RESUMO
Oxygenated derivatives of fatty acids, collectively called oxylipins, are a highly diverse family of lipoxygenase (LOX) products well described in planktonic diatoms. Here we report the first investigation of these molecules in four benthic diatoms, Cylindrotheca closterium, Nanofrustulum shiloi, Cocconeis scutellum, and Diploneis sp. isolated from the leaves of the seagrass Posidonia oceanica from the Gulf of Naples. Analysis by hyphenated MS techniques revealed that C. closterium, N. shiloi, and C. scutellum produce several polyunsaturated aldehydes (PUAs) and linear oxygenated fatty acids (LOFAs) related to the products of LOX pathways in planktonic species. Diploneis sp. also produced other unidentified fatty acid derivatives that are not related to LOX metabolism. The levels and composition of oxylipins in the benthic species match their negative effects on the reproductive success in the sea urchin Paracentrotus lividus. In agreement with this correlation, the most toxic species N. shiloi revealed the same LOX pathways of Skeletonema marinoi and Thalassiosira rotula, two bloom-forming planktonic diatoms that affect copepod reproduction. Overall, our data highlight for the first time a major role of oxylipins, namely LOFAs, as info-chemicals for benthic diatoms, and open new perspectives in the study of the structuring of benthic communities.
Assuntos
Diatomáceas/metabolismo , Lipoxigenases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aldeídos/toxicidade , Alismatales , Animais , Copépodes/efeitos dos fármacos , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxilipinas/toxicidade , Paracentrotus/efeitos dos fármacos , Folhas de PlantaRESUMO
Oxylipins such as polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) are signaling molecules derived from the oxidation of polyunsaturated fatty acids. They are common in diatoms that constitute a major group of microalgae in freshwater and oceanic ecosystems. Although HEPEs represent the most common oxylipins produced by diatoms, little information is available on their effects on marine invertebrates, and most of the information has been obtained by testing individual HEPEs. Our previous studies reported that four hydroxyacids, i.e., 5-, 9-, 11-, and 15-HEPE, were able to induce malformations and a marked developmental delay in sea urchin Paracentrotus lividus embryos, which had not been reported for other oxylipins. Here, we tested a mixture of 5-, 9-, 11-, and 15-HEPE at different concentrations for the first time. The results showed that mixtures of HEPEs have synergistic effects that are much more severe compared to those of individual HEPEs: The HEPE mixtures induced malformations in sea urchin embryos at lower concentrations. Increasing HEPE mixture concentrations induced a marked increase in the number of delayed embryos, until all embryos were delayed at the highest concentration tested. At the molecular level, the HEPE mixtures induced variations in the expression of 50 genes involved in different functional processes, mainly down-regulating these genes at the earliest stages of embryonic development. These findings are ecologically significant, considering that during diatom blooms, sea urchins could accumulate HEPEs in concentrations comparable to those tested in the present study.
Assuntos
Diatomáceas/química , Desenvolvimento Embrionário/efeitos dos fármacos , Proliferação Nociva de Algas , Oxilipinas/toxicidade , Paracentrotus/efeitos dos fármacos , Animais , Embrião não Mamífero , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Paracentrotus/genética , Paracentrotus/crescimento & desenvolvimentoRESUMO
Oxylipins are secondary messengers used universally in the living world for communication and defense. The paradigm is that they are produced enzymatically for the eicosanoids and non-enzymatically for the isoprostanoids. They are supposed to be degraded into volatile organic compounds (VOCs) and to participate in aroma production. Some such chemicals composed of eight carbons are also envisoned as alternatives to fossil fuels. In fungi, oxylipins have been mostly studied in Aspergilli and shown to be involved in signalling asexual versus sexual development, mycotoxin production and interaction with the host for pathogenic species. Through targeted gene deletions of genes encoding oxylipin-producing enzymes and chemical analysis of oxylipins and volatile organic compounds, we show that in the distantly-related ascomycete Podospora anserina, isoprostanoids are likely produced enzymatically. We show the disappearance in the mutants lacking lipoxygenases and cyclooxygenases of the production of 10-hydroxy-octadecadienoic acid and that of 1-octen-3-ol, a common volatile compound. Importantly, this was correlated with the inability of the mutants to repel nematodes as efficiently as the wild type. Overall, our data show that in this fungus, oxylipins are not involved in signalling development but may rather be used directly or as precursors in the production of odors against potential agressors. SIGNIFICANCE: We analyzse the role in inter-kingdom communication of lipoxygenase (lox) and cyclooxygenase (cox) genes in the model fungus Podospora anserina. Through chemical analysis we define the oxylipins and volatile organic compounds (VOCs)produce by wild type and mutants for cox and lox genes, We show that the COX and LOX genes are required for the production of some eight carbon VOCs. We show that COX and LOX genes are involved in the production of chemicals repelling nematodes. This role is very different from the ones previously evidenced in other fungi.
Assuntos
Proteínas Fúngicas/metabolismo , Repelentes de Insetos/toxicidade , Lipoxigenases/metabolismo , Nematoides/imunologia , Podospora/enzimologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Compostos Orgânicos Voláteis/toxicidade , Animais , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Peroxidação de Lipídeos , Lipoxigenases/genética , Nematoides/efeitos dos fármacos , Oxilipinas/toxicidade , Prostaglandina-Endoperóxido Sintases/genética , Compostos Orgânicos Voláteis/análiseRESUMO
Biotic stress factors such as Rhizopus oligosporus and Aspergillus niger mycelial extracts and abiotic elements methyljasmonate (MJ) and salicylic acid (SA), when administered through floral spray to Coffea canephora, showed significant influence on major bioactive metabolites of beans. Up to 42% caffeine, 39% theobromine and 46% trigonelline, along with 32% cafestol and kahweol content elevation was evident under respective elicitor treatments. Over all, the surge in respective metabolites depends on elicitor stress type and concentration. Abiotic factors MJ and SA were found to be efficient at 1 to 5 microM concentration in augmenting all the metabolites, compared to R. oligosporus and A. niger spray at 0.5-2.0% wherein the response was moderate as compared to abiotic stress, however significant compared to control. Though this elevation in caffeine, theobromine, cafestol and kahweol is not warranted from quality point of view, increase in trigonelline improves coffee quality. Besides increase in metabolites, stress mediated augmentation of bioactive compounds in coffee has a wide scope for studying gene expression pattern.
Assuntos
Acetatos/toxicidade , Aspergillus niger , Coffea/efeitos dos fármacos , Ciclopentanos/toxicidade , Micélio/química , Oxilipinas/toxicidade , Rhizopus , Ácido Salicílico/toxicidade , Acetatos/administração & dosagem , Antifúngicos/administração & dosagem , Antifúngicos/toxicidade , Ciclopentanos/administração & dosagem , Relação Dose-Resposta a Droga , Oxilipinas/administração & dosagem , Reguladores de Crescimento de Plantas/toxicidade , Ácido Salicílico/administração & dosagem , Sementes/química , Sementes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologiaRESUMO
PURPOSE OF WORK: Plants synthesize and accumulate secondary metabolites as defensive volatiles against diverse stresses. We aim to unravel the jasmonate-inducible volatile de novo synthetic metabolites in plants using a deuterium-labeling technique. Jasmonic acid and its methyl ester (MeJA) are well-documented for inducing defensive volatiles. Here, we have developed an efficient deuterium oxide (D2O)-based labeling approach to determine the extent of de novo synthetic metabolites in a model plant A. bidentata bidentata. The labeling approach was demonstrated on quantitative profiling of terpene volatile organic compounds (VOCs) elicited by airborne MeJA in Achyranthes plants. We show, for the first time that airborne MeJA-elicited terpene VOCs are predominantly and differentially de novo synthesized except for a homoterpene, (3E)-4,8-dimethyl-1,3,7-nonatriene, which is weakly and least labelled with deuterium. D2O is therefore an efficient labeling source for investigating de novo synthetic metabolites of terpene VOCs in planta.
Assuntos
Achyranthes/metabolismo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Achyranthes/efeitos dos fármacos , Ciclopentanos/toxicidade , Deutério/metabolismo , Marcação por Isótopo , Oxilipinas/toxicidade , Estresse FisiológicoRESUMO
Cadmium (Cd) is a potentially hazardous element with substantial biological toxicity, adversely affecting plant growth and physiological metabolism. Therefore, it is necessary to explore practical and environment-friendly approaches to reduce toxicity. Jasmonic acid (JA) is an endogenous growth regulator which helps plants defend against biological and abiotic stresses. To determine how JA help relieve Cd toxicity in rice, both laboratory and field experiments were implemented. In the seedling stage, the role of JA in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry. At the mature growth stage of rice, field experiments were implemented to research the effects of JA on the Cd uptake and translocation in rice. In the seedling stage of rice, we found that JA application increased the cell wall compartmentalization of Cd by promoting the Cd combination on chelated-soluble pectin of rice roots and inhibited Cd movement into protoplasts, thereby reducing the Cd content in the roots by 30.5% and in the shoots by 53.3%, respectively. Application of JA reduced H2O2 content and helped relieve Cd-induced peroxidation damage of membrane lipid by increasing the level of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione (GSH), but had no significant effect on the superoxide dismutase (SOD) activity. Additionally, field experiments showed that foliar spraying of JA inhibited rice Cd transport from the stalk and root to the grain and reduced Cd concentration in grain by 29.7% in the high-Cd fields and 28.0% in the low-Cd fields. These results improve our understanding of how JA contributes to resistance against Cd toxicity in rice plants and reduces the accumulation of Cd in rice kernels.
Assuntos
Oryza , Poluentes do Solo , Antioxidantes/metabolismo , Cádmio/análise , Cádmio/química , Ciclopentanos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Oxilipinas/química , Oxilipinas/toxicidade , Raízes de Plantas/metabolismo , Plântula , Poluentes do Solo/análiseRESUMO
The up-regulation of plant defense-related toxins or metabolic enzyme binding proteins often leads to a negative effect on herbivorous insects. These negative effects can manifest themselves at three points: changes in food ingestion, post-ingestive-changes, and post-digestive changes. Many studies have related the decrease in herbivore growth and/or survival with expression of chemicals that interfere with post-digestive effects such as the anti-nutritive effects of protease inhibitors. Nevertheless, it is unclear whether such compounds impact herbivores via earlier ingestive processes. We addressed this question by using a jasmonate-deficient mutant (Def-1), a jasmonate-overexpressor mutant (Prosystemin or Prosys), and wild-type tomato in three trials with 5th instar Trichoplusia ni. Decreases in relative growth rate (RGR) confirmed that T. ni fed on the Prosys plants developed poorly compared to those feeding on Def-1 plants (larvae on wild-types were intermediate). Preingestive and postingestive processes contributed to this effect. Total food ingested and the consumptive index were 25% lower on Prosys plants compared to Def-1 plants. Post-ingestive processes, measured by approximate digestibility, were 62% greater on Prosy plants. Post-digestive efficiency measured by conversion of ingested and digested food (ECI and ECD) decreased on Prosys plants two-fold compared to Def-1 plants. This post-digestive interference correlated well with the 2-fold decrease in activity of digestive enzymes, serine proteases, in Prosys-fed T. ni compared to those on Def-1 plants. No difference in detoxifying enzyme activity was detected.
Assuntos
Ciclopentanos/toxicidade , Mariposas/enzimologia , Oxilipinas/toxicidade , Solanum lycopersicum/química , Animais , Ciclopentanos/química , Interações Hospedeiro-Parasita , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Oxilipinas/química , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/parasitologia , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Serina Proteases/metabolismoRESUMO
BACKGROUND: An array of bioactive compounds with health-promoting effects has been described in several species of macroalgae. Among them, phytoprostanes (PhytoPs) and phytofurans (PhytoFs), both autoxidation products of α-linolenic acid, have been seen to exert immunomodulatory and antiinflammatory activities in vitro. The purpose of this study was to explore the bioaccesibility, bioavailability, and bioactivity of PhytoPs and PhytoFs obtained from the edible red algae Gracilaria longissima, and to gain insight into the anti-inflammatory activity of their bioavailable fraction in human endothelial cells. METHODS: The PhytoPs and PhytoFs profile and concentration of G. longissima were determined by UHPLC-QqQ-MS/MS. Algal samples were processed following a standardised digestion method including gastric, intestinal, and gastrointestinal digestion. The bioavailability of the PhytoPs and PhytoFs in the characterized fractions was assessed in a Caco-2 cell monolayer model of the intestinal barrier. The inflammation response of these prostaglandin-like compounds in human endothelial cells, after intestinal absorption, was investigated in vitro. RESULTS: Simulated digestions significantly reduced the concentration of PhytoPs and PhytoFs up to 1.17 and 0.42 µg per 100 g, respectively, on average, although permeability through the Caco-2 cell monolayer was high (up to 88.2 and 97.7%, on average, respectively). PhytoP and PhytoF-enriched extracts of raw algae impaired the expression of ICAM-1 and IL-6 inflammation markers. The inflammation markers progressed in contrast to the relative concentrations of bioactive oxylipins, suggesting pro- or anti-inflammatory activity on their part. In this aspect, the cross-reactivity of these compounds with diverse receptors, and their relative concentration could explain the diversity of the effects found in the current study. CONCLUSIONS: The results indicate that PhytoPs and PhytoFs display complex pharmacological profiles probably mediated through their different actions and affinities in the endothelium.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Células Endoteliais/efeitos dos fármacos , Furanos/farmacologia , Gracilaria/química , Oxilipinas/farmacologia , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/toxicidade , Disponibilidade Biológica , Células CACO-2 , Digestão , Células Endoteliais/metabolismo , Ácidos Graxos Insaturados/farmacocinética , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/toxicidade , Furanos/farmacocinética , Furanos/toxicidade , Humanos , Técnicas In Vitro , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Oxilipinas/farmacocinética , Oxilipinas/toxicidade , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/toxicidade , Relação Estrutura-AtividadeRESUMO
Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or "primed") after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results show that exposure to HIPVs triggered systemic induction of direct defenses against gypsy moth and primed volatile emissions, which can be an indirect defense. Blueberry plants appear to rely on HIPVs as external signals for inter-branch communication.
Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Vaccinium/metabolismo , Acetatos/farmacologia , Acetatos/toxicidade , Animais , Ciclopentanos/farmacologia , Ciclopentanos/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Larva , Mariposas , Oxilipinas/farmacologia , Oxilipinas/toxicidade , Folhas de Planta/efeitos dos fármacos , Fenômenos Fisiológicos Vegetais , Transdução de Sinais , VolatilizaçãoRESUMO
The inducibility of cytochrome P450 monooxygenases (P450s) and other xenobiotic-metabolizing enzymes is thought to reflect material and energy costs of biosynthesis. Efforts to detect such costs of detoxification enzyme induction, however, have had mixed success. Although they are rarely considered, ecological costs of induction may be a more significant evolutionary constraint on herbivores than material and energy costs. Because some P450-mediated metabolic transformations are bioactivation reactions that increase, rather than reduce, toxicity, maintaining high levels of P450 activity places an organism at risk of greater mortality in the presence of compounds that are bioactivated. We show that P450 inducibility in the generalist moth Helicoverpa zea in response to plant signaling substances, an adaptive response in a ditrophic interaction between herbivore and plant, becomes detrimental in the presence of a third trophic association with a plant pathogen that produces aflatoxin, a toxin that can be bioactivated by P450s. Consumption of plant signaling molecules, such as methyl jasmonate (MeJA) and salicylic acid (SA) enhanced the toxicity of aflatoxin B1 (AFB1) to H. zea that resulted in substantially more damage to larval growth and development. Among the P450 transcripts already cloned from this organism, two in the CYP6B and CYP321A subfamilies are shown to be induced in response to MeJA and SA, suggesting that they may mediate some of the observed bioactivations.
Assuntos
Acetatos/toxicidade , Aflatoxina B1/toxicidade , Ciclopentanos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Mariposas/metabolismo , Oxilipinas/toxicidade , Ácido Salicílico/toxicidade , Acetatos/farmacologia , Aflatoxina B1/farmacologia , Animais , Ciclopentanos/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Ácido Salicílico/farmacologia , Regulação para Cima , Xenobióticos/metabolismoRESUMO
Diatoms are one of the main primary producers in aquatic ecosystems and occupy a vital link in the transfer of photosynthetically-fixed carbon through aquatic food webs. Diatoms produce an array of biologically-active metabolites, many of which have been attributed as a form of chemical defence and may offer potential as candidate marine drugs. Of considerable interest are molecules belonging to the oxylipin family which are broadly disruptive to reproductive and developmental processes. The range of reproductive impacts includes; oocyte maturation; sperm motility; fertilization; embryogenesis and larval competence. Much of the observed bioactivity may be ascribed to disruption of intracellular calcium signalling, induction of cytoskeletal instability and promotion of apoptotic pathways. From an ecological perspective, the primary interest in diatom-oxylipins is in relation to the potential impact on energy flow in planktonic systems whereby the reproductive success of copepods (the main grazers of diatoms) is compromised. Much data exists providing evidence for and against diatom reproductive effects; however detailed knowledge of the physiological and molecular processes involved remains poor. This paper provides a review of the current state of knowledge of the mechanistic impacts of diatom-oxylipins on marine invertebrate reproduction and development.
Assuntos
Diatomáceas/metabolismo , Oxilipinas/toxicidade , Reprodução/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Invertebrados/efeitos dos fármacos , Invertebrados/crescimento & desenvolvimento , Oxilipinas/isolamento & purificaçãoRESUMO
Methyl jasmonate (MeJA) is widely used as a model chemical to study hypersensitive responses to biotic stress impacts in plants. Elevated levels of methyl jasmonate induce jasmonate-dependent defense responses, associated with a decline in primary metabolism and enhancement of secondary metabolism of plants. However, there is no information of how stress resistance of plants, and accordingly the sensitivity to exogenous MeJA can be decreased by endophytic plant growth promoting rhizobacteria (PGPR) harboring ACC (1-aminocyclopropane-1-carboxylate) deaminase. In this study, we estimated stress alleviating potential of endophytic PGPR against MeJA-induced plant perturbations through assessing photosynthetic traits and stress volatile emissions. We used mild (5â¯mM) to severe (20â¯mM) MeJA and endophytic plant growth promoting rhizobacteria Burkholderia vietnamiensis CBMB40 and studied how MeJA and B. vietnamiensis treatments influenced temporal changes in photosynthetic characteristics and stress volatile emissions. Separate application of MeJA markedly decreased photosynthetic characteristics and increased lipoxygenase pathway (LOX) volatiles, volatile isoprenoids, saturated aldehydes, lightweight oxygenated compounds (LOC), geranyl-geranyl diphosphate pathway (GGDP) volatiles, and benzenoids. However, MeJA-treated leaves inoculated by endophytic bacteria B. vietnamiensis had substantially increased photosynthetic characteristics and decreased emissions of LOX, volatile isoprenoids and other stress volatiles compared with non-inoculated MeJA treatments, especially at later stages of recovery. In addition, analysis of leaf terpenoid contents demonstrated that several mono- and sesquiterpenes were de novo synthesized upon MeJA and B. vietnamiensis applications. This study demonstrates that foliar application of endophytic bacteria B. vietnamiensis can potentially enhance resistance to biotic stresses and contribute to the maintenance of the integrity of plant metabolic activity.
Assuntos
Acetatos/toxicidade , Burkholderia/enzimologia , Ciclopentanos/toxicidade , Eucalyptus/metabolismo , Oxilipinas/toxicidade , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Burkholderia/efeitos dos fármacos , Eucalyptus/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismoRESUMO
Plants and herbivores are thought to be engaged in a coevolutionary arms race: rising frequencies of plants with anti-herbivore defences exert pressure on herbivores to resist or circumvent these defences and vice versa. Owing to its frequency-dependent character, the arms race hypothesis predicts that herbivores exhibit genetic variation for traits that determine how they deal with the defences of a given host plant phenotype. Here, we show the existence of distinct variation within a single herbivore species, the spider mite Tetranychus urticae, in traits that lead to resistance or susceptibility to jasmonate (JA)-dependent defences of a host plant but also in traits responsible for induction or repression of JA defences. We characterized three distinct lines of T. urticae that differentially induced JA-related defence genes and metabolites while feeding on tomato plants (Solanum lycopersicum). These lines were also differently affected by induced JA defences. The first line, which induced JA-dependent tomato defences, was susceptible to those defences; the second line also induced JA defences but was resistant to them; and the third, although susceptible to JA defences, repressed induction. We hypothesize that such intraspecific variation is common among herbivores living in environments with a diversity of plants that impose diverse selection pressure.
Assuntos
Variação Genética , Solanum lycopersicum/química , Tetranychidae/genética , Animais , Ciclopentanos/toxicidade , Resistência a Medicamentos/fisiologia , Fertilidade/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Oxilipinas/toxicidade , Reguladores de Crescimento de Plantas/toxicidade , Especificidade da Espécie , Tetranychidae/classificação , Tetranychidae/efeitos dos fármacosRESUMO
Lead (Pb) is one of most toxic heavy metals that adversely affect growth and developmental in plants. It becomes necessary to explore environment safe strategies to ameliorate its toxic effects. Phytohormones play an imperative role in regulating stress protection in plants. Jasmonic acid (JA) is recognized as a potential phytohormone which mediates immune and growth responses to enhance plant survival under stressful environment. The present study was undertaken to evaluate the effect of JA on the growth, metal uptake, gaseous exchange parameters, and on the contents of pigments, osmolytes, and metal chelating compounds in tomato plants under Pb stress during different stages of growth (in 30-, 45-, and 60-day-old plants). We observed a decrease in shoot and root lengths under Pb stress. Treatment of JA improved the shoot and root lengths in the Pb-treated plants. The Pb uptake was increased with the increasing concentrations of Pb, however, seeds pretreated with JA reduced the Pb uptake by the plants. The chlorophyll and carotenoid contents increased by JA treatment in plants under Pb stress. Pre-soaking of seeds in JA, improved gaseous exchange parameters, such as internal CO2 concentration, net photosynthetic rate, stomatal conductance, and transpiration rate under Pb stress. JA enhanced the enzyme activity of ascorbate-glutathione cycle and reduced H2O2 concentration in Pb-treated plants. The contents of osmolyte and metal chelating compounds (total thiols, and non-protein and protein-bound thiols) were increased with the increase in Pb stress. In seeds primed with JA, the contents of osmolytes and metal chelating compounds were further increased in the Pb-treated plants. Our results suggested that treatment of JA ameliorated the toxic effects of Pb stress by reducing the Pb uptake and improving the growth, photosynthetic attributes, activity of ascorbate-glutathione cycle and increasing the contents of osmolytes and metal chelating compounds in the tomato plants.
Assuntos
Ciclopentanos/toxicidade , Glutationa/metabolismo , Chumbo/toxicidade , Oxilipinas/toxicidade , Reguladores de Crescimento de Plantas/toxicidade , Poluentes do Solo/toxicidade , Solanum lycopersicum/fisiologia , Peróxido de HidrogênioRESUMO
Diatoms are unicellular algae playing a key role as photosynthetic organisms in the world's ocean food webs. The chemical ecology of planktonic diatoms is well documented, but few studies have reported on the effects of benthic diatoms on their consumers, also due to difficulties in the collection, quantification and massive culturing of benthic species. Here for the first time we investigate the effects of feeding on two abundantly occurring benthic diatoms, Nanofrustulum shiloi and Cylindrotheca closterium, isolated from the leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Adult P. lividus were fed for one month on diets of either one of the two diatoms and on the green alga Ulva rigida, used as a feeding control. By combining morphological, metabolomic and de novo transcriptomic approaches, we demonstrate toxigenic effect on embryos generated by females fed with these benthic diatoms. Furthermore, chemical analysis reveal the presence of polyunsaturated aldehydes only for N. shiloi, and a high production of other oxylipins (cytotoxic compounds on their grazers and on cancer cell lines) for both diatoms, including some additional peaks not correlated to the canonic oxylipins commonly observed in planktonic diatoms. These findings open new perspectives in the study of diatom secondary metabolites influencing their grazers.
Assuntos
Aldeídos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metaboloma , Oxilipinas/toxicidade , Paracentrotus/efeitos dos fármacos , Transcriptoma , Animais , Diatomáceas/química , Embrião não Mamífero/metabolismo , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Paracentrotus/embriologia , Paracentrotus/genética , Paracentrotus/metabolismoRESUMO
Marine diatoms negatively affect reproduction and later larval development of dominant zooplankton grazers such as copepods, thereby lowering the recruitment of the next generations of these small crustaceans that are a major food source for larval fish species. The phenomenon has been explained in terms of chemical defense due to grazer-induced synthesis of oxylipins, lipoxygenase-derived oxygenated fatty acid derivatives. Since this first report, studies about diatom oxylipins have multiplied and broadened toward other aspects concerning bloom dynamics, cell growth, and cell differentiation. Diatom oxylipins embrace a number of diverse structures that are recognized as chemical signals in ecological and physiological processes in many other organisms. In diatoms, the most studied examples include polyunsaturated aldehydes (PUAs) and nonvolatile oxylipins (NVOs). The purpose of this chapter is to provide the analytical tools to deal with identification, analysis and biosynthesis of these compounds. Emphasis is given to identification of the enzymatic steps and characterization of the species-specific lipoxygenases even in absence of the availability of molecular information.
Assuntos
Diatomáceas/fisiologia , Lipoxigenases/isolamento & purificação , Microalgas/fisiologia , Oxilipinas/análise , Aldeídos/metabolismo , Animais , Vias Biossintéticas/fisiologia , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Copépodes/fisiologia , Eutrofização/fisiologia , Cadeia Alimentar , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Lipoxigenases/metabolismo , Oxilipinas/metabolismo , Oxilipinas/toxicidade , Especificidade da Espécie , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Zooplâncton/fisiologiaRESUMO
Lasiodiplodia theobromae is a phytopathogenic fungus that causes diseases not only in a broad number of plant hosts but also occasionally in humans. The capacity of L. theobromae to produce bioactive metabolites at 25 C (environmental mean temperature) and at 37 C (body mean temperature) was investigated. Two strains, CAA019 and CBS339.90, isolated respectively from a coconut tree and a human patient were characterized. The phytotoxicity and cytotoxicity (on mammalian cells) of the secretomes of both strains of L. theobromae were investigated. Also, phytotoxicity and cytotoxicity of pure compounds were evaluated. The phytotoxicity of the secretome of strain CAA019 was higher than the phytotoxicity of the secretome of strain CBS339.90 at 25 C. However, the phytotoxicity for both strains decreased when they were grown at 37 C. Only the secretome of strain CBS339.90 grown at 37 C induced up to 90% Vero and 3T3 cell mortality. This supports the presence of different metabolites in the secretome of strains CAA019 and CBS339.90. Metabolites typical of L. theobromae were isolated and identified from organic extracts of the secretome of both strains (e.g., 3-indolecarboxylic acid, jasmonic acid, lasiodiplodin, four substituted 2-dihydrofuranones, two melleins, and cyclo-(Trp-Ala)). Also, metabolites such as scytalone, not previously reported for this species, were isolated and identified. Metabolite production is affected by strain and temperature. In fact, some metabolites are strain specific (e.g., lasiodiplodin) and some metabolites are temperature specific (e.g., jasmonic acid). Although more strains should be characterized, it may be anticipated that temperature tuning of secondary-metabolite production emerges as a putative contributing factor in the modulation of L. theobromae pathogenicity towards plants, and also towards mammalian cells.
Assuntos
Ascomicetos/química , Ascomicetos/metabolismo , Metabolismo Secundário , Temperatura , Árvores/microbiologia , Animais , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Linhagem Celular , Chlorocebus aethiops , Cocos/microbiologia , Ciclopentanos/metabolismo , Ciclopentanos/toxicidade , Humanos , Metaboloma , Micotoxinas/biossíntese , Micotoxinas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/toxicidade , Filogenia , Células Vero , Zearalenona/análogos & derivados , Zearalenona/metabolismo , Zearalenona/toxicidadeAssuntos
Ciclopentanos/toxicidade , Oxilipinas/toxicidade , Perfumes/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Ciclopentanos/química , Feminino , Humanos , Masculino , Odorantes/análise , Oxilipinas/química , Perfumes/química , Ratos , Ratos Wistar , Sistema de Registros , Reprodução/efeitos dos fármacos , Medição de Risco , Testes de ToxicidadeRESUMO
Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.
Assuntos
Caspases/metabolismo , Diatomáceas/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Oxilipinas/toxicidade , Paracentrotus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspases/genética , Embrião não Mamífero/enzimologia , Paracentrotus/embriologia , Paracentrotus/enzimologiaRESUMO
Alternaria alternata f.sp. Lycopersici (AAL) toxin induces programmed cell death (PCD) in susceptible tomato (Solanum lycopersicum) leaves. Jasmonate (JA) promotes AAL toxin induced PCD in a COI1 (coronatine insensitive 1, JA receptor)-dependent manner by enhancement of reactive oxygen species (ROS) production. To further elucidate the underlying mechanisms of this process, we performed a comparative proteomic analysis using tomato jasmonic acid insensitive1 ( jai1), the receptor mutant of JA, and its wild type (WT) after AAL toxin treatment with or without JA treatment. A total of 10367 proteins were identified in tomato leaves using isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics approach. 2670 proteins were determined to be differentially expressed in response to AAL toxin and JA. Comparison between AAL toxin treated jai1 and its WT revealed the COI1-dependent JA pathway regulated proteins, including pathways related to redox response, ceramide synthesis, JA, ethylene (ET), salicylic acid (SA) and abscisic acid (ABA) signaling. Autophagy, PCD and DNA damage related proteins were also identified. Our data suggest that COI1-dependent JA pathway enhances AAL toxin induced PCD through regulating the redox status of the leaves, other phytohormone pathways and/or important PCD components.