RESUMO
Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.
Assuntos
Lagos , Nitrosomonadaceae , Lagos/microbiologia , Estações do Ano , Ecossistema , Amônia , Oxirredução , Archaea/genética , Nitrificação , Nitritos , Nitrogênio , Dinâmica Populacional , FilogeniaRESUMO
Nitrification is a central process of the aquatic nitrogen cycle that controls the supply of nitrate used in other key processes, such as phytoplankton growth and denitrification. Through time series observation and modeling of a seasonally stratified, eutrophic coastal basin, we demonstrate that physical dilution of nitrifying microorganisms by water column mixing can delay and decouple nitrification. The findings are based on a 4-y, weekly time series in the subsurface water of Bedford Basin, Nova Scotia, Canada, that included measurement of functional (amoA) and phylogenetic (16S rRNA) marker genes. In years with colder winters, more intense winter mixing resulted in strong dilution of resident nitrifiers in subsurface water, delaying nitrification for weeks to months despite availability of ammonium and oxygen. Delayed regrowth of nitrifiers also led to transient accumulation of nitrite (3 to 8 µmol · kgsw-1) due to decoupling of ammonia and nitrite oxidation. Nitrite accumulation was enhanced by ammonia-oxidizing bacteria (Nitrosomonadaceae) with fast enzyme kinetics, which temporarily outcompeted the ammonia-oxidizing archaea (Nitrosopumilus) that dominated under more stable conditions. The study reveals how physical mixing can drive seasonal and interannual variations in nitrification through control of microbial biomass and diversity. Variable, mixing-induced effects on functionally specialized microbial communities are likely relevant to biogeochemical transformation rates in other seasonally stratified water columns. The detailed study reveals a complex mechanism through which weather and climate variability impacts nitrogen speciation, with implications for coastal ecosystem productivity. It also emphasizes the value of high-frequency, multiparameter time series for identifying complex controls of biogeochemical processes in aquatic systems.
Assuntos
Nitrificação/genética , Ciclo do Nitrogênio/genética , Nitrosomonadaceae/genética , Água/metabolismo , Amônia/metabolismo , Compostos de Amônio/metabolismo , Archaea/genética , Archaea/metabolismo , Biomassa , Canadá , Desnitrificação/genética , Ecossistema , Humanos , Cinética , Nitratos , Nitritos/metabolismo , Nitrogênio/metabolismo , Nitrosomonadaceae/patogenicidade , Oxirredução , Filogenia , Fitoplâncton/genética , Fitoplâncton/metabolismo , RNA Ribossômico 16S/genética , Estações do AnoRESUMO
AIMS: Ammonia oxidation is a significant process of nitrogen cycles in a lot of ecosystems sediments while there are few studies in shrimp culture pond (SCP) sediments. This paper attempted to explore the community diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in SCP sediments at different culture stages. METHODS AND RESULTS: We collected SCP sediments and analysed the community diversity and abundance of AOA and bacteria in shrimp pond sediment at different culture stages using the ammonia monooxygenase (amoA) gene with quantitative PCR (qPCR) and 16S rRNA gene sequencing. The AOB-amoA gene abundance was showed higher than AOA-amoA gene abundance in SCP sediments on Day 50 and Day 60 after shrimp larvae introducing into the pond, and the diversity of AOA in SCP sediments was higher than that of AOB. The phylogenetic tree revealed that the most of AOA were the member of Nitrosopumilus and Nitrososphaera, and the majority of AOB sequences were clustered into Nitrosospira, Nitrosomonas clusters 6a and 7. The AOA community has close relationship with total organic carbon (TOC), pH, total phosphorus (TP), nitrate reductase, urease, acid phosphatase and ß-glucosidase. The AOB community was related to TOC, C/N and nitrate reductase. CONCLUSIONS: AOA and AOB play the different ecological roles in SCP sediments at different culture stages. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggested that the different community diversity and abundance of AOA and AOB in SCP sediments, which may improve our ecological cognition of shrimp culture stages in SCP ecosystems.
Assuntos
Amônia/metabolismo , Aquicultura , Archaea/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Penaeidae/crescimento & desenvolvimento , Animais , Archaea/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Ecossistema , Sedimentos Geológicos/química , Ciclo do Nitrogênio , Nitrosomonadaceae/classificação , Nitrosomonadaceae/crescimento & desenvolvimento , Nitrosomonadaceae/metabolismo , Oxirredução , Filogenia , Lagoas/microbiologia , RNA Ribossômico 16SRESUMO
The Korean pine and broad-leaved mixed forests are the most typical and complete ecosystem among the global boreal forests, with extremely important ecological functions. However, few studies on the changes of soil ammonia oxidizers and potential nitrification after clear-cutting of forests are reported. In this study, in contrast to primary Korean pine forests, nitrate (NO3-) was significantly higher in secondary broad-leaved forests, while ammonium (NH4+) was on the contrary. The abundance of ammonia-oxidizing bacteria (AOB) was greatly higher in secondary broad-leaved forests, while levels of ammonia-oxidizing archaea (AOA) were not significantly different between them. The significant differences of community structure of AOA and AOB were observed in different forest types and soil layers. Compared with AOA, community compositions of AOB was more sensitive to forest type. The dominant groups of AOA were Nitrososphaera and Nitrosotalea, and the dominant group of AOB was Nitrosospira, of which Nitrosospira cluster 2 and 4 were functional groups with highly activity. Soil potential nitrification rate (PNR) was higher in secondary broad-leaved forests. Furthermore, PNR and AOB abundance had a significant positive correlation, but no significant correlation with AOA abundance. These results provide insights into the soil nitrogen balance and effects on forest restoration after clear-cutting.
Assuntos
Amônia/metabolismo , Archaea/metabolismo , Nitrificação , Nitrosomonadaceae/metabolismo , Oxidantes/metabolismo , Microbiologia do Solo , Archaea/classificação , Archaea/genética , Biodiversidade , China , DNA Arqueal , DNA Bacteriano , Ecossistema , Nitrosomonadaceae/classificação , Nitrosomonadaceae/genética , Oxirredução , Oxirredutases/genética , Filogenia , Pinus , Solo/química , TaigaRESUMO
Alternations of gut microbiota (GM) in atrial fibrillation (AF) with elevated diversity, perturbed composition and function have been described previously. The current work aimed to assess the association of GM composition with AF recurrence (RAF) after ablation based on metagenomic sequencing and metabolomic analyses and to construct a GM-based predictive model for RAF. Compared with non-AF controls (50 individuals), GM composition and metabolomic profile were significantly altered between patients with recurrent AF (17 individuals) and non-RAF group (23 individuals). Notably, discriminative taxa between the non-RAF and RAF groups, including the families Nitrosomonadaceae and Lentisphaeraceae, the genera Marinitoga and Rufibacter and the species Faecalibacterium spCAG:82, Bacillus gobiensis and Desulfobacterales bacterium PC51MH44, were selected to construct a taxonomic scoring system based on LASSO analysis. After incorporating the clinical factors of RAF, taxonomic score retained a significant association with RAF incidence (HR = 2.647, P = .041). An elevated AUC (0.954) and positive NRI (1.5601) for predicting RAF compared with traditional clinical scoring (AUC = 0.6918) were obtained. The GM-based taxonomic scoring system theoretically improves the model performance, and the nomogram and decision curve analysis validated the clinical value of the predicting model. These data provide novel possibility that incorporating the GM factor into future recurrent risk stratification.
Assuntos
Fibrilação Atrial/microbiologia , Fibrilação Atrial/patologia , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Metaboloma , Idoso , Área Sob a Curva , Bacillus , Faecalibacterium , Feminino , Humanos , Incidência , Estimativa de Kaplan-Meier , Masculino , Metabolômica , Pessoa de Meia-Idade , Nitrosomonadaceae , Recidiva , Medição de Risco , Resultado do TratamentoRESUMO
The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandiamide (DCD) can effectively reduce N2 O emissions; however, which species are targeted and the effect of these NIs on the microbial nitrifier community is still unclear. Here, we identified the ammonia oxidizing bacteria (AOB) species linked to N2 O emissions and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying community in a 258 day field experiment under sugarcane. Using an amoA AOB amplicon sequencing approach and mining a previous dataset of 16S rRNA sequences, we characterized the most likely N2 O-producing AOB as a Nitrosospira spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxidizer) and Nitrospira (nitrite-oxidizer) as the most abundant, present nitrifiers. The fertilizer treatments had no effect on the alpha and beta diversities of the AOB communities. Interestingly, we found three clusters of co-varying variables with nitrifier operational taxonomic units (OTUs): the N2 O-producing AOB Nitrosospira with N2 O, NO3 - , NH4 + , water-filled pore space (WFPS) and pH; AOA Nitrososphaera with NO3 - , NH4 + and pH; and AOA Nitrososphaera and NOB Nitrospira with NH4 + , which suggests different drivers. These results support the co-occurrence of non-N2 O-producing Nitrososphaera and Nitrospira in the unfertilized soils and the promotion of N2 O-producing Nitrosospira under urea fertilization. Further, we suggest that DMPP is a more effective NI than DCD in tropical soil under sugarcane.
Assuntos
Archaea/efeitos dos fármacos , Guanidinas/farmacologia , Nitrosomonadaceae/efeitos dos fármacos , Óxido Nitroso/metabolismo , Microbiologia do Solo , Amônia/metabolismo , Archaea/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Fertilizantes/análise , Nitrificação/efeitos dos fármacos , Nitrosomonadaceae/genética , Oxirredução , Pirazóis/farmacologia , RNA Ribossômico 16S/genética , Solo/química , Clima TropicalRESUMO
Chemoautotrophic ammonia-oxidizers and nitrite-oxidizers are responsible for a significant amount of soil nitrate production. The identity and composition of these active nitrifiers in soils under different long-term fertilization regimes remain largely under-investigated. Based on that soil nitrification potential significantly decreased in soils with chemical fertilization (CF) and increased in soils with organic fertilization (OF), a microcosm experiment with DNA stable isotope probing was further conducted to clarify the active nitrifiers. Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) were found to actively respond to urea addition in soils with OF and no fertilizer (CK), whereas only AOB were detected in soils with CF. Around 98% of active AOB were Nitrosospira cluster 3a.1 in all tested soils, and more than 90% of active AOA were Nitrososphaera subcluster 1.1 in unfertilized and organically fertilized soils. Nitrite oxidation was performed only by Nitrospira-like bacteria in all soils. The relative abundances of Nitrospira lineage I and VI were 32% and 61%, respectively, in unfertilized soils, and that of Nitrospira lineage II was 97% in fertilized soils, indicating long-term fertilization shifted the composition of active Nitrospira-like bacteria in response to urea. This finding indicates that different fertilizer regimes impact the composition of active nitrifiers, thus, impacting soil nitrification potential.
Assuntos
Amônia/metabolismo , Fertilizantes , Isótopos/análise , Nitritos/metabolismo , Microbiologia do Solo , Archaea/efeitos dos fármacos , Archaea/genética , Processos Autotróficos , Bactérias/efeitos dos fármacos , Bactérias/genética , DNA/análise , Nitrificação , Nitrosomonadaceae/genética , Oxirredução , Filogenia , Solo/químicaRESUMO
Long-term effects of inorganic and organic fertilization on nitrification activity (NA) and the abundances and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated in an acidic Ultisol. Seven treatments applied annually for 27 years comprised no fertilization (control), inorganic NPK fertilizer (N), inorganic NPK fertilizer plus lime (CaCO3) (NL), inorganic NPK fertilizer plus peanut straw (NPS), inorganic NPK fertilizer plus rice straw (NRS), inorganic NPK fertilizer plus radish (NR), and inorganic NPK fertilizer plus pig manure (NPM). In nonfertilized soil, the abundance of AOA was 1 order of magnitude higher than that of AOB. Fertilization reduced the abundance of AOA but increased that of AOB, especially in the NL treatment. The AOA communities in the control and the N treatments were dominated by the Nitrososphaera and B1 clades but shifted to clade A in the NL and NPM treatments. Nitrosospira cluster 8a was found to be the most dominant AOB in all treatments. NA was primarily regulated by soil properties, especially soil pH, and the interaction with AOB abundance explained up to 73% of the variance in NA. When NL soils with neutral pH were excluded from the analysis, AOB abundance, especially the relative abundance of Nitrosospira cluster 8a, was positively associated with NA. In contrast, there was no association between AOA abundance and NA. Overall, our data suggest that Nitrosospira cluster 8a of AOB played an important role in the nitrification process in acidic soil following long-term inorganic and organic fertilization.IMPORTANCE The nitrification process is an important step in the nitrogen (N) cycle, affecting N availability and N losses to the wider environment. Ammonia oxidation, which is the first and rate-limiting step of nitrification, was widely accepted to be mainly regulated by AOA in acidic soils. However, in this study, nitrification activity was correlated with the abundance of AOB rather than that of AOA in acidic Ultisols. Nitrosospira cluster 8a, a phylotype of AOB which preferred warm temperatures, and low soil pH played a predominant role in the nitrification process in the test Ultisols. Our results also showed that long-term application of lime or pig manure rather than plant residues altered the community structure of AOA and AOB. Taken together, our findings contribute new knowledge to the understanding of the nitrification process and ammonia oxidizers in subtropical acidic Ultisol under long-term inorganic and organic fertilization.
Assuntos
Nitrosomonadaceae/metabolismo , Microbiologia do Solo , Amônia/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , Fertilizantes/análise , Esterco/análise , Esterco/microbiologia , Nitrificação , Nitrogênio/metabolismo , Nitrosomonadaceae/classificação , Nitrosomonadaceae/genética , Oxirredução , Filogenia , Solo/química , SuínosRESUMO
The work found that the electron-donating properties of ferrous ions (Fe2+) can be used for the conversion of nitrite (NO2-) into the biofilm-dispersing signal nitric oxide (NO) by a copper(II) complex (CuDTTCT) catalyst, a potentially applicable biofilm control technology for the water industries. The availability of Fe2+ varied depending on the characteristics of the aqueous systems (phosphate- and carbonate-containing nitrifying bacteria growth medium, NBGM and phosphate buffered saline, PBS at pH 6 to 8, to simulate conditions typically present in the water industries) and was found to affect the production of NO from nitrite by CuDTTCT (casted into PVC). Greater amounts of NO were generated from the CuDTTCT-nitrite-Fe2+ systems in PBS compared to those in NBGM, which was associated with the reduced extent of Fe2+-to-Fe3+ autoxidation by the iron-precipitating moieties phosphates and carbonate in the former system. Further, acidic conditions at pH 6.0 were found to favor NO production from the catalytic system in both PBS and NBGM compared to neutral or basic pH (pH 7.0 or 8.0). Lower pH was shown to stabilize Fe2+ and reduce its autoxidation to Fe3+. These findings will be beneficial for the potential implementation of the NO-generating catalytic technology and indeed, a 'non-killing' biofilm dispersal activity of CuDTTCT-nitrite-Fe2+ was observed on nitrifying bacteria biofilms in PBS at pH 6.
Assuntos
Biofilmes/efeitos dos fármacos , Complexos de Coordenação/química , Ferro/química , Óxido Nítrico/química , Substâncias Redutoras/química , Catálise , Cobre/química , Compostos Ferrosos/química , Concentração de Íons de Hidrogênio , Óxido Nítrico/farmacologia , Nitrificação , Nitritos/química , Nitrosomonadaceae/efeitos dos fármacos , Nitrosomonadaceae/fisiologia , Cloreto de Polivinila/química , Abastecimento de ÁguaRESUMO
The denitrifying betaproteobacterium Sterolibacterium denitrificans serves as model organism for studying the oxygen-independent degradation of cholesterol. Here, we demonstrate its capability of degrading various globally abundant side chain containing zoo-, phyto- and mycosterols. We provide the complete genome that empowered an integrated genomics/proteomics/metabolomics approach, accompanied by the characterization of a characteristic enzyme of steroid side chain degradation. The results indicate that individual molybdopterin-containing steroid dehydrogenases are involved in C25-hydroxylations of steroids with different isoprenoid side chains, followed by the unusual conversion to C26-oic acids. Side chain degradation to androsta-1,4-diene-3,17-dione (ADD) via aldolytic C-C bond cleavages involves acyl-CoA synthetases/dehydrogenases specific for the respective 26-, 24- and 22-oic acids/-oyl-CoAs and promiscuous MaoC-like enoyl-CoA hydratases, aldolases and aldehyde dehydrogenases. Degradation of rings A and B depends on gene products uniquely found in anaerobic steroid degraders, which after hydrolytic cleavage of ring A, again involves CoA-ester intermediates. The degradation of the remaining CD rings via hydrolytic cleavage appears to be highly similar in aerobic and anaerobic bacteria. Anaerobic cholesterol degradation employs a composite repertoire of more than 40 genes partially known from aerobic degradation in gammaproteobacteria/actinobacteria, supplemented by unique genes that are required to circumvent oxygenase-dependent reactions.
Assuntos
Colesterol/metabolismo , Coenzima A Ligases/metabolismo , Enoil-CoA Hidratase/metabolismo , Nitrosomonadaceae/genética , Nitrosomonadaceae/metabolismo , Aldeído Liases/metabolismo , Androstadienos/metabolismo , Enoil-CoA Hidratase/genética , Genoma Bacteriano/genética , Oxirredução , Oxigenases/metabolismo , Esteroides/químicaRESUMO
The genomes of many bacteria that participate in nitrogen cycling through the process of nitrification contain putative genes associated with acyl-homoserine lactone (AHL) quorum sensing (QS). AHL QS or bacterial cell-cell signaling is a method of bacterial communication and gene regulation and may be involved in nitrogen oxide fluxes or other important phenotypes in nitrifying bacteria. Here, we carried out a broad survey of AHL production in nitrifying bacteria in three steps. First, we analyzed the evolutionary history of AHL synthase and AHL receptor homologs in sequenced genomes and metagenomes of nitrifying bacteria to identify AHL synthase homologs in ammonia-oxidizing bacteria (AOB) of the genus Nitrosospira and nitrite-oxidizing bacteria (NOB) of the genera Nitrococcus, Nitrobacter, and Nitrospira Next, we screened cultures of both AOB and NOB with uncharacterized AHL synthase genes and AHL synthase-negative nitrifiers by a bioassay. Our results suggest that an AHL synthase gene is required for, but does not guarantee, cell density-dependent AHL production under the conditions tested. Finally, we utilized mass spectrometry to identify the AHLs produced by the AOB Nitrosospira multiformis and Nitrosospira briensis and the NOB Nitrobacter vulgaris and Nitrospira moscoviensis as N-decanoyl-l-homoserine lactone (C10-HSL), N-3-hydroxy-tetradecanoyl-l-homoserine lactone (3-OH-C14-HSL), a monounsaturated AHL (C10:1-HSL), and N-octanoyl-l-homoserine lactone (C8-HSL), respectively. Our survey expands the list of AHL-producing nitrifiers to include a representative of Nitrospira lineage II and suggests that AHL production is widespread in nitrifying bacteria.IMPORTANCE Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite by nitrifying microorganisms, plays an important role in environmental nitrogen cycling from agricultural fertilization to wastewater treatment. The genomes of many nitrifying bacteria contain genes associated with bacterial cell-cell signaling or quorum sensing (QS). QS is a method of bacterial communication and gene regulation that is well studied in bacterial pathogens, but less is known about QS in environmental systems. Our previous work suggested that QS might be involved in the regulation of nitrogen oxide gas production during nitrite metabolism. This study characterized putative QS signals produced by different genera and species of nitrifiers. Our work lays the foundation for future experiments investigating communication between nitrifying bacteria, the purpose of QS in these microorganisms, and the manipulation of QS during nitrification.
Assuntos
4-Butirolactona/análogos & derivados , Proteínas de Bactérias/genética , Nitrobacter/fisiologia , Nitrosomonadaceae/fisiologia , Percepção de Quorum , 4-Butirolactona/metabolismo , Proteínas de Bactérias/metabolismo , Nitrificação , Nitrobacter/classificação , Nitrobacter/genética , Nitrobacter/isolamento & purificação , Nitrosomonadaceae/classificação , Nitrosomonadaceae/genética , Nitrosomonadaceae/isolamento & purificação , FilogeniaRESUMO
Molybdenum is an essential nutrient for metabolism in plant, bacteria, and animals. Molybdoenzymes are involved in nitrogen assimilation and oxidoreductive detoxification, and bioconversion reactions of environmental, industrial, and pharmaceutical interest. Molybdoenzymes contain a molybdenum cofactor (Moco), which is a pyranopterin heterocyclic compound that binds a molybdenum atom via a dithiolene group. Because Moco is a large and complex compound deeply buried within the protein, molybdoenzymes are accompanied by private chaperone proteins responsible for the cofactor's insertion into the enzyme and the enzyme's maturation. An efficient recombinant expression and purification of both Moco-free and Moco-containing molybdoenzymes and their chaperones is of paramount importance for fundamental and applied research related to molybdoenzymes. In this work, we focused on a D1 protein annotated as a chaperone of steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S. The D1 protein is presumably involved in the maturation of S25DH engaged in oxygen-independent oxidation of sterols. As this chaperone is thought to be a crucial element that ensures the insertion of Moco into the enzyme and consequently, proper folding of S25DH optimization of the chaperon's expression is the first step toward the development of recombinant expression and purification methods for S25DH. We have identified common E. coli strains and conditions for both expression and purification that allow us to selectively produce Moco-containing and Moco-free chaperones. We have also characterized the Moco-containing chaperone by EXAFS and HPLC analysis and identified conditions that stabilize both forms of the protein. The protocols presented here are efficient and result in protein quantities sufficient for biochemical studies.
Assuntos
Proteínas de Bactérias , Coenzimas , Escherichia coli/metabolismo , Expressão Gênica , Metaloproteínas , Chaperonas Moleculares , Nitrosomonadaceae/genética , Pteridinas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Coenzimas/biossíntese , Coenzimas/química , Coenzimas/genética , Coenzimas/isolamento & purificação , Escherichia coli/química , Escherichia coli/genética , Metaloproteínas/biossíntese , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/isolamento & purificação , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Cofatores de Molibdênio , Nitrosomonadaceae/metabolismo , Pteridinas/química , Pteridinas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
A Gram-negative, spiral-shaped, chemolithotrophic, ammonia-oxidizing bacterium, designated APG3(T), was isolated into pure culture from sandy lake sediment collected from Green Lake, Seattle, WA, USA. Phylogenetic analyses based on the 16S rRNA gene sequence showed that strain APG3(T) belongs to cluster 0 of the genus Nitrosospira, which is presently not represented by described species, with Nitrosospira multiformis (cluster 3) as the closest species with a validly published name (identity of 98.6â% to the type strain). Strain APG3(T) grew at 4 °C but could not grow at 35 °C, indicating that this bacterium is psychrotolerant. Remarkably, the strain was able to grow over a wide range of pH (pH 5-9), which was greater than the pH range of any studied ammonia-oxidizing bacteria in pure culture. The DNA G+C content of the APG3(T) genome is 53.5â%, which is similar to that of Nitrosospira multiformis ATCC 25196(T) (53.9â%) but higher than that of Nitrosomonas europaea ATCC 19718 (50.7â%) and Nitrosomonas eutropha C71 (48.5â%). The average nucleotide identity (ANI) calculated for the genomes of strain APG3(T) and Nitrosospira multiformis ATCC 25196(T) was 75.45â%, significantly lower than the value of 95â% ANI that corresponds to the 70â% species-level cut-off based on DNA-DNA hybridization. Overall polyphasic taxonomy study indicated that strain APG3(T) represents a novel species in the genus Nitrosospira, for which the name Nitrosospira lacus sp. nov. is proposed (type strain APG3(T)â=âNCIMB 14869(T)â=âLMG 27536(T)â=âATCC BAA-2542(T)).
Assuntos
Amônia/metabolismo , Lagos/microbiologia , Nitrosomonadaceae/classificação , Filogenia , Composição de Bases , DNA Bacteriano/genética , Dados de Sequência Molecular , Nitrosomonadaceae/genética , Nitrosomonadaceae/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
The chemolithoautotrophic bacterium Nitrosospira multiformis is involved in affecting the process of nitrogen cycling. Here we report the existence and characterization of a functional quorum sensing signal synthase in N. multiformis. One gene (nmuI) playing a role in generating a protein with high levels of similarity to N-acyl homoserine lactone (AHL) synthase protein families was identified. Two AHLs (C14-AHL and 3-oxo-C14-AHL) were detected using an AHL biosensor and liquid chromatography-mass spectrometry (LC-MS) when nmuI, producing a LuxI homologue, was introduced into Escherichia coli. However, by extracting N. multiformis culture supernatants with acidified ethyl acetate, no AHL product was obtained that was capable of activating the biosensor or being detected by LC-MS. According to reverse transcription-PCR, the nmuI gene is transcribed in N. multiformis, and a LuxR homolog (NmuR) in this ammonia-oxidizing strain showed great sensitivity to long-chain AHL signals by solubility assay. A degradation experiment demonstrated that the absence of AHL signals might be attributed to the possible AHL-inactivating activities of this strain. To summarize, an AHL synthase gene (nmuI) acting as a long-chain AHL producer has been found in a chemolithotrophic ammonia-oxidizing microorganism, and the results provide an opportunity to complete the knowledge of the regulatory networks in N. multiformis.
Assuntos
Acil-Butirolactonas/metabolismo , Ligases/isolamento & purificação , Nitrosomonadaceae/enzimologia , Sequência de Aminoácidos , Técnicas Biossensoriais , Cromatografia Líquida , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Expressão Gênica , Ligases/genética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
The lack of a universal method to extract RNA from soil hinders the progress of studies related to nitrification in soil, which is an important step in the nitrogen cycle. It is particularly difficult to extract RNA from certain types of soils such as Andosols (volcanic ash soils), which is the dominant agricultural soil in Japan, because of RNA adsorption by soil. To obtain RNA from these challenging soils to study the bacteria involved in nitrification, we developed a soil RNA extraction method for gene expression analysis. Autoclaved casein was added to an RNA extraction buffer to recover RNA from soil, and high-quality RNA was successfully extracted from eight types of agricultural soils that were significantly different in their physicochemical characteristics. To detect bacterial ammonia monooxygenase subunit A gene (amoA) transcripts, bacterial genomic DNA and messenger RNA were co-extracted from two different types of Andosols during incubation with ammonium sulfate. Polymerase chain reaction-denaturing gradient gel electrophoresis and reverse transcription polymerase chain reaction-denaturing gradient gel electrophoresis analyses of amoA in soil microcosms revealed that only few amoA, which had the highest similarities to those in Nitrosospira multiformis, were expressed in these soils after treatment with ammonium sulfate, although multiple amoA genes were present in the soil microcosms examined.
Assuntos
Proteínas de Bactérias/genética , Biologia Molecular/métodos , Oxirredutases/genética , RNA/isolamento & purificação , Microbiologia do Solo , Solo/química , Erupções Vulcânicas , Proteínas de Bactérias/metabolismo , Caseínas/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Expressão Gênica , Japão , Dados de Sequência Molecular , Nitrosomonadaceae/enzimologia , Nitrosomonadaceae/genética , Oxirredutases/metabolismo , RNA/genética , Análise de Sequência de DNARESUMO
Biofilm-based systems, including integrated fixed-film activated sludge and moving bed bioreactors, are becoming increasingly popular for wastewater treatment, often with the goal of improving nitrification through the enrichment of ammonia and nitrite oxidizing bacteria. We have previously demonstrated the utility of self-assembled monolayers (SAMs) as tools for studying the initial attachment of bacteria to substrata systematically varying in physicochemical properties. In this work, we expanded these studies to bacteria of importance in wastewater treatment systems and we demonstrated attachment rates were better correlated with surface energy than with wettability (water contact angle). Toward the long-term goal of improving wastewater treatment performance through the strategic design of attachment substrata, the attachment rates of two autotrophic ammonia-oxidizing bacteria (Nitrosomonas europaea and Nitrosospira multiformis) and a heterotroph (Escherichia coli) were evaluated using SAMs with a range of wettabilities, surface energies, and functional properties (methyl, hydroxyl, carboxyl, trimethylamine, and amine terminated). Cell attachment rates were somewhat correlated with the water contact angles of the SAMs with polar terminal groups (hydroxyl, carboxyl, trimethylamine, and amine). Including all SAM surfaces, a better correlation was found for all bacteria between attachment rates and surface free energy, as determined using the Lewis Acid-Base approach. The ammonia-oxidizers had higher adhesion rates on the SAMs with higher surface energies than did the heterotroph. This work demonstrated the successful application of SAMs to determine the attachment surface preferences of bacteria important to wastewater treatment, and it provides guidance for a new area of research aimed at improving treatment performance through rational attachment surface design.
Assuntos
Bactérias/metabolismo , Aderência Bacteriana/fisiologia , Nitrificação/fisiologia , Poluentes Químicos da Água/metabolismo , Amônia/metabolismo , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Biofilmes , Reatores Biológicos , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Processos Heterotróficos/fisiologia , Modelos Biológicos , Nitrosomonadaceae/metabolismo , Nitrosomonadaceae/fisiologia , Esgotos/química , Esgotos/microbiologia , Propriedades de Superfície , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , MolhabilidadeRESUMO
The effects of TiO2 nanoparticles (nano-TiO2) together with antibiotics leaking into wastewater treatment plants (WWTPs), especially the partial nitrification (PN) process remain unclear. To evaluate the combined impact and mechanisms of nano-TiO2 and antibiotics on PN systems, batch experiments were carried out with six bench-scale sequencing batch reactors. Nano-TiO2 at a low level had minimal effects on the PN system. In combination with tetracycline and erythromycin, the acute impact of antibiotics was enhanced. Both steps of nitrification were retarded due to the decrease of bacterial activity and abundance, while nitrite-oxidizing bacteria were more sensitive to the inhibition than ammonia-oxidizing bacteria. Proteobacteria at the phylum level and Nitrosospira at the genus level remained predominant under single and combined impacts. The flow cytometry analysis showed that nano-TiO2 enhanced the toxicity of antibiotics through increasing cell permeability. Our results can help clarify the risks of nano-TiO2 combined with antibiotics to PN systems and explaining the behavior of nanoparticles in WWTPs.
Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Titânio/química , Titânio/farmacologia , Eritromicina/farmacologia , Nitritos/química , Nitrosomonadaceae/efeitos dos fármacos , Proteobactérias/efeitos dos fármacos , Tetraciclina/farmacologia , Purificação da ÁguaRESUMO
Ongoing anthropogenic eutrophication of Jiaozhou Bay offers an opportunity to study the influence of human activity on bacterial communities that drive biogeochemical cycling. Nitrification in coastal waters appears to be a sensitive indicator of environmental change, suggesting that function and structure of the microbial nitrifying community may be associated closely with environmental conditions. In the current study, the amoA gene was used to unravel the relationship between sediment aerobic obligate ammonia-oxidizing Betaproteobacteria (Beta-AOB) and their environment in Jiaozhou Bay. Protein sequences deduced from amoA gene sequences grouped within four distinct clusters in the Nitrosomonas lineage, including a putative new cluster. In addition, AmoA sequences belonging to three newly defined clusters in the Nitrosospira lineage were also identified. Multivariate statistical analyses indicated that the studied Beta-AOB community structures correlated with environmental parameters, of which nitrite-N and sediment sand content had significant impact on the composition, structure, and distribution of the Beta-AOB community. Both amoA clone library and quantitative PCR (qPCR) analyses indicated that continental input from the nearby wastewater treatment plants and polluted rivers may have significant impact on the composition and abundance of the sediment Beta-AOB assemblages in Jiaozhou Bay. Our work is the first report of a direct link between a sedimentological parameter and the composition and distribution of the sediment Beta-AOB and indicates the potential for using the Beta-AOB community composition in general and individual isolates or environmental clones in the Nitrosomonas oligotropha lineage in particular as bioindicators and biotracers of pollution or freshwater or wastewater input in coastal environments.
Assuntos
Amônia/metabolismo , Biodiversidade , Sedimentos Geológicos/microbiologia , Metagenoma , Nitrosomonadaceae/classificação , Nitrosomonadaceae/metabolismo , Proteínas de Bactérias/genética , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eutrofização , Dados de Sequência Molecular , Nitratos/metabolismo , Nitritos/metabolismo , Nitrosomonadaceae/genética , Nitrosomonadaceae/isolamento & purificação , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
The response of natural microbial communities to environmental change can be assessed by determining DNA- or RNA-targeted changes in relative abundance of 16S rRNA gene sequences by using fingerprinting techniques such as denaturing gradient gel electrophoresis (DNA-DGGE and RNA-DGGE, respectively) or by stable isotope probing (SIP) of 16S rRNA genes following incubation with a (13)C-labeled substrate (DNA-SIP-DGGE). The sensitivities of these three approaches were compared during batch growth of communities containing two or three Nitrosospira pure or enriched cultures with different tolerances to a high ammonia concentration. Cultures were supplied with low, intermediate, or high initial ammonia concentrations and with (13)C-labeled carbon dioxide. DNA-SIP-DGGE provided the most direct evidence for growth and was the most sensitive, with changes in DGGE profiles evident before changes in DNA- and RNA-DGGE profiles and before detectable increases in nitrite and nitrate production. RNA-DGGE provided intermediate sensitivity. In addition, the three molecular methods were used to follow growth of individual strains within communities. In general, changes in relative activities of individual strains within communities could be predicted from monoculture growth characteristics. Ammonia-tolerant Nitrosospira cluster 3b strains dominated mixed communities at all ammonia concentrations, and ammonia-sensitive strains were outcompeted at an intermediate ammonia concentration. However, coexistence of ammonia-tolerant and ammonia-sensitive strains occurred at the lowest ammonia concentration, and, under some conditions, strains inhibited at high ammonia in monoculture were active at high ammonia in mixed cultures, where they coexisted with ammonia-tolerant strains. The results therefore demonstrate the sensitivity of SIP for detection of activity of organisms with relatively low yield and low activity and its ability to follow changes in the structure of interacting microbial communities.
Assuntos
Amônia/metabolismo , Isótopos de Carbono/metabolismo , Nitrosomonadaceae/classificação , Nitrosomonadaceae/metabolismo , Coloração e Rotulagem/métodos , Impressões Digitais de DNA , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Nitratos/metabolismo , Nitritos/metabolismo , Desnaturação de Ácido Nucleico , Oxirredução , RNA Bacteriano/genética , Sensibilidade e Especificidade , Análise de Sequência de DNARESUMO
Nitrifying bacteria, cyanobacteria, and algae are important microorganisms in open pond wastewater treatment systems. Nitrification involving the sequential oxidation of ammonia to nitrite and nitrate, mainly due to autotrophic nitrifying bacteria, is essential to biological nitrogen removal in wastewater and global nitrogen cycling. A continuous flow autotrophic bioreactor was initially designed for nitrifying bacterial growth only. In the presence of cyanobacteria and algae, we monitored both the microbial activity by measuring specific oxygen production rate (SOPR) for microalgae and cyanobacteria and specific oxygen uptake rate (SOUR) for nitrifying bacteria. The growth of cyanobacteria and algae inhibited the maximum nitrification rate by a factor of 4 although the ammonium nitrogen fed to the reactor was almost completely removed. Terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the community structures of nitrifying bacteria remained unchanged, containing the dominant Nitrosospira, Nitrospira, and Nitrobacter species. PCR amplification coupled with cloning and sequencing analysis resulted in identifying Chlorella emersonii and an uncultured cyanobacterium as the dominant species in the autotrophic bioreactor. Notwithstanding their fast growth rate and their toxicity to nitrifiers, microalgae and cyanobacteria were more easily lost in effluent than nitrifying bacteria because of their poor settling characteristics. The microorganisms were able to grow together in the bioreactor with constant individual biomass fractions because of the uncoupled solids retention times for algae/cyanobacteria and nitrifiers. The results indicate that compared to conventional wastewater treatment systems, longer solids retention times (e.g., by a factor of 4) should be considered in phototrophic bioreactors for complete nitrification and nitrogen removal.