Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.163
Filtrar
1.
Mol Cell ; 73(2): 238-249.e3, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30554944

RESUMO

The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently disputed by contradictory reports as to whether wider (≳150 bp) NDRs instead contain unstable, micrococcal nuclease-sensitive ("fragile") nucleosomal particles. To determine the composition of fragile particles, we introduce CUT&RUN.ChIP, in which targeted nuclease cleavage and release is followed by chromatin immunoprecipitation. We find that fragile particles represent the occupancy of the RSC (remodeling the structure of chromatin) nucleosome remodeling complex and RSC-bound, partially unwrapped nucleosomal intermediates. We also find that general regulatory factors (GRFs) bind to partially unwrapped nucleosomes at these promoters. We propose that RSC binding and its action cause nucleosomes to unravel, facilitate subsequent binding of GRFs, and constitute a dynamic cycle of nucleosome deposition and clearance at the subset of wide Pol II promoter NDRs.


Assuntos
Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina/métodos , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nuclease do Micrococo/metabolismo , Nucleossomos/enzimologia , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Sítios de Ligação , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Conformação de Ácido Nucleico , Nucleossomos/genética , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
2.
Genes Dev ; 33(17-18): 1159-1174, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371436

RESUMO

Accessibility of the genomic regulatory information is largely controlled by the nucleosome-organizing activity of transcription factors (TFs). While stimulus-induced TFs bind to genomic regions that are maintained accessible by lineage-determining TFs, they also increase accessibility of thousands of cis-regulatory elements. Nucleosome remodeling events underlying such changes and their interplay with basal positioning are unknown. Here, we devised a novel quantitative framework discriminating different types of nucleosome remodeling events in micrococcal nuclease ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) data sets and used it to analyze nucleosome dynamics at stimulus-regulated cis-regulatory elements. At enhancers, remodeling preferentially affected poorly positioned nucleosomes while sparing well-positioned nucleosomes flanking the enhancer core, indicating that inducible TFs do not suffice to overrule basal nucleosomal organization maintained by lineage-determining TFs. Remodeling events appeared to be combinatorially driven by multiple TFs, with distinct TFs showing, however, different remodeling efficiencies. Overall, these data provide a systematic view of the impact of stimulation on nucleosome organization and genome accessibility in mammalian cells.


Assuntos
Nucleossomos/metabolismo , Elementos Reguladores de Transcrição/fisiologia , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nuclease do Micrococo/metabolismo
3.
Mol Cell ; 65(3): 565-577.e3, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157509

RESUMO

Micrococcal nuclease (MNase) is commonly used to map nucleosomes genome-wide, but nucleosome maps are affected by the degree of digestion. It has been proposed that many yeast promoters are not nucleosome-free but instead occupied by easily digested, unstable, "fragile" nucleosomes. We analyzed the histone content of all MNase-sensitive complexes by MNase-ChIP-seq and sonication-ChIP-seq. We find that yeast promoters are predominantly bound by non-histone protein complexes, with little evidence for fragile nucleosomes. We do detect MNase-sensitive nucleosomes elsewhere in the genome, including at transcription termination sites. However, they have high A/T content, suggesting that MNase sensitivity does not indicate instability, but rather the preference of MNase for A/T-rich DNA, such that A/T-rich nucleosomes are digested faster than G/C-rich nucleosomes. We confirm our observations by analyzing ChIP-exo, chemical mapping, and ATAC-seq data from other laboratories. Thus, histone ChIP-seq experiments are essential to distinguish nucleosomes from other DNA-binding proteins that protect against MNase.


Assuntos
Nuclease do Micrococo/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Composição de Bases , Nucleossomos , Regiões Promotoras Genéticas
4.
Mol Cell ; 68(6): 1038-1053.e4, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29225036

RESUMO

Nucleosomes are disrupted during transcription and other active processes, but the structural intermediates during nucleosome disruption in vivo are unknown. To identify intermediates, we mapped subnucleosomal protections in Drosophila cells using Micrococcal Nuclease followed by sequencing. At the first nucleosome position downstream of the transcription start site, we identified unwrapped intermediates, including hexasomes that lack either proximal or distal contacts. Inhibiting topoisomerases or depleting histone chaperones increased unwrapping, whereas inhibiting release of paused RNAPII or reducing RNAPII elongation decreased unwrapping. Our results indicate that positive torsion generated by elongating RNAPII causes transient loss of histone-DNA contacts. Using this mapping approach, we found that nucleosomes flanking human CTCF insulation sites are similarly disrupted. We also identified diagnostic subnucleosomal particle remnants in cell-free human DNA data as a relic of transcribed genes from apoptosing cells. Thus identification of subnucleosomal fragments from nuclease protection data represents a general strategy for structural epigenomics.


Assuntos
Montagem e Desmontagem da Cromatina , Drosophila melanogaster/metabolismo , Epigenômica , Regulação da Expressão Gênica , Histonas/química , Nucleossomos/química , Transcrição Gênica , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Histonas/genética , Histonas/metabolismo , Nuclease do Micrococo/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição
5.
Genes Dev ; 31(5): 451-462, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356342

RESUMO

Activation of transcription requires alteration of chromatin by complexes that increase the accessibility of nucleosomal DNA. Removing nucleosomes from regulatory sequences has been proposed to play a significant role in activation. We tested whether changes in nucleosome occupancy occurred on the set of genes that is activated by the unfolded protein response (UPR). We observed no decrease in occupancy on most promoters, gene bodies, and enhancers. Instead, there was an increase in the accessibility of nucleosomes, as measured by micrococcal nuclease (MNase) digestion and ATAC-seq (assay for transposase-accessible chromatin [ATAC] using sequencing), that did not result from removal of the nucleosome. Thus, changes in nucleosome accessibility predominate over changes in nucleosome occupancy during rapid transcriptional induction during the UPR.


Assuntos
Regulação da Expressão Gênica , Nucleossomos/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Animais , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Mapeamento Cromossômico , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos/genética , Nuclease do Micrococo/metabolismo , Nucleossomos/química , Regiões Promotoras Genéticas/genética , Ligação Proteica
6.
Small ; 20(24): e2311764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506607

RESUMO

The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus Resistente à Meticilina , Técnicas de Amplificação de Ácido Nucleico , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/genética , Animais , Nuclease do Micrococo/metabolismo , Nuclease do Micrococo/genética
7.
Bioorg Chem ; 144: 107133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278047

RESUMO

The staphylococcal nuclease also referred as micrococcal nuclease (MNase) is a key drug target as the enzyme degrades the neutrophil extracellular trap (NET) and empowers the pathogen to subvert the host innate immune system. To this end, the current study presents a critical evaluation of MNase inhibition rendered by benzimidazole-based ligands (C1 and C2) and probes its therapeutic implications. A nuclease assay indicated that MNase inhibition rendered by C1 and C2 was âˆ¼ 55 % and âˆ¼ 72 %, respectively, at the highest tested concentration of 10 µM. Studies on enzyme kinetics revealed that C2 rendered non-competitive inhibition and significantly reduced MNase turnover number (Kcat) and catalytic efficiency (Kcat/Km) with an IC50 value of âˆ¼ 1122 nM. In CD spectroscopy, a notable perturbation in the ß-sheet content of MNase was observed in presence of C2. Fluorescence-microscope analysis indicated that MNase inhibition by C2 could restore entrapment of methicillin-resistant Staphylococcus aureus (MRSA) in calf-thymus DNA (CT-DNA). Flow cytometry and confocal microscope analysis revealed that uptake of DNA-entrapped MRSA by activated THP-1 cells was reinstated by MNase inhibition rendered by C2. Inhibition of nuclease by the non-toxic ligand C2 holds therapeutic prospect as it has the potential to bolster the DNA-mediated entrapment machinery and mitigate MRSA infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nuclease do Micrococo/análise , Nuclease do Micrococo/química , Nuclease do Micrococo/metabolismo , Ligantes , DNA/química , Macrófagos/metabolismo , Benzimidazóis/farmacologia
8.
Nature ; 562(7726): 281-285, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258225

RESUMO

Nucleosome positioning is critical to chromatin accessibility and is associated with gene expression programs in cells1-3. Previous nucleosome mapping methods assemble profiles from cell populations and reveal a cell-averaged pattern: nucleosomes are positioned and form a phased array that surrounds the transcription start sites of active genes3-6 and DNase I hypersensitive sites7. However, even in a homogenous population of cells, cells exhibit heterogeneity in expression in response to active signalling8,9 that may be related to heterogeneity in chromatin accessibility10-12. Here we report a technique, termed single-cell micrococcal nuclease sequencing (scMNase-seq), that can be used to simultaneously measure genome-wide nucleosome positioning and chromatin accessibility in single cells. Application of scMNase-seq to NIH3T3 cells, mouse primary naive CD4 T cells and mouse embryonic stem cells reveals two principles of nucleosome organization: first, nucleosomes in heterochromatin regions, or that surround the transcription start sites of silent genes, show large variation in positioning across different cells but are highly uniformly spaced along the nucleosome array; and second, nucleosomes that surround the transcription start sites of active genes and DNase I hypersensitive sites show little variation in positioning across different cells but are relatively heterogeneously spaced along the nucleosome array. We found a bimodal distribution of nucleosome spacing at DNase I hypersensitive sites, which corresponds to inaccessible and accessible states and is associated with nucleosome variation and variation in accessibility across cells. Nucleosome variation is smaller within single cells than across cells, and smaller within the same cell type than across cell types. A large fraction of naive CD4 T cells and mouse embryonic stem cells shows depleted nucleosome occupancy at the de novo enhancers detected in their respective differentiated lineages, revealing the existence of cells primed for differentiation to specific lineages in undifferentiated cell populations.


Assuntos
Eucromatina/metabolismo , Inativação Gênica , Heterocromatina/metabolismo , Nuclease do Micrococo/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Análise de Célula Única , Células 3T3 , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Desoxirribonuclease I/metabolismo , Elementos Facilitadores Genéticos/genética , Eucromatina/genética , Genoma/genética , Heterocromatina/genética , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Especificidade de Órgãos/genética , Sítio de Iniciação de Transcrição
9.
Biochemistry ; 62(11): 1670-1678, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227385

RESUMO

Several proteins have been shown to undergo a shift in the mechanism of ligand binding-induced folding from conformational selection (CS; folding precedes binding) to induced fit (IF; binding precedes folding) with increasing ligand concentration. In previous studies of the coupled folding/binding reaction of staphylococcal nuclease (SNase) in the presence of a substrate analogue, adenosine-3',5'-diphosphate (prAp), we found that the two phosphate groups make important energetic contributions toward stabilizing its complex with the native protein as well as transient conformational states encountered at high ligand concentrations favoring IF. However, the structural contributions of each phosphate group during the reaction remain unclear. To address this question, we relied on fluorescence, nuclear magnetic resonance (NMR), absorption, and isothermal titration calorimetry to study the effects of deletion of the phosphate groups of prAp on the kinetics of ligand-induced folding, using a strategy analogous to mutational ϕ-value analysis to interpret the results. Kinetic measurements over a wide range of ligand concentrations, together with structural characterization of a transient protein-ligand encounter complex using 2D NMR, indicated that, at high ligand concentrations favoring IF, (i) the 5'-phosphate group interacts weakly with denatured SNase during early stages of the reaction, resulting in loose docking of the two domains of SNase, and (ii) the 3'-phosphate group engages in some specific contacts with the polypeptide in the transition state prior to formation of the native SNase-prAp complex.


Assuntos
Nuclease do Micrococo , Dobramento de Proteína , Nuclease do Micrococo/metabolismo , Ligantes , Cinética , Conformação Proteica
10.
Clin Exp Rheumatol ; 41(11): 2182-2191, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37083155

RESUMO

OBJECTIVES: To investigate the role of fragile X mental retardation syndrome-related protein 1 (FXR1), an RNA binding protein, in the development of osteoarthritis (OA), to define its mechanism of action in cartilage, and to determine whether targeting FXR1 can prevent OA in mice. METHODS: Western blot analysis and quantitative polymerase chain reaction were performed using cartilage tissue from control and osteoarthritic mice. FXR1 expression was detected by immunofluorescence staining using cartilage tissue from mice. OA was induced by destabilising the medial meniscus in the mice. Infection of mouse chondrocytes with FXR1 lentivirus, as well as viral injection into the mouse knee joint cavity, resulted in high FXR1 protein expression. Chondrocyte apoptosis was detected by TUNEL assay and cell senescence was detected by SA-ß-gal staining assay. RESULTS: FXR1 expression was significantly reduced in cartilage and soft tissue from mice with OA compared with the controls. FXR1 overexpression reduced staphylococcal nuclease domain protein 1 (SND1) levels. Furthermore, FXR1 is able to inhibit apoptosis and senescence of chondrocytes via SND1 and hinder the development of OA in mice. CONCLUSIONS: FXR1 down-regulates SND1 expression, thereby alleviating osteoarthritic symptoms in mice. In summary, FXR1 may have a therapeutic approach to the treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteoartrite , Camundongos , Animais , Nuclease do Micrococo/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Condrócitos/metabolismo , Apoptose
11.
Nature ; 530(7588): 113-6, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26814966

RESUMO

ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genoma/genética , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Animais , DNA Helicases/metabolismo , Histonas/metabolismo , Camundongos , Nuclease do Micrococo/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Especificidade por Substrato , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição
12.
Mol Cell ; 53(5): 831-42, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24508391

RESUMO

Dynamically controlled posttranslational modifications of nucleosomal histones alter chromatin condensation to regulate transcriptional activation. We report that a nuclear tandem kinase, JIL-1, controls gene expression by activating poly(ADP-ribose) polymerase-1 (PARP-1). JIL-1 phosphorylates the C terminus of the H2Av histone variant, which stimulates PARP-1 enzymatic activity in the surrounding chromatin, leading to further modification of histones and chromatin loosening. The H2Av nucleosome has a higher surface representation of PARP-1 binding patch, consisting of H3 and H4 epitopes. Phosphorylation of H2Av by JIL-1 restructures this surface patch, leading to activation of PARP-1. Exposure of Val61 and Leu23 of the H4 histone is critical for PARP-1 binding on nucleosome and PARP-1 activation following H2Av phosphorylation. We propose that chromatin loosening and associated initiation of gene expression is activated by phosphorylation of H2Av in a nucleosome positioned in promoter regions of PARP-1-dependent genes.


Assuntos
Proteínas de Drosophila/química , Histonas/química , Nucleossomos/química , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/química , Animais , Cromatina/química , DNA/química , Drosophila/genética , Proteínas de Drosophila/metabolismo , Epitopos/química , Imuno-Histoquímica , Nuclease do Micrococo/metabolismo , Modelos Moleculares , Conformação Molecular , Fases de Leitura Aberta , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/genética , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Anim Biotechnol ; 33(6): 1161-1169, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33849380

RESUMO

Tudor staphylococcal nuclease (Tudor-SN) participates in milk synthesis and cell proliferation in response to prolactin (PRL) and plays a regulatory role on mTOR phosphorylation. However, the complicated molecular mechanism of Tudor-SN regulating milk protein synthesis and cell proliferation still remains to be illustrated. In present study, we observed that the proteins level of phosphorylated Tudor-SN and phosphorylated STAT5 were simultaneously enhanced upon PRL treatment in bovine mammary epithelial cells (BMECs). Tudor-SN overexpression and knockdown experiment showed that Tudor-SN positively regulated the synthesis of milk protein, cell proliferation and the phosphorylation of STAT5, which was dependent on Tudor-SN phosphorylation. STAT5 knockdown experiment showed that Tudor-SN stimulated mTOR pathway through regulating STAT5 activation, which was required for PRL to activate the mTOR pathway. Thus, these results demonstrate the primary mechanism of Tudor-SN coordinating with STAT5 to regulate milk protein synthesis and cell proliferation under stimulation of PRL in BMECs, which may provide some new perspectives for increasing milk production.


Assuntos
Proteínas do Leite , Fator de Transcrição STAT5 , Bovinos , Animais , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Prolactina/farmacologia , Prolactina/metabolismo , Nuclease do Micrococo/metabolismo , Glândulas Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Células Epiteliais/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células
14.
Biochemistry ; 60(46): 3452-3454, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33784452

RESUMO

The study of protein dynamics using the measurement of relaxation times by NMR was based on a set of studies in the mid-20th century that outlined theories and methods. However, the complexity of protein NMR was such that these simple experiments were not practical for application to proteins. The advent of techniques in the 1980s for isotopic labeling of proteins meant that pulse sequences could now be applied in multidimensional NMR experiments to enable per-residue information about the local relaxation times. One of the earliest advances was published in Biochemistry in 1989. The paper "Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease" by Lewis Kay, Dennis Torchia, and Ad Bax delineated a set of pulse sequences that are used with minor modifications even today. This paper, with others from a limited number of other laboratories, forms the basis for the experimental determination of the backbone dynamics of proteins. The biological insights obtained from such measurements have only increased in the past 30 years. Sometimes, the best and perhaps only way to advance a field is an advancement in the technical capabilities that allows new perspectives to be reached.


Assuntos
Ressonância Magnética Nuclear Biomolecular/história , Cristalografia por Raios X , História do Século XX , Nuclease do Micrococo/metabolismo , Nuclease do Micrococo/ultraestrutura , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
15.
Mol Syst Biol ; 16(10): e9885, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33280256

RESUMO

Protein-DNA interactions are dynamic, and these dynamics are an important aspect of chromatin-associated processes such as transcription or replication. Due to a lack of methods to study on- and off-rates across entire genomes, protein-DNA interaction dynamics have not been studied extensively. Here, we determine in vivo off-rates for the Saccharomyces cerevisiae chromatin organizing factor Abf1, at 191 sites simultaneously across the yeast genome. Average Abf1 residence times span a wide range, varying between 4.2 and 33 min. Sites with different off-rates are associated with different functional characteristics. This includes their transcriptional dependency on Abf1, nucleosome positioning and the size of the nucleosome-free region, as well as the ability to roadblock RNA polymerase II for termination. The results show how off-rates contribute to transcription factor function and that DIVORSEQ (Determining In Vivo Off-Rates by SEQuencing) is a meaningful way of investigating protein-DNA binding dynamics genome-wide.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico , Nuclease do Micrococo/metabolismo , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética
16.
Ecotoxicol Environ Saf ; 215: 112161, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812202

RESUMO

Recent studies have revealed that neutrophil extracellular traps (NETs) may contribute directly to the initiation of ulcerative colitis (UC), a typical inflammatory bowel disease (IBD) characterized by mucosal damage. Staphylococcal nuclease (SNase), a nonspecific phosphodiesterase, has a strong ability to degrade DNA. Here we investigate whether intestinal NET degradation with an oral preparation of SNase can ameliorate dextran sulfate sodium (DSS)-induced UC in mice. SNase encapsulated with calcium alginate (ALG-SNase) was formulated using crosslinking technology with sodium alginate and calcium chloride. ALG-SNase were orally administered to DSS-induced UC mice, and their therapeutic efficacy was evaluated. The expression of inflammatory cytokines and biomarkers of NETs was also assessed, as well as the intestinal permeability in mice. The results showed that ALG-SNase nanoparticles were successfully prepared and delivered to the colon of UC mice. In addition, oral administration of ALG-SNase nanoparticles decreased NET levels in the colon and effectively alleviated the clinical colitis index and tissue inflammation in UC mice. Moreover, the SNase nanoparticles reduced intestinal permeability and regulated the expression of proinflammatory cytokines. Furthermore, the markers of NETs were strongly correlated with the expression levels of tight junction proteins in colon tissue. In conclusion, our data showed that oral administration of ALG-SNase can effectively ameliorate colitis in UC mice via NET degradation and suggested SNase as a candidate therapy for the treatment of UC.


Assuntos
Armadilhas Extracelulares/metabolismo , Nuclease do Micrococo/administração & dosagem , Administração Oral , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Intestinos , Masculino , Camundongos , Nuclease do Micrococo/metabolismo , Proteínas de Junções Íntimas/metabolismo
17.
Genes Dev ; 27(1): 74-86, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23307868

RESUMO

Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Cromatina/química , Mapeamento Cromossômico , Genoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nuclease do Micrococo/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico
18.
J Biol Chem ; 294(51): 19645-19654, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31732562

RESUMO

Soluble extracts prepared from Xenopus eggs have been used extensively to study various aspects of cellular and developmental biology. During early egg development, transcription of the zygotic genome is suppressed. As a result, traditional extracts derived from unfertilized and early stage eggs possess little or no intrinsic transcriptional activity. In this study, we show that Xenopus nucleoplasmic extract (NPE) supports robust transcription of a chromatinized plasmid substrate. Although prepared from eggs in a transcriptionally inactive state, the process of making NPE resembles some aspects of egg fertilization and early embryo development that lead to transcriptional activation. With this system, we observed that promoter-dependent recruitment of transcription factors and RNA polymerase II leads to conventional patterns of divergent transcription and pre-mRNA processing, including intron splicing and 3' cleavage and polyadenylation. We also show that histone density controls transcription factor binding and RNA polymerase II activity, validating a mechanism proposed to regulate genome activation during development. Together, these results establish a new cell-free system to study the regulation, initiation, and processing of mRNA transcripts.


Assuntos
Sistema Livre de Células , Regulação da Expressão Gênica , Oócitos/química , Xenopus laevis , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fertilização , Genoma , Histonas/química , Nuclease do Micrococo/metabolismo , Plasmídeos/metabolismo , Poliadenilação , RNA Polimerase II/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Transcrição Gênica
19.
EMBO J ; 35(10): 1115-32, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27072995

RESUMO

The existence of a 30-nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg(2+)-dependent self-association of linear 12-mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call "oligomers", are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10-nm fibers, rather than folded 30-nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro These results indicate that a 10-nm array of nucleosomes has the intrinsic ability to self-assemble into large chromatin globules stabilized by nucleosome-nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.


Assuntos
Nucleossomos/metabolismo , DNA/metabolismo , Células HeLa , Humanos , Cloreto de Magnésio/farmacologia , Nuclease do Micrococo/metabolismo , Nucleossomos/efeitos dos fármacos
20.
FASEB J ; 33(3): 3731-3745, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30521378

RESUMO

In the current study, we explored the impact of Tudor-staphylococcal nuclease (SN) on obesity induced by a high-fat diet (HFD) in mice, because the functional involvement of Tudor-SN in lipid metabolism in vivo is unknown. HFD-transgenic (Tg) mice exhibited reductions in hepatic steatosis and systemic insulin resistance. There was no difference in hepatic lipid accumulation between chow-fed wild-type (WT) and chow-fed Tg mice; consistently, no difference in activation of the lipogenic pathway was detected. Overactivation of hepatic nuclear sterol regulatory element-binding protein (nSrebp2)-2, the central regulator of cholesterol metabolic proteins, was observed in HFD-Tg livers along with improved cholesterol homeostasis, but no such changes were observed in HFD-WT livers. Consistent results were observed in vitro in α-mouse liver 12 cells treated with palmitate mimicking the HFD state. In addition, global gene analysis indicated that various downstream targets of nSrebp2, were up-regulated in HFD-Tg livers. Moreover, HFD-WT mice displayed islet hypertrophy and suppression of glucose-induced insulin secretion from islets, whereas HFD-Tg mice had normal pancreatic islets. This finding suggests that the improved pancreatic metabolism of HFD-Tg mice is related to the systemic effect of insulin resistance, not to the autonomous influence of pancreatic cells. Tudor-SN is likely to be a key regulator for ameliorating HFD-induced hepatic steatosis and systemic insulin resistance in vivo.-Wang, X., Xin, L., Duan, Z., Zuo, Z., Wang, Y., Ren, Y., Zhang, W., Sun, X., Liu, X., Ge, L., Yang, X., Yao, Z., Yang, J. Global Tudor-SN transgenic mice are protected from obesity-induced hepatic steatosis and insulin resistance.


Assuntos
Fígado Gorduroso/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Nuclease do Micrococo/metabolismo , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa