphorylation. These novel data demonstrate GFLs particularly GDNF/GFRα1 influence ASM [Ca2+ ]i and raise the possibility that GFLs are potential targets of airway hyperresponsiveness.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Músculo Liso/metabolismo , Sistema Respiratório/metabolismo , Asma/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Miócitos de Músculo Liso/metabolismo , Neurturina/metabolismo
3.
Neurobiol Dis ; 153: 105298, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33684514

RESUMO

The failure of glial cell derived neurotropic factor to be efficacious in blinded clinical trials for Parkinson's disease may be due to alterations in signaling receptors and downstream signaling molecules. To test this hypothesis, brain sections were obtained from older adults with no motor deficit (n = 6), minimal motor deficits (n = 10), and clinical diagnosis of Parkinson's disease (n = 10) who underwent motor examination proximate to death. Quantitative unbiased stereology and densitometry were performed to analyze RET and phosphorylated ribosomal protein S6 expression in nigral neurons. Individuals with no motor deficit had extensive and intense RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra. The number and staining intensity of RET-immunoreactive neurons were reduced moderately in subjects with minimal motor deficits and severely reduced in Parkinson's disease relative to no motor deficit group. The number and staining intensity of phosphorylated ribosomal protein S6 was more markedly reduced in both subjects with minimal motor deficits and Parkinson's disease. Reductions in levels of RET and phosphorylated ribosomal protein S6 were recapitulated in a non-human primate genetic Parkinson's disease model based on over-expression of human mutant α-synuclein (A53T). These data indicate that for neurotrophic factors to be effective in patients with minimal motor deficits or PD, these factors would likely have to upregulate RET and phosphorylated ribosomal protein S6 immunoreactive neurons in substantia nigra .


Assuntos
Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurturina/metabolismo , Doença de Parkinson/metabolismo , Sintomas Prodrômicos , Proteínas Proto-Oncogênicas c-ret/metabolismo , Proteína S6 Ribossômica/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Densitometria , Feminino , Humanos , Macaca fascicularis , Masculino , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transdução de Sinais , alfa-Sinucleína/genética
4.
Brain ; 143(3): 960-975, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203581

RESUMO

We performed post-mortem studies on two patients with advanced Parkinson's disease 8 and10 years following AAV2-neurturin (CERE120) gene therapy, the longest post-mortem trophic factor gene therapy cases reported to date. CERE120 was delivered to the putamen bilaterally in one case (10 years post-surgery), and to the putamen plus the substantia nigra bilaterally in the second (8 years post-surgery). In both patients there was persistent, albeit limited, neurturin expression in the putamen covering ∼3-12% of the putamen. In the putamen, dense staining of tyrosine hydroxylase-positive fibres was observed in areas that contained detectable neurturin expression. In the substantia nigra, neurturin expression was detected in 9.8-18.95% and 22.02-39% of remaining melanin-containing neurons in the patient with putamenal and combined putamenal and nigral gene delivery, respectively. Melanized neurons displayed intense tyrosine hydroxylase and RET proto-oncogene expression in nigral neurons in the patient where CERE120 was directly delivered to the nigra. There was no difference in the degree of Lewy pathology in comparison to untreated control patients with Parkinson's disease, and α-synuclein aggregates were detected in neurons that also stained for neurturin, RET, and tyrosine hydroxylase. These changes were not associated with antiparkinsonian benefits likely due to the limited neurturin expression. This study provides the longest term evidence of persistent transgene expression following gene delivery to the CNS and the first human results when targeting both the terminal fields in the putamen as well as the originating nigral neurons.


Assuntos
Terapia Genética , Neurturina/biossíntese , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Humanos , Corpos de Lewy/metabolismo , Melaninas/imunologia , Pessoa de Meia-Idade , Neurônios/imunologia , Neurturina/administração & dosagem , Doença de Parkinson/imunologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/biossíntese , Putamen/imunologia , Putamen/metabolismo , Substância Negra/imunologia , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/imunologia , alfa-Sinucleína/metabolismo
5.
Cytokine ; 126: 154876, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31629109

RESUMO

Premature ovarian insufficiency (POI) is a primary ovarian defect characterized by premature depletion of ovarian follicles before 40 years of age. The disorder has been attributed to various causes, but the study of altered proteins in serum levels as the cause is rare. Additionally, identifying novel biomarkers can contribute to more accurate diagnosis or prognosis of POI. In the present study, a solid-phase antibody array simultaneously detecting multiple proteins was used to analyze POI serum with menopausal and healthy fertile subjects as control groups. As a result, compared to the menopause and healthy fertile groups, eleven proteins, including Neurturin, Frizzled-5, Serpin D1, MMP-7, ICAM-3, IL-17F, IFN-gamma R1, IL-29, IL-17R, IL-17C and Soggy-1, were uniquely down-regulated, and Afamin was particularly up-regulated in POI serum. More importantly, all of these factors were firstly found to be associated with POI in this study, suggesting that these proteins may participate in the pathogenesis of POI and may be novel serum biomarkers for POI.


Assuntos
Biomarcadores/sangue , Menopausa Precoce/sangue , Insuficiência Ovariana Primária/sangue , Adulto , Anticorpos , Proteínas de Transporte/sangue , Regulação para Baixo , Estradiol/sangue , Feminino , Receptores Frizzled/sangue , Glicoproteínas/sangue , Cofator II da Heparina/metabolismo , Humanos , Molécula 3 de Adesão Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Interferon gama/sangue , Interferons/sangue , Interleucina-17/sangue , Interleucinas/sangue , Metaloproteinase 7 da Matriz/sangue , Pessoa de Meia-Idade , Neurturina/sangue , Insuficiência Ovariana Primária/imunologia , Insuficiência Ovariana Primária/patologia , Análise Serial de Proteínas , Receptores de Interleucina-17/sangue , Albumina Sérica Humana , Regulação para Cima
6.
J Neurol Neurosurg Psychiatry ; 91(11): 1210-1218, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32732384

RESUMO

Loss of nigrostriatal dopaminergic projection neurons is a key pathology in Parkinson's disease, leading to abnormal function of basal ganglia motor circuits and the accompanying characteristic motor features. A number of intraparenchymally delivered gene therapies designed to modify underlying disease and/or improve clinical symptoms have shown promise in preclinical studies and subsequently were evaluated in clinical trials. Here we review the challenges with surgical delivery of gene therapy vectors that limited therapeutic outcomes in these trials, particularly the lack of real-time monitoring of vector administration. These challenges have recently been addressed during the evolution of novel techniques for vector delivery that include the use of intraoperative MRI. The preclinical development of these techniques are described in relation to recent clinical translation in an adeno-associated virus serotype 2-mediated human aromatic L-amino acid decarboxylase gene therapy development programme. This new paradigm allows visualisation of the accuracy and adequacy of viral vector delivery within target structures, enabling intertrial modifications in surgical approaches, cannula design, vector volumes and dosing. The rapid, data-driven evolution of these procedures is unique and has led to improved vector delivery.


Assuntos
Corpo Estriado , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Imageamento por Ressonância Magnética , Procedimentos Neurocirúrgicos/métodos , Doença de Parkinson/terapia , Substância Negra , Animais , Descarboxilases de Aminoácido-L-Aromático/genética , Gânglios da Base , Dependovirus , Medicina Baseada em Evidências , GTP Cicloidrolase/genética , Glutamato Descarboxilase/genética , Humanos , Cuidados Intraoperatórios/métodos , Lentivirus , Neurturina/genética , Parvovirinae , Primatas , Cirurgia Assistida por Computador , Tirosina 3-Mono-Oxigenase/genética
7.
Protein Expr Purif ; 168: 105552, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31866372

RESUMO

Neurturin is a potent neurotrophic factor that has been investigated as a potential therapeutic agent for the treatment of neurodegenerative diseases, including Parkinson's disease, and, more recently, for the treatment of type II diabetes. However, purification of neurturin for clinical applications has been hampered by its low solubility in aqueous solutions. Here we describe the development of a scalable manufacturing process for recombinant neurturin from E. coli. inclusion bodies. Neurturin was refolded from solubilized inclusion bodies by fed-batch dilution refolding with a titer of 90 mg per liter refold and a refold yield of 89%. A two-step purification process using cation exchange and hydrophobic interaction chromatography, followed by formulation using tangential flow filtration resulted in an overall process yield of about 56 mg purified neurturin per liter refold. Solubility of neurturin during the purification process was maintained by the addition of 15% (w/v) glycerol to all buffers. For clinical applications and parenteral administration glycerol was replaced by 15% (w/v) sulfobutyl ether-beta-cyclodextrin (i.e. Captisol) in the drug substance formulation buffer. The final purified product had low or undetectable levels of product-related impurities and concentrations of process-related contaminants such as host cell proteins, host cell DNA, endotoxins and Triton X-100 were reduced more than 10,000-fold or below the limit of detection. Bioactivity of purified recombinant neurturin was demonstrated in a cell-based assay by activation of the MAPK signaling pathway.


Assuntos
Escherichia coli/genética , Corpos de Inclusão/química , Neurturina/genética , Xilanos/química , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Luciferases/genética , Luciferases/metabolismo , Neurturina/química , Neurturina/metabolismo , Redobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elemento de Resposta Sérica/genética , Temperatura , Xilanos/metabolismo , beta-Ciclodextrinas/química
8.
J Neurosci ; 38(21): 4899-4911, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29712778

RESUMO

Pain associated with skeletal pathology or disease is a significant clinical problem, but the mechanisms that generate and/or maintain it remain poorly understood. In this study, we explored roles for GDNF, neurturin, and artemin signaling in bone pain using male Sprague Dawley rats. We have shown that inflammatory bone pain involves activation and sensitization of peptidergic, NGF-sensitive neurons via artemin/GDNF family receptor α-3 (GFRα3) signaling pathways, and that sequestering artemin might be useful to prevent inflammatory bone pain derived from activation of NGF-sensitive bone afferent neurons. In addition, we have shown that inflammatory bone pain also involves activation and sensitization of nonpeptidergic neurons via GDNF/GFRα1 and neurturin/GFRα2 signaling pathways, and that sequestration of neurturin, but not GDNF, might be useful to treat inflammatory bone pain derived from activation of nonpeptidergic bone afferent neurons. Our findings suggest that GDNF family ligand signaling pathways are involved in the pathogenesis of bone pain and could be targets for pharmacological manipulations to treat it.SIGNIFICANCE STATEMENT Pain associated with skeletal pathology, including bone cancer, bone marrow edema syndromes, osteomyelitis, osteoarthritis, and fractures causes a major burden (both in terms of quality of life and cost) on individuals and health care systems worldwide. We have shown the first evidence of a role for GDNF, neurturin, and artemin in the activation and sensitization of bone afferent neurons, and that sequestering these ligands reduces pain behavior in a model of inflammatory bone pain. Thus, GDNF family ligand signaling pathways are involved in the pathogenesis of bone pain and could be targets for pharmacological manipulations to treat it.


Assuntos
Doenças Ósseas/fisiopatologia , Osso e Ossos/inervação , Osso e Ossos/fisiopatologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Inflamação/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios Aferentes/fisiologia , Neurturina/genética , Dor/fisiopatologia , Animais , Medula Óssea/inervação , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
9.
J Biol Chem ; 293(15): 5492-5508, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29414779

RESUMO

Neurturin (NRTN) provides trophic support to neurons and is considered a therapeutic agent for neurodegenerative diseases, such as Parkinson's disease. It binds to its co-receptor GFRa2, and the resulting NRTN-GFRa2 complex activates the transmembrane receptors rearranged during transfection (RET) or the neural cell adhesion molecule (NCAM). We report the crystal structure of NRTN, alone and in complex with GFRa2. This is the first crystal structure of a GFRa with all three domains and shows that domain 1 does not interact directly with NRTN, but it may support an interaction with RET and/or NCAM, via a highly conserved surface. In addition, biophysical results show that the relative concentration of GFRa2 on cell surfaces can affect the functional affinity of NRTN through avidity effects. We have identified a heparan sulfate-binding site on NRTN and a putative binding site in GFRa2, suggesting that heparan sulfate has a role in the assembly of the signaling complex. We further show that mutant NRTN with reduced affinity for heparan sulfate may provide a route forward for delivery of NRTN with increased exposure in preclinical in vivo models and ultimately to Parkinson's patients.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Heparitina Sulfato/química , Complexos Multiproteicos/química , Neurturina/química , Transdução de Sinais , Cristalografia por Raios X , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Neurturina/genética , Neurturina/metabolismo , Domínios Proteicos , Estrutura Quaternária de Proteína
10.
Eur J Neurosci ; 49(4): 440-452, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30103283

RESUMO

Perhaps the most important unmet clinical need in Parkinson's disease (PD) is the development of a therapy that can slow or halt disease progression. Extensive preclinical research has provided evidence for the neurorestorative properties of several growth factors, yet only a few have been evaluated in clinical studies. Attempts to achieve neuroprotection by addressing cell-autonomous mechanisms and targeting dopaminergic neurons have been disappointing. Four different trophic factors have so far entered clinical trials in PD: glial cell line-derived growth factor, its close structural and functional analog neurturin, platelet-derived growth factor and cerebral dopaminergic neurotrophic factor. This article reviews the pre-clinical evidence for the neuroprotective and neurorestorative actions of these growth factors and discusses limitations of preclinical models, which may hamper successful translation to the clinic. We summarize the previous and ongoing clinical trials using growth factors in PD and emphasize the caveats in clinical trial design that may prevent the further development and registration of potentially neuroprotective and neurorestorative treatments for individuals suffering from PD.


Assuntos
Fatores de Crescimento Neural/metabolismo , Neuregulina-1/metabolismo , Neuroproteção/fisiologia , Neurturina/metabolismo , Doença de Parkinson/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Humanos
11.
J Cell Sci ; 130(9): 1559-1569, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28348107

RESUMO

The importance of macrophages in tissue development and regeneration has been strongly emphasized. However, the specific roles of macrophage colony-stimulating factor (MCSF), the key regulator of macrophage differentiation, in glandular tissue development have been unexplored. Here, we disclose new macrophage-independent roles of MCSF in tissue development. We initially found that MCSF is markedly upregulated at embryonic day (E)13.5, at a stage preceding the colonization of macrophages (at E15.5), in mouse submandibular gland (SMG) tissue. Surprisingly, MCSF-induced branching morphogenesis was based on a direct effect on epithelial cells, as well as indirectly, by modulating the expression of major growth factors of SMG growth, FGF7 and FGF10, via the phosphoinositide 3-kinase (PI3K) pathway. Additionally, given the importance of neurons in SMG organogenesis, we found that MCSF-induced SMG growth was associated with regulation of neurturin expression and neuronal network development during early SMG development in an in vitro organogenesis model as well as in vivo These results indicate that MCSF plays pleiotropic roles and is an important regulator of early SMG morphogenesis.


Assuntos
Fator Estimulador de Colônias de Macrófagos/farmacologia , Morfogênese/efeitos dos fármacos , Glândula Submandibular/crescimento & desenvolvimento , Animais , Epitélio/efeitos dos fármacos , Epitélio/embriologia , Epitélio/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos ICR , Crescimento Neuronal/efeitos dos fármacos , Neurturina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/metabolismo
12.
J Neurophysiol ; 117(3): 1258-1265, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031403

RESUMO

Neurotrophic factors play an important role in the regulation of functional properties of sensory neurons under normal and pathological conditions. The GDNF family member neurturin is one such factor that has been linked to modulating responsiveness to peripheral stimuli. Neurturin binds to the GFRα2 receptor, a receptor found primarily in isolectin B4-expressing polymodal cutaneous nociceptors. Previous work has shown that knockout of GFRα2 alters heat, but not mechanical, responses in dissociated sensory neurons and reduces pain-related behaviors during the second phase of the formalin test. Research has also shown that overexpression of neurturin in basal keratinocytes increases behavioral responsiveness to mechanical stimulation and innocuous cooling of the skin without affecting noxious heat responses. Here we directly examined the impact of neurturin overexpression on cutaneous afferent function. We compared physiological responses of individual sensory neurons to mechanical and thermal stimulation of the skin, using an ex vivo skin-nerve-dorsal root ganglion-spinal cord preparation produced from neurturin-overexpressing (NRTN/OE) mice and wild-type littermate controls. We found that neurturin overexpression increases responsiveness to innocuous mechanical stimuli in A-fiber nociceptors, alters thermal responses in the polymodal subpopulation of C-fiber sensory neurons, and changes the relative numbers of mechanically sensitive but thermally insensitive C-fiber afferents. These results demonstrate the potential roles of different functional groups of sensory neurons in the behavioral changes observed in mice overexpressing cutaneous neurturin and highlight the importance of neurturin in regulating cutaneous afferent response properties.NEW & NOTEWORTHY GDNF family neurotrophic factors regulate the development and function of primary sensory neurons. Of these, neurturin has been shown to modulate mechanical and cooling sensitivity behaviorally. Here we show that overexpression of neurturin in basal keratinocytes regulates mechanical responsiveness in A-fiber primary sensory neurons while increasing the overall numbers of cold-sensing units. Results demonstrate a crucial role for cutaneous neurturin in modulating responsiveness to peripheral stimuli at the level of the primary afferent.


Assuntos
Vias Aferentes/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/fisiologia , Neurturina/metabolismo , Pele/inervação , Temperatura , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas/fisiologia , Neurturina/genética , Estimulação Física , Psicofísica , Limiar Sensorial/fisiologia , Pele/metabolismo , Medula Espinal/metabolismo
13.
Biotechnol Bioeng ; 114(8): 1753-1761, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28369693

RESUMO

Human neurturin (NTN) is a cystine knot growth factor with potential therapeutic use in diseases such as Parkinson's and diabetes. Scalable high titer production of native NTN is particularly challenging because of the cystine knot structure which consists of an embedded ring comprised of at least three disulfide bonds. We sought to pursue enhanced scalable production of NTN in Escherichia coli. Our initial efforts focused on codon optimization of the first two codons following AUG, but these studies resulted in only a marginal increase in NTN expression. Therefore, we pursued an alternative strategy of using a bicistronic vector for NTN expression designed to reduce mRNA secondary structure to achieve increased ribosome binding and re-initiation. The first cistron was designed to prevent sequestration of the translation initiation region in a secondary conformation. The second cistron, which contained the NTN coding sequence itself, was engineered to disrupt double bonded base pairs and destabilize the secondary structure for ribosome re-initiation. The ensemble approach of reducing NTN's mRNA secondary structure and using the bicistronic vector had an additive effect resulting in significantly increased NTN expression. Our strain selection studies were conducted in a miniaturized bioreactor. An optimized strain was selected and scaled up to a 100 L fermentor, which yielded an inclusion body titer of 2 g/L. The inclusion bodies were refolded to yield active NTN. We believe that our strategy is applicable to other candidate proteins that are difficult-to-express due to stable mRNA secondary structures. Biotechnol. Bioeng. 2017;114: 1753-1761. © 2017 Wiley Periodicals, Inc.


Assuntos
Escherichia coli/fisiologia , Éxons/genética , Melhoramento Genético/métodos , Vetores Genéticos/genética , Neurturina/biossíntese , RNA Mensageiro/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes/genética , Neurturina/genética , Relação Estrutura-Atividade , Regulação para Cima/genética
14.
J Immunol ; 194(4): 1423-33, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595789

RESUMO

Neurturin (NTN) was previously described for its neuronal activities, but recently, we have shown that this factor is also involved in asthma physiopathology. However, the underlying mechanisms of NTN are unclear. The aim of this study was to investigate NTN involvement in acute bronchial Th2 responses, to analyze its interaction with airway structural cells, and to study its implication in remodeling during acute and chronic bronchial inflammation in C57BL/6 mice. We analyzed the features of allergic airway inflammation in wild-type and NTN(-/-) mice after sensitization with two different allergens, OVA and house dust mite. We showed that NTN(-/-) dendritic cells and T cells had a stronger tendency to activate the Th2 pathway in vitro than similar wild-type cells. Furthermore, NTN(-/-) mice had significantly increased markers of airway remodeling like collagen deposition. NTN(-/-) lung tissues showed higher levels of neutrophils, cytokine-induced neutrophil chemoattractant, matrix metalloproteinase 9, TNF-α, and IL-6. Finally, NTN had the capacity to decrease IL-6 and TNF-α production by immune and epithelial cells, showing a direct anti-inflammatory activity on these cells. Our findings support the hypothesis that NTN could modulate the allergic inflammation in different mouse asthma models.


Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Neurturina/imunologia , Animais , Western Blotting , Hiper-Reatividade Brônquica/imunologia , Técnicas de Cocultura , Células Dendríticas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Células Th2/imunologia
15.
Cell Mol Life Sci ; 73(7): 1365-79, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26616211

RESUMO

Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Neurturina/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico , Resposta a Proteínas não Dobradas , alfa-Sinucleína/imunologia , alfa-Sinucleína/farmacologia , alfa-Sinucleína/uso terapêutico
16.
Med Sci Monit ; 23: 3657-3665, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28749900

RESUMO

BACKGROUND The cardiac autonomic nervous system plays an essential role in epicardial ganglionated plexi (GP) regulation of atrial fibrillation onset and progression. To date, the activity of GP and the function of the cardiac autonomic nervous system are not well understood. The aim of this study was to determine alterations in epicardial GP cholinergic nerve, adrenergic nerve, and nerve growth factor expression using rapid atrial pacing to induce atrial fibrillation in canines. MATERIAL AND METHODS Nine healthy adult beagles were divided into two groups: the pacing experimental group (n=6) and the sham-operation control group (n=3). For the pacing group, high frequency pacing of the left atrial appendage was performed for eight hours. In the control group, electrodes were implanted without rapid atrial pacing. Immunocytochemistry was used to identify neurons positively expressing tyrosine hydroxylase, choline acetyl transferase, nerve growth factor and neurturin. RESULTS After successfully establishing a rapid atrial pacing of the left atrial appendage induced atrial fibrillation model, we found that expression of choline acetyl transferase, tyrosine hydroxylase, nerve growth factor, and neurturin was significantly higher in the rapid atrial pacing group than the control group (p<0.05). CONCLUSIONS In our model, incremental excitability of both the adrenergic and cholinergic nerves led to frequent incidents of atrial fibrillation, which were possibly due to an imbalance of autonomic nerve factors in the epicardial GP during acute atrial fibrillation.


Assuntos
Fibrilação Atrial/fisiopatologia , Gânglios Autônomos/fisiopatologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Vias Autônomas/fisiopatologia , Estimulação Cardíaca Artificial/métodos , Colina O-Acetiltransferase/análise , Cães , Mapeamento Epicárdico , Átrios do Coração/fisiopatologia , Fator de Crescimento Neural/análise , Neurturina/análise , Tirosina 3-Mono-Oxigenase/análise
17.
Neurobiol Dis ; 96: 335-345, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27425888

RESUMO

In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.


Assuntos
Desenho de Fármacos , Variação Genética/genética , Neurturina/química , Neurturina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Anfetamina/farmacologia , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Masculino , Modelos Moleculares , Neurturina/genética , Oxidopamina/toxicidade , Doença de Parkinson/complicações , Doença de Parkinson/etiologia , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Ratos , Ratos Wistar , Comportamento Estereotipado/efeitos dos fármacos , Simpatolíticos/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Ann Neurol ; 78(2): 248-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26061140

RESUMO

OBJECTIVE: A 12-month double-blind sham-surgery-controlled trial assessing adeno-associated virus type 2 (AAV2)-neurturin injected into the putamen bilaterally failed to meet its primary endpoint, but showed positive results for the primary endpoint in the subgroup of subjects followed for 18 months and for several secondary endpoints. Analysis of postmortem tissue suggested impaired axonal transport of neurturin from putamen to substantia nigra. In the present study, we tested the safety and efficacy of AAV2-neurturin delivered to putamen and substantia nigra. METHODS: We performed a 15- to 24-month, multicenter, double-blind trial in patients with advanced Parkinson disease (PD) who were randomly assigned to receive bilateral AAV2-neurturin injected bilaterally into the substantia nigra (2.0 × 10(11) vector genomes) and putamen (1.0 × 10(12) vector genomes) or sham surgery. The primary endpoint was change from baseline to final visit performed at the time the last enrolled subject completed the 15-month evaluation in the motor subscore of the Unified Parkinson's Disease Rating Scale in the practically defined off state. RESULTS: Fifty-one patients were enrolled in the trial. There was no significant difference between groups in the primary endpoint (change from baseline: AAV2-neurturin, -7.0 ± 9.92; sham, -5.2 ± 10.01; p = 0.515) or in most secondary endpoints. Two subjects had cerebral hemorrhages with transient symptoms. No clinically meaningful adverse events were attributed to AAV2-neurturin. INTERPRETATION: AAV2-neurturin delivery to the putamen and substantia nigra bilaterally in PD was not superior to sham surgery. The procedure was well tolerated, and there were no clinically significant adverse events related to AAV2-neurturin.


Assuntos
Transporte Axonal , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Neurturina/genética , Doença de Parkinson/terapia , Putamen/metabolismo , Substância Negra/metabolismo , Idoso , Dependovirus , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Putamen/fisiopatologia , Substância Negra/fisiopatologia , Resultado do Tratamento
19.
J Cardiovasc Pharmacol ; 67(3): 218-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26727379

RESUMO

The aim of this study was to establish a rapid atrial pacing-induced canine model of atrial fibrillation in studying the effects of low-level vagus nerve stimulation (LLVNS) on atrial fibrillation and the underlying mechanisms for those effects. Adult beagle dogs were randomly assigned to 3 groups: a sham operation group (sham group), a fast left atrial appendage 12-hour pacing group (pacing group), and a 12-hour pacing + LLVNS group (LLVNS group). All dogs underwent tests for their left and right atrial effective refractory period at various time points, after which they were killed, and samples of atrial and anterior right ganglionated plexi tissue were removed and microscopically examined. As pacing times increased, the mean effective refractory period in the pacing group became significantly shortened. The pacing group and the LLVNS group did show significant differences (P < 0.001). Three groups showed significant differences in their atrial myocardial periodic acid-Schiff-positive area staining densities. Anterior right ganglionated plexi expressions of nerve growth factor and neurturin (NRTN) in the sham group and the LLVNS group were lower than those in the pacing group (nerve growth factor in 3 groups were (36.35 ± 6.18) × 1000, (86.35 ± 5.63) × 1000, and (40.50 ± 7.24) × 1000 µm²/mm², P < 0.001; NRTN in 3 groups were (39.28 ± 7.80) × 1000, (80.24 ± 6.56) × 1000, (40.45 ± 6.97) × 1000 µm²/mm², P < 0.001). Therefore, LLVNS not only reverses the effect of fast pacing-induced atrial electrical remodeling in dogs but also exerts structural effects and stimulates remodeling of autonomic nerves.


Assuntos
Fibrilação Atrial/terapia , Função do Átrio Esquerdo , Função do Átrio Direito , Remodelamento Atrial , Estimulação Cardíaca Artificial , Frequência Cardíaca , Coração/inervação , Estimulação do Nervo Vago/métodos , Nervo Vago/fisiopatologia , Potenciais de Ação , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Cães , Eletrocardiografia , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Fator de Crescimento Neural/metabolismo , Neurturina/metabolismo , Período Refratário Eletrofisiológico , Fatores de Tempo
20.
Gerontology ; 62(3): 371-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26330171

RESUMO

Parkinson's disease (PD) affects an estimated 7-10 million people worldwide and remains without definitive or disease-modifying treatment. There have been many recent developments in cell-based therapy (CBT) to replace lost circuitry and provide chronic biological sources of therapeutic agents to the PD-affected brain. Early neural transplantation studies underscored the challenges of immune compatibility, graft integration and the need for renewable, autologous graft sources. Neurotrophic factors (NTFs) offer a potential class of cytoprotective pharmacotherapeutics that may complement dopamine (DA) replacement and CBT strategies in PD. Chronic NTF delivery may be an integral goal of CBT, with grafts consisting of autologous drug-producing (e.g., DA, NTF) cells that are capable of integration and function in the host brain. In this mini-review, we outline the past experience and recent advances in NTF technology and CBT as promising and integrated approaches for the treatment of PD.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Pluripotentes Induzidas/transplante , Fatores de Crescimento Neural/uso terapêutico , Doença de Parkinson/terapia , Encéfalo/metabolismo , Dopamina/metabolismo , Transplante de Tecido Fetal/métodos , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Humanos , Mesencéfalo/transplante , Neurturina/uso terapêutico , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa