Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(8): 3325-3338, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468657

RESUMO

Upon nitrogen starvation, filamentous cyanobacteria develop heterocysts, specialized cells devoted to the fixation of atmospheric nitrogen. Differentiation of heterocyst at semi-regular intervals along the filaments requires complex structural and functional changes that are under the control of the master transcriptional regulator HetR. NsiR1 (nitrogen stress-induced RNA 1) is a HetR-dependent non-coding RNA that is expressed specifically in heterocysts from a very early stage of differentiation. In the genome of Nostoc sp. PCC 7120 there are 12 tandem copies of nsiR1 (nsiR1.1 to nsiR1.12), seven of them with identical sequence (nsiR1.3 to nsiR1.9) and the others slightly divergent. nsiR1.1 is transcribed antisense to the 5' UTR of hetF, a gene required for heterocyst development. Here, we show that binding of NsiR1.1 inhibits translation of the hetF mRNA by inducing structural changes in its 5' UTR. Altered levels of NsiR1 result in different phenotypic alterations including enlarged cell size and delayed heterocyst development that could be related to a reduced amount of HetF.


Assuntos
Proteínas de Bactérias/genética , Nostoc/citologia , Nostoc/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Regiões 5' não Traduzidas/genética , Anabaena/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética
2.
Int J Med Microbiol ; 309(8): 151303, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521503

RESUMO

Some filamentous cyanobacteria are phototrophic bacteria with a true multicellular life style. They show patterned cell differentiation with the distribution of metabolic tasks between different cell types. This life style requires a system of cell-cell communication and metabolite exchange along the filament. During our study of the cell wall of species Nostoc punctiforme and Anabaena sp. PCC 7120 we discovered regular perforations in the septum between neighboring cells, which we called nanopore array. AmiC-like amidases are drilling the nanopores with a diameter of 20 nm, and are essential for communication and cell differentiation. NlpD-like regulators of AmiC activity and septum localized proteins SepJ, FraC and FraD are also involved in correct nanopore formation. By focused ion beam (FIB) milling and electron cryotomography we could visualize the septal junctions, which connect adjacent cells and pass thru the nanopores. They consist of cytoplasmic caps, which are missing in the fraD mutant, a plug inside the cytoplasmic membrane and a tube like conduit. A destroyed membrane potential and other stress factors lead to a conformational change in the cap structure and loss of cell-cell communication. These gated septal junctions of cyanobacteria are ancient structures that represent an example of convergent evolution, predating metazoan gap junctions.


Assuntos
Anabaena/citologia , Comunicação Celular , Nanoporos , Nostoc/citologia , Peptidoglicano/metabolismo , Amidoidrolases/metabolismo , Anabaena/enzimologia , Regulação Bacteriana da Expressão Gênica , Nostoc/enzimologia , Junções Íntimas/metabolismo
3.
J Bacteriol ; 197(4): 782-91, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25488296

RESUMO

In cyanobacterial Nostoc species, substratum-dependent gliding motility is confined to specialized nongrowing filaments called hormogonia, which differentiate from vegetative filaments as part of a conditional life cycle and function as dispersal units. Here we confirm that Nostoc punctiforme hormogonia are positively phototactic to white light over a wide range of intensities. N. punctiforme contains two gene clusters (clusters 2 and 2i), each of which encodes modular cyanobacteriochrome-methyl-accepting chemotaxis proteins (MCPs) and other proteins that putatively constitute a basic chemotaxis-like signal transduction complex. Transcriptional analysis established that all genes in clusters 2 and 2i, plus two additional clusters (clusters 1 and 3) with genes encoding MCPs lacking cyanobacteriochrome sensory domains, are upregulated during the differentiation of hormogonia. Mutational analysis determined that only genes in cluster 2i are essential for positive phototaxis in N. punctiforme hormogonia; here these genes are designated ptx (for phototaxis) genes. The cluster is unusual in containing complete or partial duplicates of genes encoding proteins homologous to the well-described chemotaxis elements CheY, CheW, MCP, and CheA. The cyanobacteriochrome-MCP gene (ptxD) lacks transmembrane domains and has 7 potential binding sites for bilins. The transcriptional start site of the ptx genes does not resemble a sigma 70 consensus recognition sequence; moreover, it is upstream of two genes encoding gas vesicle proteins (gvpA and gvpC), which also are expressed only in the hormogonium filaments of N. punctiforme.


Assuntos
Proteínas de Bactérias/metabolismo , Extensões da Superfície Celular/metabolismo , Nostoc/genética , Nostoc/efeitos da radiação , Fotorreceptores Microbianos/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Extensões da Superfície Celular/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Dados de Sequência Molecular , Família Multigênica , Nostoc/citologia , Nostoc/metabolismo , Fotorreceptores Microbianos/genética
4.
Mol Microbiol ; 87(4): 884-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279310

RESUMO

Many filamentous cyanobacteria are capable of gliding motility by an undefined mechanism. Within the heterocyst-forming clades, some strains, such as the Nostoc spp. and Fisherella spp., are motile only as specialized filaments termed hormogonia. Here we report on the phenotype of inactivation of a methyl-accepting chemotaxis-like protein in Nostoc punctiforme, designated HmpD. The gene hmpD was found to be essential for hormogonium development, motility and polysaccharide secretion. Comparative global transcriptional profiling of the ΔhmpD strain demonstrated that HmpD has a profound effect on the transcriptional programme of hormogonium development, influencing approximately half of the genes differentially transcribed during differentiation. Utilizing this transcriptomic data, we identified a gene locus, designated here as hps, that appears to encode for a novel polysaccharide secretion system. Transcripts for the genes in the hps locus are upregulated in two steps, with the second step dependent on HmpD. Deletion of hpsA, hpsBCD or hpsEFG resulted in the complete loss of motility and polysaccharide secretion, similar to deletion of hmpD. Genes in the hps locus are highly conserved in the filamentous cyanobacteria, but generally absent in unicellular strains, implying a common mechanism of motility unique to the filamentous cyanobacteria.


Assuntos
Sistemas de Secreção Bacterianos , Perfilação da Expressão Gênica , Nostoc/citologia , Nostoc/metabolismo , Polissacarídeos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Nostoc/genética , Análise de Sequência com Séries de Oligonucleotídeos
5.
FASEB J ; 27(6): 2293-300, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23444428

RESUMO

The transition from unicellular to multicellular life, which occurred several times during evolution, requires tight interaction and communication of neighboring cells. The multicellular cyanobacterium Nostoc punctiforme ATCC 29133 forms filaments of hundreds of interacting cells exchanging metabolites and signal molecules and is able to differentiate specialized cells in response to environmental stimuli. Mutation of cell wall amidase AmiC2 leads to a severe phenotype with formation of aberrant septa in the distorted filaments, which completely lack cell communication and potential for cell differentiation. Here we demonstrate the function of the amidase AmiC2 in formation of cell-joining structures. The AmiC2 protein localizes to the young septum between cells and shows bona fide amidase activity in vivo and in vitro. Vancomycin staining identified the overall septum morphology in living cells. By electron microscopy of isolated peptidoglycan sacculi, the submicroscopic structure of the cell junctions could be visualized, revealing a novel function for a cell wall amidase: AmiC2 drills holes into the cross-walls, forming an array of ~155 nanopores with a diameter of ~20 nm each. These nanopores seem to constitute a framework for cell-joining proteins, penetrating the cell wall. The entire array of junctional nanopores appears as a novel bacterial organelle, establishing multicellularity in a filamentous prokaryote.


Assuntos
Interações Microbianas/fisiologia , Nostoc/citologia , Nostoc/fisiologia , Amidoidrolases/genética , Amidoidrolases/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Parede Celular/enzimologia , Parede Celular/ultraestrutura , Genes Bacterianos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Microbianas/genética , Microscopia Eletrônica de Transmissão , Mutação , Nanoporos/ultraestrutura , Nostoc/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Phys Chem Chem Phys ; 16(17): 7862-71, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24643249

RESUMO

Cyanobacteria possess unique and exciting features among photosynthetic microorganisms for energy conversion applications. This study focuses on production of direct electricity using a cyanobacterium called Nostoc sp. (NOS) as a photo-biocatalyst immobilized on carbon nanotubes on the anode of photo-bioelectrochemical cells. By illuminating with light (intensity 76 mW cm(-2)) the NOS immobilized on a carbon nanotube (CNT) modified electrode generated a photocurrent density of 30 mA m(-2) at 0.2 V (vs. Ag/AgCl). The contribution of different photosynthetic pigments in NOS to the light capture was analyzed and chlorophyll-a was found to be the major contributor to light capture followed by phycocyanin. Further investigation using a set of inhibitors revealed that the electrons were redirected predominantly from PSII to the CNT through the plastoquinone pool and quinol oxidase. A rudimentary design photosynthetic electrochemical cell has been constructed using NOS/CNT on the anode and laccase/CNT on the cathode as catalysts. The cell generated a maximum current density of 250 mA m(-2) and a peak power density of 35 mW m(-2) without any mediator. By the addition of 1,4-benzoquinone as a redox mediator, the electricity generation capability was significantly enhanced with a current density of 2300 mA m(-2) and a power density of 100 mW m(-2). The power densities achieved in this work are the highest among 'non-engineered' cyanobacteria based electrochemical systems reported to date.


Assuntos
Fontes de Energia Bioelétrica , Nanotubos de Carbono/química , Nostoc/fisiologia , Benzoquinonas/química , Células Imobilizadas/citologia , Células Imobilizadas/fisiologia , Eletricidade , Eletrodos , Transporte de Elétrons , Luz , Nanotubos de Carbono/ultraestrutura , Nostoc/citologia , Oxirredução , Fotossíntese
7.
mSphere ; 9(8): e0051024, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39037261

RESUMO

Multicellular cyanobacteria, like Nostoc punctiforme, rely on septal junctions for cell-cell communication, which is crucial for coordinating various physiological processes including differentiation of N2-fixing heterocysts, spore-like akinetes, and hormogonia-short, motile filaments important for dispersal. In this study, we functionally characterize a protein, encoded by gene Npun_F4142, which in a random mutagenesis approach, initially showed a motility-related function. The reconstructed Npun_F4142 knockout mutant exhibits further distinct phenotypic traits, including altered hormogonia formation with significant reduced motility, inability to differentiate heterocysts and filament fragmentation. For that reason, we named the protein FraI (fragmentation phenotype). The mutant displays severely impaired cell-cell communication, due to almost complete absence of the nanopore array in the septal cell wall, which is an essential part of the septal junctions. Despite lack of communication, hormogonia in the ΔfraI mutant maintain motility and phototactic behavior, even though less pronounced than the wild type (WT). This suggests an alternative mechanism for coordinated movement beyond septal junctions. Our study underscores the significance of FraI in nanopore formation and cell differentiation, and provides additional evidence for the importance of septal junction formation and communication in various differentiation traits of cyanobacteria. The findings contribute to a deeper understanding of the regulatory networks governing multicellular cyanobacterial behavior, with implications for broader insights into microbial multicellularity. IMPORTANCE: The filament-forming cyanobacterium Nostoc punctiforme serves as a valuable model for studying cell differentiation, including the formation of nitrogen-fixing heterocysts and hormogonia. Hormogonia filaments play a crucial role in dispersal and plant colonization, providing a nitrogen source through atmospheric nitrogen fixation, thus holding promise for fertilizer-free agriculture. The coordination among the hormogonia cells enabling uniform movement toward the positive signal remains poorly understood. This study investigates the role of septal junction-mediated communication in hormogonia differentiation and motility, by studying a ΔfraI mutant with significantly impaired communication. Surprisingly, impaired communication does not abolish synchronized filament movement, suggesting an alternative coordination mechanism. These findings deepen our understanding of cyanobacterial biology and have broader implications for multicellular behavior in prokaryotes.


Assuntos
Proteínas de Bactérias , Nostoc , Nostoc/genética , Nostoc/fisiologia , Nostoc/citologia , Nostoc/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comunicação Celular , Fenótipo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Mutação
8.
Plant Cell Physiol ; 53(8): 1492-506, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22739509

RESUMO

The fluorescence spectrum at 298 and 40 K and the absorption spectrum at 298 K of each cell of the filamentous cyanobacterium Nostoc sp. was measured by single-cell confocal laser spectroscopy to study the differentiation of cell pigments. The fluorescence spectra of vegetative (veg) and heterocyst (het) cells of Nostoc formed separate groups with low and high PSII to PSI ratios, respectively. The fluorescence spectra of het cells at 40 K still contained typical PSII bands. The PSII/PSI ratio estimated for the veg cells varied between 0.4 and 1.2, while that of het cells varied between 0 and 0.22 even in the same culture. The PSII/PSI ratios of veg cells resembled each other more closely in the same filament. 'pro-het' cells, which started to differentiate into het cells, were identified from the small but specific difference in the PSII/PSI ratio. The allophycocyanin (APC)/PSII ratio was almost constant in both veg and het cells, indicating their tight couplings. Phycocyanin (PC) showed higher fluorescence in most het cells, suggesting the uncoupling from PSII. Veg cells seem to vary their PSI contents to give different PSII/PSI ratios even in the same culture, and to suppress the synthesis of PSII, APC and PC to differentiate into het cells. APC and PC are gradually liberated from membranes in het cells with the uncoupling from PSII. Single-cell spectrometry will be useful to study the differentiation of intrinsic pigments of cells and chloroplasts, and to select microbes from natural environments.


Assuntos
Nostoc/citologia , Nostoc/metabolismo , Pigmentos Biológicos/análise , Análise de Célula Única/métodos , Espectrometria de Fluorescência/métodos , Temperatura Baixa , Interpretação Estatística de Dados , Congelamento , Nostoc/crescimento & desenvolvimento , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficocianina/metabolismo
9.
New Phytol ; 196(3): 862-872, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22931432

RESUMO

Development of the symbiotic association in the bipartite lichen Pseudocyphellaria crocata was investigated by characterizing two regions of the thallus. Thallus organization was examined using microscopy. A HIP1-based differential display technique was modified for use on Nostoc strains, including lichenized strains. Northern hybridization and quantitative real-time polymerase chain reaction were used to confirm differential display results, and determine expression levels of key cyanobacterial genes. Photosystem II yield across the thallus was measured using pulse-amplitude modulated fluorescence. Microscopy revealed structural differences in the thallus margins compared with the centre and identified putative heterocysts in both regions. Differential display identified altered transcript levels in both Nostoc punctiforme and a lichenized Nostoc strain. Transcript abundance of cox2, atpA, and ribA was increased in the thallus margin compared with the centre. Expression of cox2 is heterocyst specific and expression of other heterocyst-specific genes (hetR and nifK) was elevated in the margin, whereas, expression of psbB and PSII yield were not. Structural organization of the thallus margin differed from the centre. Both regions contained putative heterocysts but gene expression data indicated increased heterocyst differentiation in the margins where photosystem II yield was decreased. This is consistent with a zone of heterocyst differentiation within the thallus margin.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Líquens/citologia , Líquens/genética , Nostoc/citologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Northern Blotting , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fluorescência , Perfilação da Expressão Gênica , Líquens/metabolismo , Líquens/microbiologia , Microscopia Confocal , Fixação de Nitrogênio , Nostoc/genética , Nostoc/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Simbiose
10.
J Proteome Res ; 10(4): 1772-84, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21284387

RESUMO

Nostoc punctiforme ATCC 29133 is a photoautotrophic cyanobacterium with the ability to fix atmospheric nitrogen and photoproduce hydrogen through the enzyme nitrogenase. The H(2) produced is reoxidized by an uptake hydrogenase. Inactivation of the uptake hydrogenase in N. punctiforme leads to increased H(2) release but unchanged rates of N(2) fixation, indicating redirected metabolism. System-wide understanding of the mechanisms of this metabolic redirection was obtained using complementary quantitative proteomic approaches, at both the filament and the heterocyst level. Of the total 1070 identified and quantified proteins, 239 were differentially expressed in the uptake hydrogenase mutant (NHM5) as compared to wild type. Our results indicate that the inactivation of uptake hydrogenase in N. punctiforme changes the overall metabolic equilibrium, affecting both oxygen reduction mechanisms in heterocysts as well as processes providing reducing equivalents for metabolic functions such as N(2) fixation. We identify specific metabolic processes used by NHM5 to maintain a high rate of N(2) fixation, and thereby potential targets for further improvement of nitrogenase based H(2) photogeneration. These targets include, but are not limited to, components of the oxygen scavenging capacity and cell envelope of heterocysts and proteins directly or indirectly involved in reduced carbon transport from vegetative cells to heterocysts.


Assuntos
Bioengenharia/métodos , Cianobactérias/metabolismo , Hidrogênio/metabolismo , Nostoc/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Cromatografia Líquida/métodos , Cianobactérias/citologia , Cianobactérias/genética , Metabolismo Energético , Espectrometria de Massas/métodos , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogenase/genética , Nitrogenase/metabolismo , Nostoc/citologia , Nostoc/genética , Proteômica/métodos
11.
Elife ; 92020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32762845

RESUMO

Local activation and long-range inhibition are mechanisms conserved in self-organizing systems leading to biological patterns. A number of them involve the production by the developing cell of an inhibitory morphogen, but how this cell becomes immune to self-inhibition is rather unknown. Under combined nitrogen starvation, the multicellular cyanobacterium Nostoc PCC 7120 develops nitrogen-fixing heterocysts with a pattern of one heterocyst every 10-12 vegetative cells. Cell differentiation is regulated by HetR which activates the synthesis of its own inhibitory morphogens, diffusion of which establishes the differentiation pattern. Here, we show that HetR interacts with HetL at the same interface as PatS, and that this interaction is necessary to suppress inhibition and to differentiate heterocysts. hetL expression is induced under nitrogen-starvation and is activated by HetR, suggesting that HetL provides immunity to the heterocyst. This protective mechanism might be conserved in other differentiating cyanobacteria as HetL homologues are spread across the phylum.


Cyanobacteria are the only bacteria on Earth able to draw their energy directly from the sun in the same way that plants do. In addition, some strains are able to 'fix' the nitrogen present in the atmosphere: they can extract this gas and transform it into nitrogen-based compounds necessary for life. However, both processes cannot happen in a given cell at the same time. A strain of cyanobacteria called Nostoc PCC 7120 can organise itself into long filaments of interconnected cells. Under certain conditions, one in every ten cells stops drawing its energy from the sun, and starts fixing atmospheric nitrogen instead. Exactly how the bacteria are able to 'count to ten' and organize themselves in such a precise pattern is still unclear. Cells can communicate and establish patterns by exchanging molecular signals that switch on and off certain cell programs. For instance, a protein called HetR turns on the genetic program that allows cyanobacteria to fix nitrogen; on the other hand, a signal known as PatS binds to HetR and turns it off. Cells starting to specialise in fixing nitrogen produce both HetR and PatS, with the latter diffusing in surrounding cells and preventing them from extracting nitrogen. However, it remained unclear how the nitrogen-fixing cell could ignore its own PatS signal and keep its HetR signal active. HetL ­ another protein produced by the future nitrogen-fixing cell ­ could potentially play this role, but how it acts was unknown. Here, Xu et al. show that HetL cannot diffuse from one cell to the other, and that it binds to HetR at the same place than PatS does. When both PatS and HetL are present, they compete to attach to HetR, which stops PatS from turning off HetR and deactivating the nitrogen-fixing program. Understanding how cyanobacteria fix nitrogen could help to develop new types of natural fertiliser. More generally, dissecting how these simple organisms can create patterns could help to grasp how patterning emerges in more complex creatures.


Assuntos
Proteínas de Bactérias/metabolismo , Nostoc , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Nitrogênio/metabolismo , Nostoc/citologia , Nostoc/metabolismo , Nostoc/fisiologia , Ligação Proteica
12.
Sci Rep ; 9(1): 4751, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30894551

RESUMO

Coralloid roots are specialized tissues of cycads (Cycas revoluta) that are involved in symbioses with nitrogen-fixing Nostoc cyanobacteria. We found that a crude methanolic extract of coralloid roots induced differentiation of the filamentous cell aggregates of Nostoc species into motile hormogonia. Hence, the hormogonium-inducing factor (HIF) was chased using bioassay-based isolation, and the active principle was characterized as a mixture of diacylglycerols (DAGs), mainly composed of 1-palmitoyl-2-linoleoyl-sn-glycerol (1), 1-palmitoyl-2-oleoyl-sn-glycerol (2), 1-stearoyl-2-linolenoyl-sn-glycerol (3), and 1-stearoyl-2-linoleoyl-sn-glycerol (4). Enantioselectively synthesised compound 1 showed a clear HIF activity at 1 nmol (0.6 µg) disc-1 for the filamentous cells, whereas synthesised 2-linoleoyl-3-palmitoyl-sn-glycerol (1') and 1-palmitoyl-2-linoleoyl-rac-glycerol (1/1') were less active than 1. Conversely, synthesised 1-linoleoyl-2-palmitoyl-rac-glycerol (8/8') which is an acyl positional isomer of compound 1 was inactive. In addition, neither 1-monoacylglycerols nor phospholipids structurally related to 1 showed HIF-like activities. As DAGs are protein kinase C (PKC) activators, 12-O-tetradecanoylphorbol-13-acetate (12), urushiol C15:3-Δ10,13,16 (13), and a skin irritant anacardic acid C15:1-Δ8 (14) were also examined for HIF-like activities toward the Nostoc cells. Neither 12 nor 13 showed HIF-like activities, whereas 14 showed an HIF-like activity at 1 nmol/disc. These findings appear to indicate that some DAGs act as hormogonium-inducing signal molecules for filamentous Nostoc cyanobacteria.


Assuntos
Cycas/química , Diglicerídeos/química , Nostoc/metabolismo , Extratos Celulares/química , Extratos Celulares/farmacologia , Diglicerídeos/isolamento & purificação , Nostoc/citologia , Nostoc/crescimento & desenvolvimento , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Simbiose
14.
FEBS J ; 283(7): 1336-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26833702

RESUMO

UNLABELLED: To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. DATABASE: The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Nanoporos , Nostoc/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Biocatálise , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Microscopia de Fluorescência , Modelos Moleculares , Mutação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Nostoc/citologia , Nostoc/genética , Peptidoglicano/química , Peptidoglicano/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Temperatura
15.
Appl Biochem Biotechnol ; 176(7): 1950-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041059

RESUMO

Bioflocculant exopolysaccharide (EPS) production by 40 cyanobacterial strains during their photoautotrophic growth was investigated. Highest levels of EPS were produced by Nostoc sp. BTA97 and Anabaena sp. BTA990. EPS production was maximum during stationary growth phase, when nitrogenase activity was very low. Maximum EPS production occurred at pH 8.0 in the absence of any combined nitrogen source. The cyanobacterial EPS consisted of soluble protein and polysaccharide that included substantial amounts of neutral sugars and uronic acid. The EPS isolated from Anabaena sp. BTA990 and Nostoc sp. BTA97 demonstrated high flocculation capacity. There was a positive correlation between uronic acid content and flocculation activity. The flocculant bound a cationic dye, Alcian Blue, indicating it to be polyanionic. The 16S rRNA gene sequences for Nostoc sp. BTA97 and Anabaena sp. BTA990 were deposited at NCBI GenBank, and accession numbers were obtained as KJ830951 and KJ830948, respectively. The results of these experiments indicate that strains Anabaena sp. BTA990 and Nostoc sp. BTA97 are good candidates for the commercial production of EPS and might be utilized in industrial applications as an alternative to synthetic and abiotic flocculants.


Assuntos
Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Nostoc/crescimento & desenvolvimento , Nostoc/metabolismo , Polissacarídeos/biossíntese , Anabaena/química , Anabaena/citologia , Técnicas de Cultura , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Floculação , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Nitratos/farmacologia , Nostoc/química , Nostoc/citologia , Filogenia , RNA Ribossômico 16S/genética , Ácidos Urônicos/metabolismo
17.
J Microbiol ; 52(2): 179-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24500483

RESUMO

A study on the effects of light intensity (40 and 80 µE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.


Assuntos
Nostoc , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/efeitos da radiação , Luz , Microscopia de Força Atômica , Nostoc/química , Nostoc/citologia , Nostoc/efeitos da radiação
18.
Plant Signal Behav ; 8(12): e27416, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24675169

RESUMO

Certain cyanobacteria can form symbiotic associations with plants, where the symbiont supplies the plant partner with nitrogen and in return obtains sugars. We recently showed that in the symbiotic cyanobacterium Nostoc punctiforme, a glucose specific permease, GlcP, is necessary for the symbiosis to be formed. Results presented here from growth yield measurements of mutant strains with inactivated or overexpressing sugar transporters suggest that GlcP could be induced by a symbiosis specific substance. We also discuss that the transporter may have a role other than nutritional once the symbiosis is established, i.e., during infection, and more specifically in the chemotaxis of the symbiont. Phylogenetic analysis shows that the distribution of GlcP among cyanobacteria is likely influenced by horizontal gene transfer, but also that it is not correlated with symbiotic competence. Instead, regulatory patterns of the transporter in Nostoc punctiforme likely constitute symbiosis specific adaptations.


Assuntos
Nostoc/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Simbiose , Quimiotaxia/efeitos dos fármacos , Evolução Molecular , Glucose/farmacologia , Nostoc/citologia , Nostoc/efeitos dos fármacos , Nostoc/crescimento & desenvolvimento , Filogenia , Simbiose/efeitos dos fármacos
20.
Methods Mol Biol ; 684: 65-77, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20960122

RESUMO

The cytochrome b6f complex from the filamentous cyanobacteria (Mastigocladus laminosus, Nostoc sp. PCC 7120) and spinach chloroplasts has been purified as a homo-dimer. Electrospray ionization mass spectroscopy showed the monomer to contain eight and nine subunits, respectively, and dimeric masses of 217.1, 214.2, and 286.5 kDa for M. laminosus, Nostoc, and the complex from spinach. The core subunits containing or interacting with redox-active prosthetic groups are petA (cytochrome f), B (cytochrome b6, C (Rieske iron-sulfur protein), D (subunit IV), with protein molecular weights of 31.8-32.3, 24.7-24.9, 18.9-19.3, and 17.3-17.5 kDa, and four small 3.2-4.2 kDa polypeptides petG, L, M, and N. A ninth polypeptide, the 35 kDa petH (FNR) polypeptide in the spinach complex, was identified as ferredoxin:NADP reductase (FNR), which binds to the complex tightly at a stoichiometry of approx 0.8/cytf. The spinach complex contains diaphorase activity diagnostic of FNR and is active in facilitating ferredoxin-dependent electron transfer from NADPH to the cytochrome b6f complex. The purified cytochrome b6f complex contains stoichiometrically bound chlorophyll a and ß-carotene at a ratio of approximately one molecule of each per cytochrome f. It also contains bound lipid and detergent, indicating seven lipid-binding sites per monomer. Highly purified complexes are active for approximately 1 week after isolation, transferring 200-300 electrons/cytf s. The M. laminosus complex was shown to be subject to proteolysis and associated loss of activity if incubated for more than 1 week at room temperature. The Nostoc complex is more resistant to proteolysis. Addition of pure synthetic lipid to the cyanobacterial complex, which is mostly delipidated by the isolation procedure, allows rapid formation of large (≥0.2 mm) crystals suitable for X-ray diffraction analysis and structure determination. The crystals made from the cyanobacterial complex diffract to 3.0 Å with R values of 0.222 and 0.230 for M. laminosus and Nostoc, respectively. It has not yet been possible to obtain crystals of the b6f complex from any plant source, specifically spinach or pea, perhaps because of incomplete binding of FNR or other peripheral polypeptides. Well diffracting crystals have been obtained from the green alga, Chlamydomonas reinhardtii (ref. 10).


Assuntos
Fracionamento Químico/métodos , Cristalização/métodos , Cianobactérias/enzimologia , Complexo Citocromos b6f/química , Complexo Citocromos b6f/isolamento & purificação , Nostoc/enzimologia , Cromatografia , Cianobactérias/citologia , Transporte de Elétrons , Eletroforese em Gel de Poliacrilamida , Lipídeos/análise , Lipídeos/isolamento & purificação , Espectrometria de Massas , Modelos Moleculares , Nostoc/citologia , Pigmentos Biológicos/análise , Pigmentos Biológicos/isolamento & purificação , Conformação Proteica , Solubilidade , Análise Espectral , Spinacia oleracea/citologia , Spinacia oleracea/enzimologia , Sacarose/química , Tilacoides/enzimologia , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa