Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 833
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(5): 1075-1082.e4, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849388

RESUMO

High-throughput DNA sequencing techniques have enabled diverse approaches for linking DNA sequence to biochemical function. In contrast, assays of protein function have substantial limitations in terms of throughput, automation, and widespread availability. We have adapted an Illumina high-throughput sequencing chip to display an immense diversity of ribosomally translated proteins and peptides and then carried out fluorescence-based functional assays directly on this flow cell, demonstrating that a single, widely available high-throughput platform can perform both sequencing-by-synthesis and protein assays. We quantified the binding of the M2 anti-FLAG antibody to a library of 1.3 × 104 variant FLAG peptides, exploring non-additive effects of combinations of mutations and discovering a "superFLAG" epitope variant. We also measured the enzymatic activity of 1.56 × 105 molecular variants of full-length human O6-alkylguanine-DNA alkyltransferase (SNAP-tag). This comprehensive corpus of catalytic rates revealed amino acid interaction networks and cooperativity, linked positive cooperativity to structural proximity, and revealed ubiquitous positively cooperative interactions with histidine residues.


Assuntos
Anticorpos/metabolismo , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oligopeptídeos/metabolismo , Análise Serial de Proteínas/métodos , Afinidade de Anticorpos , Especificidade de Anticorpos , Automação Laboratorial , Sítios de Ligação de Anticorpos , Catálise , Análise Mutacional de DNA/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Cinética , Mutação , O(6)-Metilguanina-DNA Metiltransferase/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Oligopeptídeos/genética , Análise Serial de Proteínas/instrumentação , Ligação Proteica , Engenharia de Proteínas , Fluxo de Trabalho
2.
J Neurooncol ; 166(1): 155-165, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150062

RESUMO

OBJECTIVES: This study aims to explore the relationship between the methylation levels of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the structural connectivity in insular gliomas across hemispheres. METHODS: We analyzed 32 left and 29 right insular glioma cases and 50 healthy controls, using differential tractography, correlational tractography, and graph theoretical analysis to investigate the correlation between structural connectivity and the methylation level. RESULTS: The differential tractography results revealed that in left insular glioma, the volume of affected inferior fronto-occipital fasciculus (IFOF, p = 0.019) significantly correlated with methylation levels. Correlational tractography results showed that the quantitative anisotropy (QA) value of peritumoral fiber tracts also exhibited a significant correlation with methylation levels (FDR < 0.05). On the other hand, in right insular glioma, anterior internal part of the reticular tract, IFOF, and thalamic radiation showed a significant correlation with methylation levels but at a different correlation direction from the left side (FDR < 0.05). The graph theoretical analysis showed that in the left insular gliomas, only the radius of graph was significantly lower in methylated MGMT group than unmethylated group (p = 0.047). No significant correlations between global properties and methylation levels were observed in insular gliomas on both sides. CONCLUSION: Our findings highlight a significant, hemisphere-specific correlation between MGMT promoter methylation and structural connectivity in insular gliomas. This study provides new insights into the genetic influence on glioma pathology, which could inform targeted therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Metilação de DNA , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/tratamento farmacológico , Enzimas Reparadoras do DNA/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , Metilases de Modificação do DNA/genética , Regiões Promotoras Genéticas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética
3.
J Neurooncol ; 166(1): 129-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224404

RESUMO

BACKGROUND: Malignant glioma carries a poor prognosis despite current therapeutic modalities. Standard of care therapy consists of surgical resection, fractionated radiotherapy concurrently administered with temozolomide (TMZ), a DNA-alkylating chemotherapeutic agent, followed by adjuvant TMZ. O-6-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme, removes alkylated lesions from tumor DNA, thereby promoting chemoresistance. MGMT promoter methylation status predicts responsiveness to TMZ; patients harboring unmethylated MGMT (~60% of glioblastoma) have a poorer prognosis with limited treatment benefits from TMZ. METHODS: Via lentiviral-mediated delivery into LN18 glioma cells, we employed deactivated Cas9-CRISPR technology to target the MGMT promoter and enhancer regions for methylation, as mediated by the catalytic domain of the methylation enzyme DNMT3A. Methylation patterns were examined at a clonal level in regions containing Differentially Methylation Regions (DMR1, DMR2) and the Methylation Specific PCR (MSP) region used for clinical assessment of MGMT methylation status. Correlative studies of genomic and transcriptomic effects of dCas9/CRISPR-based methylation were performed via Illumina 850K methylation array platform and bulk RNA-Seq analysis. RESULTS: We used the dCas9/DNMT3A catalytic domain to achieve targeted MGMT methylation at specific CpG clusters in the vicinity of promoter, enhancer, DMRs and MSP regions. Consequently, we observed MGMT downregulation and enhanced glioma chemosensitivity in survival assays in vitro, with minimal off-target effects. CONCLUSION: dCas9/CRISPR is a viable method of epigenetic editing, using the DNMT3A catalytic domain. This study provides initial proof-of-principle for CRISPR technology applications in malignant glioma, laying groundwork for subsequent translational studies, with implications for future epigenetic editing-based clinical applications.


Assuntos
Neoplasias Encefálicas , Glioma , Guanina , Humanos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Dacarbazina/farmacologia , DNA/genética , DNA/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/genética , Temozolomida/farmacologia
4.
J Neurooncol ; 166(3): 419-430, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277015

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite extensive research and clinical trials, median survival post-treatment remains at 15 months. Thus, all opportunities to optimize current treatments and improve patient outcomes should be considered. A recent retrospective clinical study found that taking TMZ in the morning compared to the evening was associated with a 6-month increase in median survival in patients with MGMT-methylated GBM. Here, we hypothesized that TMZ efficacy depends on time-of-day and O6-Methylguanine-DNA Methyltransferase (MGMT) activity in murine and human models of GBM. METHODS AND RESULTS: In vitro recordings using real-time bioluminescence reporters revealed that GBM cells have intrinsic circadian rhythms in the expression of the core circadian clock genes Bmal1 and Per2, as well as in the DNA repair enzyme, MGMT. Independent measures of MGMT transcript levels and promoter methylation also showed daily rhythms intrinsic to GBM cells. These cells were more susceptible to TMZ when delivered at the daily peak of Bmal1 transcription. We found that in vivo morning administration of TMZ also decreased tumor size and increased body weight compared to evening drug delivery in mice bearing GBM xenografts. Finally, inhibition of MGMT activity with O6-Benzylguanine abrogated the daily rhythm in sensitivity to TMZ in vitro by increasing sensitivity at both the peak and trough of Bmal1 expression. CONCLUSION: We conclude that chemotherapy with TMZ can be dramatically enhanced by delivering at the daily maximum of tumor Bmal1 expression and minimum of MGMT activity and that scoring MGMT methylation status requires controlling for time of day of biopsy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , O(6)-Metilguanina-DNA Metiltransferase/genética , Estudos Retrospectivos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Metilação , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Metilação de DNA , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
Org Biomol Chem ; 22(14): 2749-2753, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502038

RESUMO

Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O6-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT. Our fluorescence probe covalently labelled the MGMT active site C145, producing a 18-fold increase in fluorescence. Compared to previous fluorescent probes derived from a substrate-based inhibitor, our probe had improved binding and reaction rate. Overall, our chloromethyl triazole-based fluorescence MGMT probe is a promising tool for measuring MGMT activity to predict temozolomide resistance.


Assuntos
Antineoplásicos , Guanina/análogos & derivados , Temozolomida , O(6)-Metilguanina-DNA Metiltransferase/genética , DNA , Antineoplásicos Alquilantes/farmacologia
6.
Nucleic Acids Res ; 50(11): 6313-6331, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648484

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.


Assuntos
Dacarbazina , Parthanatos , Alquilantes , DNA , Reparo do DNA , Dacarbazina/farmacologia , Epigênese Genética , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Temozolomida/farmacologia
7.
Neurosurg Rev ; 47(1): 285, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907038

RESUMO

To evaluate the utility of magnetic resonance imaging (MRI) histogram parameters in predicting O(6)-methylguanine-DNA methyltransferase promoter (pMGMT) methylation status in IDH-wildtype glioblastoma (GBM). From November 2021 to July 2023, forty-six IDH-wildtype GBM patients with known pMGMT methylation status (25 unmethylated and 21 methylated) were enrolled in this retrospective study. Conventional MRI signs (including location, across the midline, margin, necrosis/cystic changes, hemorrhage, and enhancement pattern) were assessed and recorded. Histogram parameters were extracted and calculated by Firevoxel software based on contrast-enhanced T1-weighted images (CET1). Differences and diagnostic performance of conventional MRI signs and histogram parameters between the pMGMT-unmethylated and pMGMT-methylated groups were analyzed and compared. No differences were observed in the conventional MRI signs between pMGMT-unmethylated and pMGMT-methylated groups (all p > 0.05). Compared with the pMGMT-methylated group, pMGMT-unmethylated showed a higher minimum, mean, Perc.01, Perc.05, Perc.10, Perc.25, Perc.50, and coefficient of variation (CV) (all p < 0.05). Among all significant CET1 histogram parameters, minimum achieved the best distinguishing performance, with an area under the curve of 0.836. CET1 histogram parameters could provide additional value in predicting pMGMT methylation status in patients with IDH-wildtype GBM, with minimum being the most promising parameter.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Glioblastoma , Isocitrato Desidrogenase , Imageamento por Ressonância Magnética , Regiões Promotoras Genéticas , Humanos , Glioblastoma/genética , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Feminino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Adulto , Metilação de DNA/genética , Idoso , Isocitrato Desidrogenase/genética , Estudos Retrospectivos , O(6)-Metilguanina-DNA Metiltransferase/genética
8.
Genomics ; 115(3): 110616, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948276

RESUMO

Identifying genetic factors affecting the regulation of the O-6-Methylguanine-DNA Methyltransferase (MGMT) gene and estimating the genetic contribution of the MGMT gene through within-pair correlation in monozygotic twin pairs is of particular importance in various types of cancer such as glioblastoma. We used gene expression data in whole blood from 448 monozygotic twins from the Middle Age Danish Twins (MADT) study to investigate genetic regulation of the MGMT gene by performing a genome-wide association study (GWAS) of the variation in MGMT expression. Additionally, we estimated within-pair dependence measures of the expression values looking for the genetic influence of significant identified genes. We identified 243 single nucleotide polymorphisms (SNPs) significantly (p < 5e-8) associated with expression of MGMT, all located on chromosome 10 near the MGMT gene. Of the 243 SNPs, 7 are novel cis-eQTLs. By further looking into the suggestively significant SNPs (increasing cutoff to p = 1e-6), we identified 11 suggestive trans-eQTLs located on chromosome 17. These variants were in or proximal to a total of seven genes, which may regulate MGMT expression. The within-pair correlation of the expression of MGMT, TRIM37, and SEPT4 provided the upper bound genetic influence of these genes. Overall, identifying cis- or trans-acting genetic variations regulating the MGMT gene can pave the way for a better understanding of the MGMT gene function and ultimately in understanding the patient's sensitivity to therapeutic alkylating agents.


Assuntos
Glioblastoma , Gêmeos Monozigóticos , Pessoa de Meia-Idade , Humanos , Estudo de Associação Genômica Ampla , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Expressão Gênica , Dinamarca , Glioblastoma/genética , Glioblastoma/metabolismo , Metilação de DNA , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Metilases de Modificação do DNA , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo
9.
J Biol Phys ; 50(1): 71-87, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150168

RESUMO

Methyl damage to DNA bases is common in the cell nucleus. O6-alkylguanine-DNA alkyl transferase (AGT) may be a promising candidate for direct damage reversal in methylated DNA (mDNA) at the O6 point of the guanine. Indeed, atomic-level investigations in the contact region of AGT-DNA complex can provide an in-depth understanding of their binding mechanism, allowing to evaluate the silico-drug nature of AGT and its utility in removing methyl damage in DNA. In this study, molecular dynamics (MD) simulation was utilized to examine the flipping of methylated nucleotide, the binding mechanism between mDNA and AGT, and the comparison of binding strength prior and post methyl transfer to AGT. The study reveals that methylation at the O6 atom of guanine weakens the hydrogen bond (H-bond) between guanine and cytosine, permitting for the flipping of such nucleotide. The formation of a H-bond between the base pair of methylated nucleotide (i.e., cytosine) and the intercalated arginine of AGT also forces the nucleotide to rotate. Following that, electrostatics and van der Waals contacts as well as hydrogen bonding contribute to form the complex of DNA and protein. The stronger binding of AGT with DNA before methyl transfer creates the suitable condition to transfer methyl adduct from DNA to AGT.


Assuntos
Reparo do DNA , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Nucleotídeos/química , DNA/química , Guanina/química , Guanina/metabolismo , Citosina
10.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203783

RESUMO

The O-6-methylguanine-DNA methyltransferase (MGMT) gene is a critical guardian of genomic integrity. MGMT methylation in diffuse gliomas serves as an important determinant of patients' prognostic outcomes, more specifically in glioblastomas (GBMs). In GBMs, the absence of MGMT methylation, known as MGMT promoter unmethylation, often translates into a more challenging clinical scenario, tending to present resistance to chemotherapy and a worse prognosis. A pyrosequencing (PSQ) technique was used to analyze MGMT methylation status at different cut-offs (5%, 9%, and 11%) in a sample of 78 patients diagnosed with IDH-wildtype grade 4 GBM. A retrospective analysis was provided to collect clinicopathological and prognostic data. A statistical analysis was used to establish an association between methylation status and treatment response (TR) and disease-specific survival (DSS). The patients with methylated MGMT status experienced progressive disease rates of 84.6%, 80%, and 78.4% at the respective cut-offs of 5%, 9%, and 11%. The number was considerably higher when considering unmethylated patients, as all patients (100%), regardless of the cut-off, presented progressive disease. Regarding disease-specific survival (DSS), the Hazard Ratio (HR) was HR = 0.74 (0.45-1.24; p = 0.251); HR = 0.82 (0.51-1.33; p = 0.425); and HR = 0.79 (0.49-1.29; p = 0.350), respectively. Our study concludes that there is an association between MGMT unmethylation and worse TR and DSS. The 9% cut-off demonstrated a greater potential for patient survival as a function of time, which may shed light on the future need for standardization of MGMT methylation positivity parameters in PSQ.


Assuntos
Glioblastoma , Guanina , Isocitrato Desidrogenase , Humanos , DNA , Glioblastoma/genética , Guanina/análogos & derivados , Sequenciamento de Nucleotídeos em Larga Escala , Isocitrato Desidrogenase/genética , Metilação , O(6)-Metilguanina-DNA Metiltransferase/genética , Estudos Retrospectivos
11.
Chem Res Toxicol ; 36(12): 1921-1929, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-37983188

RESUMO

Human exposure to DNA alkylating agents is poorly characterized, partly because only a limited range of specific alkyl DNA adducts have been quantified. The human DNA repair protein, O6-methylguanine O6-methyltransferase (MGMT), irreversibly transfers the alkyl group from DNA O6-alkylguanines (O6-alkGs) to an acceptor cysteine, allowing the simultaneous detection of multiple O6-alkG modifications in DNA by mass spectrometric analysis of the MGMT active site peptide (ASP). Recombinant MGMT was incubated with oligodeoxyribonucleotides (ODNs) containing different O6-alkGs, Temozolomide-methylated calf thymus DNA (Me-CT-DNA), or human colorectal DNA of known O6-MethylG (O6-MeG) levels. It was digested with trypsin, and ASPs were detected and quantified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. ASPs containing S-methyl, S-ethyl, S-propyl, S-hydroxyethyl, S-carboxymethyl, S-benzyl, and S-pyridyloxobutyl cysteine groups were detected by incubating MGMT with ODNs containing the corresponding O6-alkGs. The LOQ of ASPs containing S-methylcysteine detected after MGMT incubation with Me-CT-DNA was <0.05 pmol O6-MeG per mg CT-DNA. Incubation of MGMT with human colorectal DNA produced ASPs containing S-methylcysteine at levels that correlated with those of O6-MeG determined previously by HPLC-radioimmunoassay (r2 = 0.74; p = 0.014). O6-CMG, a putative O6-hydroxyethylG adduct, and other potential unidentified MGMT substrates were also detected in human DNA samples. This novel approach to the identification and quantitation of O6-alkGs in human DNA has revealed the existence of a human DNA alkyl adductome that remains to be fully characterized. The methodology establishes a platform for characterizing the human DNA O6-alkG adductome and, given the mutagenic potential of O6-alkGs, can provide mechanistic information about cancer pathogenesis.


Assuntos
Neoplasias Colorretais , O(6)-Metilguanina-DNA Metiltransferase , Humanos , Domínio Catalítico , Cisteína , DNA/química , Reparo do DNA , Espectrometria de Massas , O(6)-Metilguanina-DNA Metiltransferase/genética , Oligodesoxirribonucleotídeos/química , Peptídeos
12.
Biomacromolecules ; 24(2): 517-530, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36607253

RESUMO

The conjugation of proteins with synthetic molecules can be conducted in many different ways. In this Perspective, we focus on tag-based techniques and specifically on the SNAP-tag technology. The SNAP-tag technology makes use of a fusion protein between a protein of interest and an enzyme tag that enables the actual conjugation reaction. The SNAP-tag is based on the O6-alkylguanine-DNA alkyltransferase (AGT) enzyme and is optimized to react selectively with O6-benzylguanine (BG) substrates. BG-containing dye derivatives have frequently been used to introduce a fluorescent tag to a specific protein. We believe that the site-specific conjugation of polymers to proteins can significantly benefit from the SNAP-tag technology. Especially, polymers synthesized via reversible deactivation radical polymerization allow for the facile introduction of a BG end group to enable SNAP-tag conjugation.


Assuntos
O(6)-Metilguanina-DNA Metiltransferase , Proteínas , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo
13.
J Neurooncol ; 163(2): 339-344, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37227648

RESUMO

PURPOSE: The Ki-67/MIB-1 labeling index (LI) is clinically used to differentiate between high and low-grade gliomas, while its prognostic value remains questionable. Glioblastoma (GBM) expressing wild-type isocitrate dehydrogenase IDHwt, a relatively common malignant brain tumor in adults, is characterized by a dismal prognosis. Herein, we have retrospectively investigated the prognostic role of Ki-67/MIB-1-LI in a large group of IDHwt GBM. METHODS: One hundred nineteen IDHwt GBM patients treated with surgery followed by Stupp's protocol in our Institution between January 2016 and December 2021 were selected. A cut-off value for Ki-67/MIB-1-LI was used with minimal p-value based approach. RESULTS: A multivariate analysis showed that Ki-67/MIB-1-LI expression < 15% significantly correlated with a longer overall survival (OS), independently from the age of the patients, Karnofsky performance status scale, extent of surgery and O6-methylguanine (O6-MeG)-DNA methyltransferase promoter methylation status. CONCLUSIONS: Among other studies focused on Ki-67/MIB-1-LI, this is the first observational study showing a positive correlation between OS of IDHwt GBM patients and Ki-67/MIB-1-LI that we propose as a new predictive marker in this subtype of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Antígeno Ki-67/metabolismo , Estudos Retrospectivos , Metilação , Glioma/patologia , Prognóstico , Neoplasias Encefálicas/patologia , O(6)-Metilguanina-DNA Metiltransferase/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Cancer Control ; 30: 10732748231169149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078100

RESUMO

Artificial Intelligence (AI) is the subject of a challenge and attention in the field of oncology and raises many promises for preventive diagnosis, but also fears, some of which are based on highly speculative visions for the classification and detection of tumors. A brain tumor that is malignant is a life-threatening disorder. Glioblastoma is the most prevalent kind of adult brain cancer and the 1 with the poorest prognosis, with a median survival time of less than a year. The presence of O6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation, a particular genetic sequence seen in tumors, has been proven to be a positive prognostic indicator and a significant predictor of recurrence.This strong revival of interest in AI is modeled in particular to major technological advances which have significantly increased the performance of the predicted model for medical decision support. Establishing reliable forecasts remains a significant challenge for electronic health records (EHRs). By enhancing clinical practice, precision medicine promises to improve healthcare delivery. The goal is to produce improved prognosis, diagnosis, and therapy through evidence-based sub stratification of patients, transforming established clinical pathways to optimize care for each patient's individual requirements. The abundance of today's healthcare data, dubbed "big data," provides great resources for new knowledge discovery, potentially advancing precision treatment. The latter necessitates multidisciplinary initiatives that will use the knowledge, skills, and medical data of newly established organizations with diverse backgrounds and expertise.The aim of this paper is to use magnetic resonance imaging (MRI) images to train and evaluate your model to detect the presence of MGMT promoter methylation in this competition to predict the genetic subtype of glioblastoma based transfer learning. Our objective is to emphasize the basic problems in the developing disciplines of radiomics and radiogenomics, as well as to illustrate the computational challenges from the perspective of big data analytics.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Adulto , Humanos , Glioblastoma/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Inteligência Artificial , Metilação de DNA , Glioma/tratamento farmacológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Prognóstico , Aprendizado de Máquina
15.
Nucleic Acids Res ; 49(21): 12320-12331, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850170

RESUMO

DNA repair mechanisms fulfil a dual role, as they are essential for cell survival and genome maintenance. Here, we studied how cells regulate the interplay between DNA repair and mutation. We focused on the adaptive response that increases the resistance of Escherichia coli cells to DNA alkylation damage. Combination of single-molecule imaging and microfluidic-based single-cell microscopy showed that noise in the gene activation timing of the master regulator Ada is accurately propagated to generate a distinct subpopulation of cells in which all proteins of the adaptive response are essentially absent. Whereas genetic deletion of these proteins causes extreme sensitivity to alkylation stress, a temporary lack of expression is tolerated and increases genetic plasticity of the whole population. We demonstrated this by monitoring the dynamics of nascent DNA mismatches during alkylation stress as well as the frequency of fixed mutations that are generated by the distinct subpopulations of the adaptive response. We propose that stochastic modulation of DNA repair capacity by the adaptive response creates a viable hypermutable subpopulation of cells that acts as a source of genetic diversity in a clonal population.


Assuntos
Dano ao DNA , Reparo do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Mutação , Alquilação , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genética Populacional , Microscopia de Fluorescência/métodos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(17): 9318-9328, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32273391

RESUMO

Alkylation of guanine bases in DNA is detrimental to cells due to its high mutagenic and cytotoxic potential and is repaired by the alkyltransferase AGT. Additionally, alkyltransferase-like proteins (ATLs), which are structurally similar to AGTs, have been identified in many organisms. While ATLs are per se catalytically inactive, strong evidence has suggested that ATLs target alkyl lesions to the nucleotide excision repair system (NER). Using a combination of single-molecule and ensemble approaches, we show here recruitment of UvrA, the initiating enzyme of prokaryotic NER, to an alkyl lesion by ATL. We further characterize lesion recognition by ATL and directly visualize DNA lesion search by highly motile ATL and ATL-UvrA complexes on DNA at the molecular level. Based on the high similarity of ATLs and the DNA-interacting domain of AGTs, our results provide important insight in the lesion search mechanism, not only by ATL but also by AGT, thus opening opportunities for controlling the action of AGT for therapeutic benefit during chemotherapy.


Assuntos
Adenosina Trifosfatases/metabolismo , Alquil e Aril Transferases/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/fisiologia , Alquilação/fisiologia , DNA/metabolismo , Dano ao DNA , Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Guanina/metabolismo , Microscopia de Força Atômica/métodos , Mutagênese , O(6)-Metilguanina-DNA Metiltransferase/genética , Pinças Ópticas
17.
J Digit Imaging ; 36(3): 837-846, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604366

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The standard treatment for GBM consists of surgical resection followed by concurrent chemoradiotherapy and adjuvant temozolomide. O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status is an important prognostic biomarker that predicts the response to temozolomide and guides treatment decisions. At present, the only reliable way to determine MGMT promoter methylation status is through the analysis of tumor tissues. Considering the complications of the tissue-based methods, an imaging-based approach is preferred. This study aimed to compare three different deep learning-based approaches for predicting MGMT promoter methylation status. We obtained 576 T2WI with their corresponding tumor masks, and MGMT promoter methylation status from, The Brain Tumor Segmentation (BraTS) 2021 datasets. We developed three different models: voxel-wise, slice-wise, and whole-brain. For voxel-wise classification, methylated and unmethylated MGMT tumor masks were made into 1 and 2 with 0 background, respectively. We converted each T2WI into 32 × 32 × 32 patches. We trained a 3D-Vnet model for tumor segmentation. After inference, we constructed the whole brain volume based on the patch's coordinates. The final prediction of MGMT methylation status was made by majority voting between the predicted voxel values of the biggest connected component. For slice-wise classification, we trained an object detection model for tumor detection and MGMT methylation status prediction, then for final prediction, we used majority voting. For the whole-brain approach, we trained a 3D Densenet121 for prediction. Whole-brain, slice-wise, and voxel-wise, accuracy was 65.42% (SD 3.97%), 61.37% (SD 1.48%), and 56.84% (SD 4.38%), respectively.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioblastoma , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Temozolomida/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , O(6)-Metilguanina-DNA Metiltransferase/genética , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
18.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047153

RESUMO

Glioblastoma is the most common malignant brain tumor in adults. Standard treatment includes tumor resection, radio-chemotherapy and adjuvant chemotherapy with temozolomide (TMZ). TMZ methylates DNA, whereas O6-methylguanine DNA methyltransferase (MGMT) counteracts TMZ effects by removing the intended proteasomal degradation signal. Non-functional MGMT mediates the mismatch repair (MMR) system, leading to apoptosis after futile repair attempts. This study investigated the associations between MGMT promoter methylation, MGMT and MMR protein expression, and their effect on overall survival (OS) and progression-free survival (PFS) in patients with glioblastoma. MGMT promoter methylation was assessed in 42 treatment-naïve patients with glioblastoma WHO grade IV by pyrosequencing. MGMT and MMR protein expression was analyzed using immunohistochemistry. MGMT promoter methylation was present in 52%, whereas patients <70 years of age revealed a significantly longer OS using a log-rank test and a significance threshold of p ≤ 0.05. MGMT protein expression and methylation status showed no correlation. MMR protein expression was present in all patients independent of MGMT status and did not influence OS and PFS. Overall, MGMT promoter methylation implicates an improved OS in patients with glioblastoma aged <70 years. In the elderly, the extent of surgery has an impact on OS rather than the MGMT promoter methylation or protein expression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Idoso , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Intervalo Livre de Progressão , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Metilação , Reparo de Erro de Pareamento de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilação de DNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894860

RESUMO

Temozolomide (TMZ) is an important first-line treatment for glioblastoma (GBM), but there are limitations to TMZ response in terms of durability and dependence on the promoter methylation status of the DNA repair gene O6-methylguanine DNA methyltransferase (MGMT). MGMT-promoter-hypermethylated (MGMT-M) GBMs are more sensitive to TMZ than MGMT-promoter-hypomethylated (MGMT-UM) GBMs. Moreover, TMZ resistance is inevitable even in TMZ-sensitive MGMT-M GBMs. Hence, epigenetic reprogramming strategies are desperately needed in order to enhance TMZ response in both MGMT-M and MGMT-UM GBMs. In this study, we present novel evidence that the epigenetic reactivation of Tumor Suppressor Candidate 3 (TUSC3) can reprogram sensitivity of GBM stem cells (GSCs) to TMZ irrespective of MGMT promoter methylation status. Interrogation of TCGA patient GBM datasets confirmed TUSC3 promoter regulation of TUSC3 expression and also revealed a strong positive correlation between TUSC3 expression and GBM patient survival. Using a combination of loss-of-function, gain-of-function and rescue studies, we demonstrate that TUSC3 reactivation is associated with enhanced TMZ response in both MGMT-M and MGMT-UM GSCs. Further, we provide novel evidence that the demethylating agent 5-Azacitidine (5-Aza) reactivates TUSC3 expression in MGMT-M GSCs, whereas the combination of 5-Aza and MGMT inhibitor Lomeguatrib is necessary for TUSC3 reactivation in MGMT-UM GSCs. Lastly, we propose a pharmacological epigenetic reactivation strategy involving TUSC3 that leads to significantly prolonged survival in MGMT-M and MGMT-UM orthotopic GSCs models. Collectively, our findings provide a framework and rationale to further explore TUSC3-mediated epigenetic reprogramming strategies that could enhance TMZ sensitivity and outcomes in GBM. Mechanistic and translational evidence gained from such studies could contribute towards optimal design of impactful trials for MGMT-UM GBMs that currently do not have good treatment options.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Dacarbazina/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Metilação de DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/genética , Epigênese Genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Artigo em Inglês, Russo | MEDLINE | ID: mdl-38054227

RESUMO

Methylation of the O-6-methylguanine-DNA methyltransferase (MGMT) gene promoter is currently the most important prognostic biomarker in therapy of IDH-wild-type glioblastoma. One can obtain information about this methylation from total DNA methylation profile. OBJECTIVE: To analyze the DNA methylation signal intensity in the MGMT gene in samples of malignant gliomas and identify the most significant genomic positions for calculating the MGMT gene promoter status for further improvement of diagnostics and prediction of therapeutic options in patients with malignant gliomas. MATERIAL AND METHODS: The study is based on 43 samples (frozen tissue or paraffin blocks) from patients with malignant gliomas. Tumor DNA samples were prepared using the Illumina Infinium MethylationEPIC BeadChip Kit and the Illumina Next-Seq 550 Sequencing System platform. DNA methylation profiles were analyzed using computational algorithms in the R language, specialized libraries minfi and mgmtstp27, as well as basic statistical functions in the Rstudio environment. RESULTS: We established the MGMT gene promoter status in 43 samples of malignant gliomas considering total DNA methylation profile. In 24 samples (55%), the MGMT gene promoter was methylated. We compared methylation signal in certain CpG islands in groups with methylated and unmethylated MGMT gene promoters and identified the most significant positions for further improvement of data analysis algorithm. CONCLUSION: These data demonstrate the possibilities and prospects for further improvement of algorithm for analysis of the MGMT gene promoter status based on total DNA methylation profile in patients with malignant gliomas as an alternative to methyl-specific PCR. Our results are consistent with data of other neuro-oncology researchers. Indeed, computational methods like MGMT-STP27 are quite powerful and can be used in scientific and clinical practice to assess prognosis and make decisions about chemotherapy with alkylating agents.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Metilação de DNA/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Glioblastoma/genética , Prognóstico , O(6)-Metilguanina-DNA Metiltransferase/genética , DNA , Metilases de Modificação do DNA/genética , Proteínas Supressoras de Tumor/genética , Enzimas Reparadoras do DNA/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa