Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Nature ; 598(7882): 652-656, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646009

RESUMO

Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.


Assuntos
Hanseníase/veterinária , Pan troglodytes/microbiologia , Animais , Autopsia/veterinária , Côte d'Ivoire , Fezes/microbiologia , Genótipo , Guiné-Bissau , Humanos , Hanseníase/microbiologia , Mycobacterium leprae/genética , Mycobacterium leprae/isolamento & purificação , Filogenia
2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33972424

RESUMO

The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.


Assuntos
Evolução Biológica , Ecologia/métodos , Hominidae/microbiologia , Metagenoma/genética , Microbiota/genética , Boca/microbiologia , África , Animais , Bactérias/classificação , Bactérias/genética , Biofilmes , Placa Dentária/microbiologia , Geografia , Gorilla gorilla/microbiologia , Hominidae/classificação , Humanos , Pan troglodytes/microbiologia , Filogenia
3.
Nature ; 548(7665): 82-86, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28770842

RESUMO

Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation.


Assuntos
Doenças dos Animais/mortalidade , Animais Selvagens/microbiologia , Antraz/veterinária , Bacillus anthracis/patogenicidade , Mamíferos/microbiologia , Floresta Úmida , Clima Tropical , África Subsaariana , Doenças dos Animais/microbiologia , Animais , Antraz/microbiologia , Antraz/mortalidade , Bacillus anthracis/isolamento & purificação , Dípteros/microbiologia , Extinção Biológica , Feminino , Masculino , Pan troglodytes/microbiologia , Parques Recreativos , Filogenia
4.
Nature ; 544(7650): 357-361, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28273061

RESUMO

Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.


Assuntos
DNA Antigo/análise , Cálculos Dentários/química , Dieta/história , Preferências Alimentares , Saúde/história , Homem de Neandertal/microbiologia , Homem de Neandertal/psicologia , Animais , Bélgica , Carnivoridade , Cavernas , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Genoma Bacteriano/genética , História Antiga , Humanos , Intestinos/microbiologia , Carne/história , Methanobrevibacter/genética , Methanobrevibacter/isolamento & purificação , Boca/microbiologia , Pan troglodytes/microbiologia , Penicillium/química , Perissodáctilos , Ovinos , Espanha , Estômago/microbiologia , Simbiose , Fatores de Tempo , Vegetarianos/história
5.
Am J Primatol ; 81(10-11): e23045, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31471974

RESUMO

The study of the primate microbiome is critical in understanding the role of the microbial community in the host organism. To be able to isolate the main factors responsible for the differences observed in microbiomes within and between individuals, confounding factors due to technical variations need to be removed. To determine whether alterations due to preservatives outweigh differences due to factors such as host population, host species, body site, and habitat, we tested three methods (no preservative, 96% ethanol, and RNAlater) for preserving wild chimpanzee (fecal), wild lemur (fecal), wild vervet monkey (rectal, oral, nasal, otic, vaginal, and penile), and captive vervet monkey (rectal) samples. All samples were stored below - 20°C (short term) at the end of the field day and then at - 80°C until DNA extraction. Using 16S rRNA gene sequencing, we show a significant preservative effect on microbiota composition and diversity. Samples stored in ethanol and RNAlater appear to be less different compared with samples not stored in any preservative (none). Our differential analysis revealed significantly higher amounts of Enterococcaceae and Family XI in no preservative samples, Prevotellaceae and Spirochaetaceae in ethanol and RNAlater preserved samples, Oligosphaeraceae in ethanol-preserved samples, and Defluviitaleaceae in RNAlater preserved samples. While these preservative effects on the microbiome are not large enough to remove or outweigh the differences arising from biological factors (e.g., host species, body site, and habitat differences) they may promote misleading interpretations if they have large enough effect sizes compared to the biological factors (e.g., host population).


Assuntos
Microbiota , Preservação Biológica/métodos , Manejo de Espécimes/veterinária , Animais , Chlorocebus aethiops/microbiologia , Feminino , Interações entre Hospedeiro e Microrganismos , Lemur/microbiologia , Masculino , Pan troglodytes/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Manejo de Espécimes/métodos
6.
Vet Pathol ; 55(6): 905-915, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30071801

RESUMO

Coccidioidomycosis in nonhuman primates has been sporadically reported in the literature. This study describes 22 cases of coccidioidomycosis in nonhuman primates within an endemic region, and 79 cases of coccidioidomycosis from the veterinary literature are also reviewed. The 22 cases included baboons ( n = 10), macaques ( n = 9), and chimpanzees ( n = 3). The majority died or were euthanized following episodes of dyspnea, lethargy, or neurologic and locomotion abnormalities. The lungs were most frequently involved followed by the vertebral column and abdominal organs. Microscopic examination revealed granulomatous inflammation accompanied by fungal spherules variably undergoing endosporulation. Baboons represented a large number of cases presented here and had a unique presentation with lesions in bone or thoracic organs, but none had both intrathoracic and extrathoracic lesions. Although noted in 3 cases in the literature, cutaneous infections were not observed among the 22 contemporaneous cases. Similarly, subclinical infections were only rarely observed (2 cases). This case series and review of the literature illustrates that coccidioidomycosis in nonhuman primates reflects human disease with a varied spectrum of presentations from localized lesions to disseminated disease.


Assuntos
Coccidioidomicose/veterinária , Doenças dos Primatas/patologia , Animais , Coccidioidomicose/microbiologia , Coccidioidomicose/patologia , Feminino , Pulmão/patologia , Macaca/microbiologia , Masculino , Microscopia Eletrônica/veterinária , Pan troglodytes/microbiologia , Papio/microbiologia , Reação em Cadeia da Polimerase/veterinária , Doenças dos Primatas/microbiologia
7.
Genome Res ; 23(10): 1715-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23804402

RESUMO

The gut microbial communities within great apes have been shown to reflect the phylogenetic history of their hosts, indicating codiversification between great apes and their gut microbiota over evolutionary timescales. But because the great apes examined to date represent geographically isolated populations whose diets derive from different sources, it is unclear whether this pattern of codiversification has resulted from a long history of coadaptation between microbes and hosts (heritable factors) or from the ecological and geographic separation among host species (environmental factors). To evaluate the relative influences of heritable and environmental factors on the evolution of the great ape gut microbiota, we assayed the gut communities of sympatric and allopatric populations of chimpanzees, bonobos, and gorillas residing throughout equatorial Africa. Comparisons of these populations revealed that the gut communities of different host species can always be distinguished from one another but that the gut communities of sympatric chimpanzees and gorillas have converged in terms of community composition, sharing on average 53% more bacterial phylotypes than the gut communities of allopatric hosts. Host environment, independent of host genetics and evolutionary history, shaped the distribution of bacterial phylotypes across the Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria, the four most common phyla of gut bacteria. Moreover, the specific patterns of phylotype sharing among hosts suggest that chimpanzees living in sympatry with gorillas have acquired bacteria from gorillas. These results indicate that geographic isolation between host species has promoted the evolutionary differentiation of great ape gut bacterial communities.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Gorilla gorilla/microbiologia , Microbiota , Pan paniscus/microbiologia , Pan troglodytes/microbiologia , RNA Ribossômico 16S/genética , Simpatria , Actinobacteria/classificação , Actinobacteria/genética , África Central , Animais , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Meio Ambiente , Evolução Molecular , Especiação Genética , Genoma Mitocondrial , Gorilla gorilla/classificação , Gorilla gorilla/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Pan paniscus/classificação , Pan paniscus/genética , Pan troglodytes/classificação , Pan troglodytes/genética , Filogenia , Proteobactérias/classificação , Proteobactérias/genética
8.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26763711

RESUMO

Skin microbes play a role in human body odour, health and disease. Compared with gut microbes, we know little about the changes in the composition of skin microbes in response to evolutionary changes in hosts, or more recent behavioural and cultural changes in humans. No studies have used sequence-based approaches to consider the skin microbe communities of gorillas and chimpanzees, for example. Comparison of the microbial associates of non-human primates with those of humans offers unique insights into both the ancient and modern features of our skin-associated microbes. Here we describe the microbes found on the skin of humans, chimpanzees, gorillas, rhesus macaques and baboons. We focus on the bacterial and archaeal residents in the axilla using high-throughput sequencing of the 16S rRNA gene. We find that human skin microbial communities are unique relative to those of other primates, in terms of both their diversity and their composition. These differences appear to reflect both ancient shifts during millions of years of primate evolution and more recent changes due to modern hygiene.


Assuntos
Microbiota , Primatas/microbiologia , Pele/microbiologia , Animais , Biodiversidade , Evolução Biológica , Gorilla gorilla/microbiologia , Humanos , Macaca mulatta/microbiologia , Pan troglodytes/microbiologia , Papio/microbiologia , RNA Arqueal/química , RNA Bacteriano/química , RNA Ribossômico/química
9.
Microbiol Immunol ; 60(12): 811-816, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27921343

RESUMO

Streptococcus troglodytae TKU31 was isolated from the oral cavity of a chimpanzee (Pan troglodytes) and was found to be the most closely related species of the mutans group streptococci to Streptococcus mutans. The complete sequence of TKU31 genome consists of a single circular chromosome that is 2,097,874 base pairs long and has a G + C content of 37.18%. It possesses 2082 coding sequences (CDSs), 65 tRNAs and five rRNA operons (15 rRNAs). Two clustered regularly interspaced short palindromic repeats, six insertion sequences and two predicted prophage elements were identified. The genome of TKU31 harbors some putative virulence associated genes, including gtfB, gtfC and gtfD genes encoding glucosyltransferase and gbpA, gbpB, gbpC and gbpD genes encoding glucan-binding cell wall-anchored protein. The deduced amino acid identity of the rhamnose-glucose polysaccharide F gene (rgpF), which is one of the serotype determinants, is 91% identical with that of S. mutans LJ23 (serotype k) strain. However, two other virulence-associated genes cnm and cbm, which encode the collagen-binding proteins, were not found in the TKU31 genome. The complete genome sequence of S. troglodytae TKU31 has been deposited at DDBJ/European Nucleotide Archive/GenBank under the accession no. AP014612.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Boca/microbiologia , Pan troglodytes/microbiologia , Análise de Sequência de DNA , Streptococcus/genética , Animais , Composição de Bases , Genes Bacterianos , Sequências Repetitivas Dispersas , Sequências Repetitivas de Ácido Nucleico , Streptococcus/isolamento & purificação , Fatores de Virulência/genética
11.
Proc Natl Acad Sci U S A ; 109(32): 13034-9, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826227

RESUMO

The gastrointestinal tract harbors large and diverse populations of bacteria that vary among individuals and within individuals over time. Numerous internal and external factors can influence the contents of these microbial communities, including diet, geography, physiology, and the extent of contact among hosts. To investigate the contributions of such factors to the variation and changes in gut microbial communities, we analyzed the distal gut microbiota of individual chimpanzees from two communities in Gombe National Park, Tanzania. These samples, which were derived from 35 chimpanzees, many of whom have been monitored for multiple years, provide an unusually comprehensive longitudinal depth for individuals of known genetic relationships. Although the composition of the great-ape microbiota has been shown to codiversify with host species, indicating that host genetics and phylogeny have played a major role in its differentiation over evolutionary timescales, the geneaological relationships of individual chimpanzees did not coincide with the similarity in their gut microbial communities. However, the inhabitants from adjacent chimpanzee communities could be distinguished based on the contents of their gut microbiota. Despite the broad similarity of community members, as would be expected from shared diet or interactions, long-term immigrants to a community often harbored the most distinctive gut microbiota, suggesting that individuals retain hallmarks of their previous gut microbial communities for extended periods. This pattern was reinforced in several chimpanzees sampled over long temporal scales, in which the major constituents of the gut microbiota were maintained for nearly a decade.


Assuntos
Evolução Biológica , Trato Gastrointestinal/microbiologia , Variação Genética , Pan troglodytes/microbiologia , Animais , Primers do DNA/genética , Fezes/microbiologia , Linhagem , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Estatísticas não Paramétricas , Tanzânia
12.
PLoS Pathog ; 8(5): e1002693, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22589724

RESUMO

When modern humans left Africa ca. 60,000 years ago (60 kya), they were already infected with Helicobacter pylori, and these bacteria have subsequently diversified in parallel with their human hosts. But how long were humans infected by H. pylori prior to the out-of-Africa event? Did this co-evolution predate the emergence of modern humans, spanning the species divide? To answer these questions, we investigated the diversity of H. pylori in Africa, where both humans and H. pylori originated. Three distinct H. pylori populations are native to Africa: hpNEAfrica in Afro-Asiatic and Nilo-Saharan speakers, hpAfrica1 in Niger-Congo speakers and hpAfrica2 in South Africa. Rather than representing a sustained co-evolution over millions of years, we find that the coalescent for all H. pylori plus its closest relative H. acinonychis dates to 88-116 kya. At that time the phylogeny split into two primary super-lineages, one of which is associated with the former hunter-gatherers in southern Africa known as the San. H. acinonychis, which infects large felines, resulted from a later host jump from the San, 43-56 kya. These dating estimates, together with striking phylogenetic and quantitative human-bacterial similarities show that H. pylori is approximately as old as are anatomically modern humans. They also suggest that H. pylori may have been acquired via a single host jump from an unknown, non-human host. We also find evidence for a second Out of Africa migration in the last 52,000 years, because hpEurope is a hybrid population between hpAsia2 and hpNEAfrica, the latter of which arose in northeast Africa 36-52 kya, after the Out of Africa migrations around 60 kya.


Assuntos
Evolução Molecular , Infecções por Helicobacter/microbiologia , Helicobacter pylori/classificação , Helicobacter pylori/genética , África , Animais , Gatos , Emigração e Imigração , Variação Genética , Infecções por Helicobacter/epidemiologia , Humanos , Dados de Sequência Molecular , Pan troglodytes/microbiologia , Filogenia , RNA Ribossômico 16S/genética
13.
Am J Primatol ; 76(2): 103-10, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24395648

RESUMO

Information on the chimpanzee nasopharygeal colonization in captive sanctuaries and in the wild is rare. This study was undertaken to establish the nasopharygeal colonization and potential bacterial pathogens in sanctuary chimpanzees as a basis for improving chimpanzee and employee health. Nasopharygeal colonization of 39 healthy chimpanzees were analyzed by microbiological cultivation method and polymerase chain reaction (PCR) targeting the bacterial 16S rRNA gene. We report four major phyla dominated by Proteobacteria (50%), Fermicutes (35.7%), Bacteriodes (7.1%), and Cynobacteria (7.1%) in healthy semi-captive chimpanzees. Further classification based on 7-base oligomers revealed the following genera: Streptococcus, Veillonella, Neisseria, Prevotella, Kingella and unclassified Cynobacteria, Actinobacillus, Bacteriodes and Pasteurellaceae. On microbiological cultivation we were able to identify and characterize some of the bacteria to species level as Klebsiella pneumonie and Pseudomonas aeruginosa being dominant bacteria with 54.7% and 50% colonization, respectively. Of these, Streptococcus, Neisseria, Klebsiella, and Haemophillus have representatives known to potentially cause severe respiratory disease. Our data present important information on chimpanzee nasopharygeal colonization as a guide to understanding disease processes and pharmaceutical therapies required for improving the health of chimpanzees. The results from this study will guide the processes to improve procedures for routine management of sanctuary chimpanzees and use it as a basis for evaluation of future reintroduction possibilities.


Assuntos
Bactérias/crescimento & desenvolvimento , Nasofaringe/microbiologia , Pan troglodytes/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Bacteroides/genética , Bacteroides/isolamento & purificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , DNA Bacteriano/análise , Farmacorresistência Bacteriana , Feminino , Humanos , Masculino , Neisseria/classificação , Neisseria/genética , Filogenia , Reação em Cadeia da Polimerase/veterinária , Prevotella/classificação , Prevotella/genética , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Streptococcus/classificação , Streptococcus/genética , Uganda , Veillonella/classificação , Veillonella/genética , Zoonoses/microbiologia , Zoonoses/transmissão
14.
Emerg Infect Dis ; 19(6): 969-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23735084

RESUMO

Tuberculosis (TB) is caused by gram-positive bacteria known as the Mycobacterium tuberculosis complex (MTBC). MTBC include several human-associated lineages and several variants adapted to domestic and, more rarely, wild animal species. We report an M. tuberculosis strain isolated from a wild chimpanzee in Côte d'Ivoire that was shown by comparative genomic and phylogenomic analyses to belong to a new lineage of MTBC, closer to the human-associated lineage 6 (also known as M. africanum West Africa 2) than to the other classical animal-associated MTBC strains. These results show that the general view of the genetic diversity of MTBC is limited and support the possibility that other MTBC variants exist, particularly in wild mammals in Africa. Exploring this diversity is crucial to the understanding of the biology and evolutionary history of this widespread infectious disease.


Assuntos
Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , Pan troglodytes/microbiologia , Animais , Doenças dos Símios Antropoides/microbiologia , Doenças dos Símios Antropoides/patologia , Feminino , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Tuberculose/veterinária
15.
BMC Microbiol ; 13: 204, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24025115

RESUMO

BACKGROUND: It is increasingly recognized that the bacteria that live in and on the human body (the microbiome) can play an important role in health and disease. The composition of the microbiome is potentially influenced by both internal factors (such as phylogeny and host physiology) and external factors (such as diet and local environment), and interspecific comparisons can aid in understanding the importance of these factors. RESULTS: To gain insights into the relative importance of these factors on saliva microbiome diversity, we here analyze the saliva microbiomes of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) from two sanctuaries in Africa, and from human workers at each sanctuary. The saliva microbiomes of the two Pan species are more similar to one another, and the saliva microbiomes of the two human groups are more similar to one another, than are the saliva microbiomes of human workers and apes from the same sanctuary. We also looked for the existence of a core microbiome and find no evidence for a taxon-based core saliva microbiome for Homo or Pan. In addition, we studied the saliva microbiome from apes from the Leipzig Zoo, and found an extraordinary diversity in the zoo ape saliva microbiomes that is not found in the saliva microbiomes of the sanctuary animals. CONCLUSIONS: The greater similarity of the saliva microbiomes of the two Pan species to one another, and of the two human groups to one another, are in accordance with both the phylogenetic relationships of the hosts as well as with host physiology. Moreover, the results from the zoo animals suggest that novel environments can have a large impact on the microbiome, and that microbiome analyses based on captive animals should be viewed with caution as they may not reflect the microbiome of animals in the wild.


Assuntos
Microbiota , Pan paniscus/microbiologia , Pan troglodytes/microbiologia , Saliva/microbiologia , Adulto , África , Animais , Alemanha , Humanos , Adulto Jovem
16.
Int J Syst Evol Microbiol ; 63(Pt 2): 449-453, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22467158

RESUMO

A facultative anaerobic, non-motile, non-spore-forming, Gram-positive-staining, coccus-shaped bacterium was isolated from an abscess on the right foot of a chimpanzee (Pan troglodytes). The colonies were ß-haemolytic. Catalase and oxidase activities were negative. The Lancefield group B antigen was expressed. On the basis of morphological and biochemical characteristics, the bacterium was tentatively identified as a streptococcal species. 16S rRNA gene sequence analysis indicated that the bacterium shared 96.7 %, 96.4 %, 96.1 %, 95.8 % and 95.7 % sequence similarities with Streptococcus gordonii, S. cristatus, S. intermedius, S. anginosus and S. constellatus, respectively. Phylogenetic analyses based on the sequences of the 16S rRNA gene and housekeeping genes encoding D-alanine : D-alanine ligase (ddl), the ß-subunit of RNA polymerase (rpoB) and manganese-dependent superoxide dismutase (sodA) revealed that the bacterium represented a novel species closely related to, albeit different from, S. gordonii, S. cristatus and the anginosus streptococci. The name Streptococcus troglodytidis sp. nov. is proposed. The type strain is M09-11185(T) ( = ATCC BAA-2337(T) = KCTC 33006(T)).


Assuntos
Doenças do Pé/microbiologia , Pan troglodytes/microbiologia , Filogenia , Infecções Estreptocócicas/veterinária , Streptococcus/classificação , Abscesso/microbiologia , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Genes Bacterianos , Masculino , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus/isolamento & purificação
17.
Int J Syst Evol Microbiol ; 63(Pt 2): 418-422, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22447699

RESUMO

Six strains, TKU 25, TKU 28, TKU 30, TKU 31(T), TKU 33 and TKU 34, were isolated from the oral cavity of a chimpanzee (Pan troglodytes). Colonies of strains grown on Mitis-Salivarius agar were similar in morphology to that of Streptococcus mutans. The novel strains were Gram-stain-positive, facultatively anaerobic cocci that lacked catalase activity. Analysis of the partial 16S rRNA gene sequences of these isolates showed that the most closely related strain was the type strain of S. mutans (96.4 %). The next closely related strains to the isolates were the type strains of Streptococcus devriesei (94.5 %) and Streptococcus downei (93.9 %). These isolates could be distinguished from S. mutans by inulin fermentation and alkaline phosphatase activity (API ZYM system). The peptidoglycan type of the novel isolates was Glu-Lys-Ala(3). Strains were not susceptible to bacitracin. On the basis of phenotypic characterization, partial 16S rRNA gene and two housekeeping gene (groEL and sodA) sequence data, we propose a novel taxon, Streptococcus troglodytae sp. nov.; the type strain is TKU 31(T) ( = JCM 18038(T) = DSM 25324(T)).


Assuntos
Boca/microbiologia , Pan troglodytes/microbiologia , Filogenia , Streptococcus/classificação , Fosfatase Alcalina/metabolismo , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Inulina/metabolismo , Dados de Sequência Molecular , Peptidoglicano/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptococcus/genética , Streptococcus/isolamento & purificação
18.
Am J Primatol ; 74(12): 1076-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22899168

RESUMO

This commentary discusses the findings and conclusions of the paper "Drug resistant human Staphylococcus aureus findings in sanctuary apes and its threat to wild ape populations." This paper confirms the zoonotic transfer of Staphylococcus aureus in a sanctuary setting. The assertion that this in itself is enough to reconsider the conservation potential of ape reintroduction provides an opportunity to discuss risk analysis of pathogen transmission, following IUCN guidelines, using S. aureus as an example. It is concluded that ape reintroduction projects must have disease risk mitigation strategies that include effective biosecurity protocols and pathogen surveillance. These strategies will assist with creating a well planned and executed reintroduction. This provides one way to enforce habitat protection, to minimise human encroachment and the risks from the illegal wildlife trade. Thus reintroduction must remain a useful tool in the conservation toolbox.


Assuntos
Animais de Zoológico/microbiologia , Farmacorresistência Bacteriana , Pan troglodytes/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/isolamento & purificação , Animais , Humanos
19.
Am J Primatol ; 74(12): 1071-5, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22907634

RESUMO

Reintroduction of sanctuary apes to natural habitat is considered an important tool for conservation; however, reintroduction has the potential to endanger resident wild apes through the introduction of human pathogens. We found a high prevalence of drug-resistant, human-associated lineages of Staphylococcus aureus in sanctuary chimpanzees (Pan troglodytes) from Zambia and Uganda. This pathogen is associated with skin and soft tissue diseases and severe invasive infections (i.e. pneumonia and septicemia). Colonization by this bacterium is difficult to clear due to frequent recolonization. In addition to its pathogenic potential, human-related S. aureus can serve as an indicator organism for the transmission of other potential pathogens like pneumococci or mycobacteria. Plans to reintroduce sanctuary apes should be reevaluated in light of the high risk of introducing human-adapted S. aureus into wild ape populations where treatment is impossible.


Assuntos
Animais de Zoológico/microbiologia , Farmacorresistência Bacteriana , Pan troglodytes/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/isolamento & purificação , Animais , Toxinas Bacterianas/isolamento & purificação , Estudos Transversais , Espécies em Perigo de Extinção , Exotoxinas/isolamento & purificação , Genótipo , Humanos/microbiologia , Leucocidinas/isolamento & purificação , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/química , Staphylococcus aureus/fisiologia
20.
PLoS One ; 17(2): e0261103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35196314

RESUMO

A variety of islet autoantibodies (AAbs) can predict and possibly dictate eventual type 1 diabetes (T1D) diagnosis. Upwards of 75% of those with T1D are positive for AAbs against glutamic acid decarboxylase (GAD65 or GAD), a producer of gamma-aminobutyric acid (GABA) in human pancreatic beta cells. Interestingly, bacterial populations within the human gut also express GAD and produce GABA. Evidence suggests that dysbiosis of the microbiome may correlate with T1D pathogenesis and physiology. Therefore, autoimmune linkages between the gut microbiome and islets susceptible to autoimmune attack need to be further elucidated. Utilizing in silico analyses, we show that 25 GAD sequences from human gut bacterial sources show sequence and motif similarities to human beta cell GAD65. Our motif analyses determined that most gut GAD sequences contain the pyroxical dependent decarboxylase (PDD) domain of human GAD65, which is important for its enzymatic activity. Additionally, we showed overlap with known human GAD65 T cell receptor epitopes, which may implicate the immune destruction of beta cells. Thus, we propose a physiological hypothesis in which changes in the gut microbiome in those with T1D result in a release of bacterial GAD, thus causing miseducation of the host immune system. Due to the notable similarities we found between human and bacterial GAD, these deputized immune cells may then target human beta cells leading to the development of T1D.


Assuntos
Autoanticorpos/imunologia , Bactérias/enzimologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/imunologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Simulação por Computador , Diabetes Mellitus Tipo 1/enzimologia , Epitopos de Linfócito T/imunologia , Genes Bacterianos , Humanos , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/imunologia , Camundongos , Pan troglodytes/microbiologia , Filogenia , Domínios Proteicos , Alinhamento de Sequência/métodos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa