Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.786
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 165(7): 1632-1643, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315480

RESUMO

Ligand-directed signal bias offers opportunities for sculpting molecular events, with the promise of better, safer therapeutics. Critical to the exploitation of signal bias is an understanding of the molecular events coupling ligand binding to intracellular signaling. Activation of class B G protein-coupled receptors is driven by interaction of the peptide N terminus with the receptor core. To understand how this drives signaling, we have used advanced analytical methods that enable separation of effects on pathway-specific signaling from those that modify agonist affinity and mapped the functional consequence of receptor modification onto three-dimensional models of a receptor-ligand complex. This yields molecular insights into the initiation of receptor activation and the mechanistic basis for biased agonism. Our data reveal that peptide agonists can engage different elements of the receptor extracellular face to achieve effector coupling and biased signaling providing a foundation for rational design of biased agonists.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Peptídeos/farmacologia , Peçonhas/farmacologia , Animais , Células CHO , Cálcio/metabolismo , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Exenatida , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxintomodulina/química , Oxintomodulina/metabolismo , Peptídeos/química , Ratos , Transdução de Sinais , Peçonhas/química
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38493344

RESUMO

Venomous organisms have independently evolved the ability to produce toxins 101 times during their evolutionary history, resulting in over 200 000 venomous species. Collectively, these species produce millions of toxins, making them a valuable resource for bioprospecting and understanding the evolutionary mechanisms underlying genetic diversification. RNA-seq is the preferred method for characterizing toxin repertoires, but the analysis of the resulting data remains challenging. While early approaches relied on similarity-based mapping to known toxin databases, recent studies have highlighted the importance of structural features for toxin detection. The few existing pipelines lack an integration between these complementary approaches, and tend to be difficult to run for non-experienced users. To address these issues, we developed DeTox, a comprehensive and user-friendly tool for toxin research. It combines fast execution, parallelization and customization of parameters. DeTox was tested on published transcriptomes from gastropod mollusks, cnidarians and snakes, retrieving most putative toxins from the original articles and identifying additional peptides as potential toxins to be confirmed through manual annotation and eventually proteomic analysis. By integrating a structure-based search with similarity-based approaches, DeTox allows the comprehensive characterization of toxin repertoire in poorly-known taxa. The effect of the taxonomic bias in existing databases is minimized in DeTox, as mirrored in the detection of unique and divergent toxins that would have been overlooked by similarity-based methods. DeTox streamlines toxin annotation, providing a valuable tool for efficient identification of venom components that will enhance venom research in neglected taxa.


Assuntos
Toxinas Biológicas , Peçonhas , Animais , Peçonhas/genética , Peçonhas/química , Proteômica , Toxinas Biológicas/genética , Serpentes , Peptídeos , Transcriptoma
3.
Nature ; 587(7833): 240-245, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177664

RESUMO

The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.


Assuntos
Conservação dos Recursos Naturais , Eutérios/classificação , Eutérios/genética , Variação Genética , Genômica/métodos , Descoberta do Conhecimento , Animais , Biodiversidade , Pesquisa Biomédica , Conservação dos Recursos Naturais/métodos , Evolução Molecular , Extinção Biológica , Especiação Genética , Humanos , Infecções , Descoberta do Conhecimento/métodos , Perda de Heterozigosidade , Neoplasias , Filogenia , Medição de Risco , Seleção Genética , Alinhamento de Sequência , Especificidade da Espécie , Peçonhas
4.
Proc Natl Acad Sci U S A ; 120(29): e2305871120, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37428925

RESUMO

Larvae of the genus Megalopyge (Lepidoptera: Zygaenoidea: Megalopygidae), known as asp or puss caterpillars, produce defensive venoms that cause severe pain. Here, we present the anatomy, chemistry, and mode of action of the venom systems of caterpillars of two megalopygid species, the Southern flannel moth Megalopyge opercularis and the black-waved flannel moth Megalopyge crispata. We show that megalopygid venom is produced in secretory cells that lie beneath the cuticle and are connected to the venom spines by canals. Megalopygid venoms consist of large aerolysin-like pore-forming toxins, which we have named megalysins, and a small number of peptides. The venom system differs markedly from those of previously studied venomous zygaenoids of the family Limacodidae, suggestive of an independent origin. Megalopygid venom potently activates mammalian sensory neurons via membrane permeabilization and induces sustained spontaneous pain behavior and paw swelling in mice. These bioactivities are ablated by treatment with heat, organic solvents, or proteases, indicating that they are mediated by larger proteins such as the megalysins. We show that the megalysins were recruited as venom toxins in the Megalopygidae following horizontal transfer of genes from bacteria to the ancestors of ditrysian Lepidoptera. Megalopygids have recruited aerolysin-like proteins as venom toxins convergently with centipedes, cnidarians, and fish. This study highlights the role of horizontal gene transfer in venom evolution.


Assuntos
Mordeduras e Picadas , Mariposas , Toxinas Biológicas , Animais , Camundongos , Transferência Genética Horizontal , Mariposas/genética , Larva/genética , Peçonhas , Dor , Mamíferos
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983844

RESUMO

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a mixture of potent bioactive molecules to subdue prey or predators-venom. This makes it one of the most widespread, convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed a comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland-specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turn, activates regulatory networks for epithelial development, cell turnover, and maintenance, which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents a first step toward an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


Assuntos
Evolução Molecular , Filogenia , Transcriptoma , Peçonhas , Estruturas Animais/metabolismo , Animais , Peçonhas/biossíntese , Peçonhas/genética
6.
J Proteome Res ; 23(8): 3638-3648, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39038168

RESUMO

Heloderma horridum horridum, a venomous reptile native to America, has a venom with potential applications in treating type II diabetes. In this work, H. h. horridum venom was extracted, lyophilized, and characterized using enzymatic assays for hyaluronidase, phospholipase, and protease. Proteomic analysis of the venom was conducted employing bottom-up/shotgun approaches, SDS-PAGE, high-pH reversed-phase chromatography, and fractionation of tryptic peptides using nano-LC-MS/MS. The proteins found in H. h. horridum venom were reviewed according to the classification of the transcriptome previously reported. The proteomic approach identified 101 enzymes, 36 other proteins, 15 protein inhibitors, 11 host defense proteins, and 1 toxin, including novel venom components such as calcium-binding proteins, phospholipase A2 inhibitors, serpins, cathepsin, subtilases, carboxypeptidase-like, aminopeptidases, glycoside hydrolases, thioredoxin transferases, acid ceramidase-like, enolase, multicopper oxidases, phosphoglucose isomerase (PGI), fructose-1,6-bisphosphatase class 1, pentraxin-related, peptidylglycine α-hydroxylating monooxygenase/peptidyl-hydroxyglycine α-amidating lyase, carbonic anhydrase, acetylcholinesterase, dipeptidylpeptidase, and lysozymes. These findings contribute to understanding the venomous nature of H. h. horridum and highlight its potential as a source of bioactive compounds. Data are available via PRoteomeXchange with the identifier PXD052417.


Assuntos
Animais Peçonhentos , Lagartos , Proteômica , Espectrometria de Massas em Tandem , Peçonhas , Animais , Animais Peçonhentos/genética , Animais Peçonhentos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/genética , Hypocreales/química , Hypocreales/genética , Lagartos/genética , Lagartos/metabolismo , Proteoma/análise , Proteômica/métodos , Proteínas de Répteis/genética , Proteínas de Répteis/metabolismo , Proteínas de Répteis/química , Transcriptoma , Peçonhas/química
7.
BMC Genomics ; 25(1): 84, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245722

RESUMO

BACKGROUND: Venoms have evolved independently over a hundred times in the animal kingdom to deter predators and/or subdue prey. Venoms are cocktails of various secreted toxins, whose origin and diversification provide an appealing system for evolutionary researchers. Previous studies of the ant venom of Tetramorium bicarinatum revealed several Myrmicitoxin (MYRTX) peptides that gathered into seven precursor families suggesting different evolutionary origins. Analysis of the T. bicarinatum genome enabling further genomic approaches was necessary to understand the processes underlying the evolution of these myrmicitoxins. RESULTS: Here, we sequenced the genome of Tetramorium bicarinatum and reported the organisation of 44 venom peptide genes (vpg). Of the eleven chromosomes that make up the genome of T. bicarinatum, four carry the vpg which are organized in tandem repeats. This organisation together with the ML evolutionary analysis of vpg sequences, is consistent with evolution by local duplication of ancestral genes for each precursor family. The structure of the vpg into two or three exons is conserved after duplication events while the promoter regions are the least conserved parts of the vpg even for genes with highly identical sequences. This suggests that enhancer sequences were not involved in duplication events, but were recruited from surrounding regions. Expression level analysis revealed that most vpg are highly expressed in venom glands, although one gene or group of genes is much more highly expressed in each family. Finally, the examination of the genomic data revealed that several genes encoding transcription factors (TFs) are highly expressed in the venom glands. The search for binding sites (BS) of these TFs in the vpg promoters revealed hot spots of GATA sites in several vpg families. CONCLUSION: In this pioneering investigation on ant venom genes, we provide a high-quality assembly genome and the annotation of venom peptide genes that we think can fosters further genomic research to understand the evolutionary history of ant venom biochemistry.


Assuntos
Venenos de Formiga , Formigas , Humanos , Animais , Peçonhas/genética , Venenos de Formiga/química , Venenos de Formiga/genética , Venenos de Formiga/metabolismo , Peptídeos/metabolismo , Genoma , Formigas/genética , Evolução Molecular
8.
J Mol Evol ; 92(4): 505-524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39026042

RESUMO

Gene duplication followed by nucleotide differentiation is one of the simplest mechanisms to develop new functions for genes. However, the evolutionary processes underlying the divergence of multigene families remain controversial. We used multigene families found within the diversity of toxic proteins in centipede venom to test two hypotheses related to venom evolution: the two-speed mode of venom evolution and the rapid accumulation of variation in exposed residues (RAVER) model. The two-speed mode of venom evolution proposes that different types of selection impact ancient and younger venomous lineages with negative selection being the predominant form in ancient lineages and positive selection being the dominant form in younger lineages. The RAVER hypothesis proposes that, instead of different types of selection acting on different ages of venomous lineages, the different types of selection will selectively contribute to amino acid variation based on whether the residue is exposed to the solvent where it can potentially interact directly with toxin targets. This hypothesis parallels the longstanding understanding of protein evolution that suggests that residues found within the structural or active regions of the protein will be under negative or purifying selection, and residues that do not form part of these areas will be more prone to positive selection. To test these two hypotheses, we compared the venom of 26 centipedes from the order Scolopendromorpha from six currently recognized species from across North America using both transcriptomics and proteomics. We first estimated their phylogenetic relationships and uncovered paraphyly among the genus Scolopendra and evidence for cryptic diversity among currently recognized species. Using our phylogeny, we then characterized the diverse venom components from across the identified clades using a combination of transcriptomics and proteomics. We conducted selection-based analyses in the context of predicted three-dimensional properties of the venom proteins and found support for both hypotheses. Consistent with the two-speed hypothesis, we found a prevalence of negative selection across all proteins. Consistent with the RAVER hypothesis, we found evidence of positive selection on solvent-exposed residues, with structural and less-exposed residues showing stronger signal for negative selection. Through the use of phylogenetics, transcriptomics, proteomics, and selection-based analyses, we were able to describe the evolution of venom from an ancient venomous lineage and support principles of protein evolution that directly relate to multigene family evolution.


Assuntos
Artrópodes , Evolução Molecular , Filogenia , Seleção Genética , Animais , Artrópodes/genética , Venenos de Artrópodes/genética , Venenos de Artrópodes/química , Família Multigênica , Peçonhas/genética , Peçonhas/química , América do Norte , Duplicação Gênica , Modelos Moleculares , Conformação Proteica
9.
Diabetes Obes Metab ; 26(1): 329-338, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818589

RESUMO

AIM: The aim of the present study was to assess the long-term therapeutic efficacy of a recently discovered 28 amino acid peptide, Δ-theraphotoxin-Ac1 (Δ-TRTX-Ac1), originally isolated from venom of the Aphonopelma chalcodes tarantula. Δ-TRTX-Ac has previously been shown to improve pancreatic beta-cell function and suppress appetite. MATERIALS AND METHODS: Δ-TRTX-Ac1 was administered twice daily in high-fat fed (HFF) mice with streptozotocin (STZ)-induced insulin deficiency, namely HFF/STZ mice, for 28 days both alone and in combination with the venom-derived glucagon-like peptide-1 (GLP-1) mimetic, exenatide. RESULTS: Initial pharmacokinetic profiling of ΔTRTX-Ac1 revealed a plasma half-life of 2 h in mice, with ΔTRTX-Ac1 also evidenced in the pancreas 12 h post-injection. Accordingly, HFF-STZ mice received twice-daily injections of Δ-TRTX-Ac1, exenatide or a combination of both peptides for 28 days. As anticipated, HFF/STZ mice presented with hyperglycaemia, impaired glucose tolerance, decreased plasma and pancreatic insulin and disturbed pancreatic islet morphology. Administration of ΔTRTX-Ac1 reduced body weight, improved glucose tolerance and augmented pancreatic insulin content while decreasing glucagon content. Exenatide had similar benefits on body weight and pancreatic hormone content while also reducing circulating glucose. ΔTRTX-Ac1 decreased energy expenditure on day 28 whereas exenatide had no impact. All treatment regimens restored pancreatic islet and beta-cell area towards lean control levels, which was linked to significantly elevated beta-cell proliferation rates. In terms of benefits of combined ΔTRTX-Ac1 and exenatide treatment over individual agents, there was augmentation of glucose tolerance and ambulatory activity with combination therapy, and these mice presented with increased pancreatic glucagon. CONCLUSION: These data highlight the therapeutic promise of ΔTRTX-Ac1 for diabetes, with suggestion that benefits could be enhanced through combined administration with exenatide.


Assuntos
Glucagon , Hipoglicemiantes , Camundongos , Animais , Exenatida , Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Insulina/metabolismo , Peçonhas/farmacologia , Peçonhas/uso terapêutico , Glucose , Peso Corporal
10.
Diabetes Obes Metab ; 26(3): 989-996, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151964

RESUMO

AIM: To examine the real-world efficacy of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) in monogenic obesity in patients with Alström syndrome (ALMS). METHODS: We screened 72 UK adult patients with ALMS and offered treatment to 34 patients meeting one of the following criteria: body mass index of 25 kg/m2 or higher, insulin resistance, suboptimal glycaemic control on antihyperglycaemic medications or non-alcoholic fatty liver disease. RESULTS: In total, 30 patients, with a mean age of 31 ± 11 years and a male to-female ratio of 2:1, completed 6 months of treatment with GLP-1 RAs either in the form of semaglutide or exenatide. On average, treatment with GLP-1 RAs reduced body weight by 5.4 ± 1.7 (95% confidence interval [CI] 3.6-7) kg and HbA1c by 12 ± 3.3 (95% CI 8.7-15.3) mmol/mol, equating to 6% weight loss (P < .01) and 1.1% absolute reduction in HbA1c (P < .01). Significant improvements were also observed in serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and alanine aminotransferase. The improvement of metabolic variables in our cohort of monogenic syndromic obesity was comparable with data for polygenic obesity, irrespective of weight loss. CONCLUSIONS: Data from our centre highlight the non-inferiority of GLP-1 RAs in monogenic syndromic obesity to the available GLP-1 RA-use data in polygenic obesity, therefore, these agents can be considered as a treatment option in patients with ALMS, as well as other forms of monogenic obesity.


Assuntos
Síndrome de Alstrom , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Masculino , Feminino , Adulto Jovem , Peptídeo 1 Semelhante ao Glucagon/agonistas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hemoglobinas Glicadas , Síndrome de Alstrom/complicações , Síndrome de Alstrom/tratamento farmacológico , Síndrome de Alstrom/genética , Liraglutida/uso terapêutico , Peptídeos/uso terapêutico , Glicemia/metabolismo , Peçonhas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Redução de Peso , Colesterol , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
11.
J Toxicol Environ Health B Crit Rev ; 27(1): 1-20, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37889647

RESUMO

Bioactive compounds derived from secondary metabolism in animals have refined selectivity and potency for certain biological targets. The superfamily Dendrobatoidea is adapted to the dietary sequestration and secretion of toxic alkaloids, which play a role in several biological activities, and thus serve as a potential source for pharmacological and biotechnological applications. This article constitutes a scoping review to understand the trends in experimental research involving bioactive alkaloids derived from Dendrobatoidea based upon scientometric approaches. Forty-eight (48) publications were found in 30 journals in the period of 60 years, between 1962 and 2022. More than 23 structural classes of alkaloids were cited, with 27.63% for batrachotoxins, 13.64% for pyridinics, with an emphasis on epibatidine, 16.36% for pumiliotoxins, and 11.82% for histrionicotoxins. These tests included in vivo (54.9%), in vitro (39.4%), and in silico simulations (5.6%). Most compounds (54.8%) were isolated from skin extracts, whereas the remainder were obtained through molecular synthesis. Thirteen main biological activities were identified, including acetylcholinesterase inhibitors (27.59%), sodium channel inhibitors (12.07%), cardiac (12.07%), analgesic (8.62%), and neuromuscular effects (8.62%). The substances were cited as being of natural origin in the "Dendrobatidae" family, genus "Phyllobates," "Dendrobates," and seven species: Epipedobates tricolor, Phyllobates aurotaenia, Oophaga histrionica, Oophaga pumilio, Phyllobates terribilis, Epipedobates anthonyi, and Ameerega flavopicta. To date, only a few biological activities have been experimentally tested; hence, further studies on the bioprospecting of animal compounds and ecological approaches are needed.


Assuntos
Alcaloides , Peçonhas , Animais , Acetilcolinesterase , Anuros/metabolismo , Batraquiotoxinas/química , Alcaloides/química , Alcaloides/metabolismo
12.
Brain ; 146(5): 1821-1830, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36907221

RESUMO

Therapeutics to reduce intracranial pressure are an unmet need. Preclinical data have demonstrated a novel strategy to lower intracranial pressure using glucagon-like peptide-1 (GLP-1) receptor signalling. Here, we translate these findings into patients by conducting a randomized, placebo-controlled, double-blind trial to assess the effect of exenatide, a GLP-1 receptor agonist, on intracranial pressure in idiopathic intracranial hypertension. Telemetric intracranial pressure catheters enabled long-term intracranial pressure monitoring. The trial enrolled adult women with active idiopathic intracranial hypertension (intracranial pressure >25 cmCSF and papilloedema) who receive subcutaneous exenatide or placebo. The three primary outcome measures were intracranial pressure at 2.5 h, 24 h and 12 weeks and alpha set a priori at less than 0.1. Among the 16 women recruited, 15 completed the study (mean age 28 ± 9, body mass index 38.1 ± 6.2 kg/m2, intracranial pressure 30.6 ± 5.1 cmCSF). Exenatide significantly and meaningfully lowered intracranial pressure at 2.5 h -5.7 ± 2.9 cmCSF (P = 0.048); 24 h -6.4 ± 2.9 cmCSF (P = 0.030); and 12 weeks -5.6 ± 3.0 cmCSF (P = 0.058). No serious safety signals were noted. These data provide confidence to proceed to a phase 3 trial in idiopathic intracranial hypertension and highlight the potential to utilize GLP-1 receptor agonist in other conditions characterized by raised intracranial pressure.


Assuntos
Diabetes Mellitus Tipo 2 , Pseudotumor Cerebral , Adulto , Humanos , Feminino , Adulto Jovem , Exenatida , Pseudotumor Cerebral/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Peptídeos , Peçonhas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico
13.
BMC Vet Res ; 20(1): 211, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762728

RESUMO

Beneficial weight-loss properties of glucagon-like peptide-1 receptor agonists (GLP-1RA) in obese people, with corresponding improvements in cardiometabolic risk factors, are well established. OKV-119 is an investigational drug delivery system that is being developed for the long-term delivery of the GLP-1RA exenatide to feline patients. The purpose of this study was to evaluate the drug release characteristics of subcutaneous OKV-119 implants configured to release exenatide for 84 days. Following a 7-day acclimation period, five purpose-bred cats were implanted with OKV-119 protypes and observed for a 112-day study period. Food intake, weekly plasma exenatide concentrations and body weight were measured. Exenatide plasma concentrations were detected at the first measured timepoint (Day 7) and maintained above baseline for over 84 Days. Over the first 28 days, reduced caloric intake and a reduction in body weight were observed in four of five cats. In these cats, a body weight reduction of at least 5% was maintained throughout the 112-day study period. This study demonstrates that a single OKV-119 implant can deliver the GLP-1RA exenatide for a months long duration. Results suggest that exposure to exenatide plasma concentrations ranging from 1.5 ng/ml to 4 ng/ml are sufficient for inducing weight loss in cats.


Assuntos
Exenatida , Animais , Exenatida/administração & dosagem , Exenatida/farmacocinética , Exenatida/farmacologia , Gatos , Masculino , Feminino , Sistemas de Liberação de Medicamentos/veterinária , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Peso Corporal , Liberação Controlada de Fármacos , Implantes de Medicamento , Ingestão de Alimentos/efeitos dos fármacos , Peçonhas/administração & dosagem , Peçonhas/farmacocinética , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas
14.
Mar Drugs ; 22(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38393042

RESUMO

The venoms of various sea anemones are rich in diverse toxins, which usually play a dual role in capturing prey and deterring predators. However, the complex components of such venoms have not been well known yet. Here, venomics of integrating transcriptomic and proteomic technologies was applied for the first time to identify putative protein and peptide toxins from different tissues of the representative sea anemone, Heteractis magnifica. The transcriptomic analysis of H. magnifica identified 728 putative toxin sequences, including 442 and 381 from the tentacles and the column, respectively, and they were assigned to 68 gene superfamilies. The proteomic analysis confirmed 101 protein and peptide toxins in the venom, including 91 in the tentacles and 39 in the column. The integrated venomics also confirmed that some toxins such as the ShK-like peptides and defensins are co-expressed in both the tentacles and the column. Meanwhile, a homology analysis was conducted to predict the three-dimensional structures and potential activity of seven representative toxins. Altogether, this venomics study revealed the venom complexity of H. magnifica, which will help deepen our understanding of cnidarian toxins, thereby supporting the in-depth development of valuable marine drugs.


Assuntos
Venenos de Cnidários , Anêmonas-do-Mar , Toxinas Biológicas , Animais , Peçonhas/metabolismo , Anêmonas-do-Mar/metabolismo , Proteômica/métodos , Peptídeos/genética , Peptídeos/metabolismo , Venenos de Cnidários/química
15.
BMC Biol ; 21(1): 5, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617555

RESUMO

BACKGROUND: Eusociality is widely considered to evolve through kin selection, where the reproductive success of an individual's close relative is favored at the expense of its own. High genetic relatedness is thus considered a prerequisite for eusociality. While ants are textbook examples of eusocial animals, not all ants form colonies of closely related individuals. One such example is the ectatommine ant Rhytidoponera metallica, which predominantly forms queen-less colonies that have such a low intra-colony relatedness that they have been proposed to represent a transient, unstable form of eusociality. However, R. metallica is among the most abundant and widespread ants on the Australian continent. This apparent contradiction provides an example of how inclusive fitness may not by itself explain the maintenance of eusociality and raises the question of what other selective advantages maintain the eusocial lifestyle of this species. RESULTS: We provide a comprehensive portrait of the venom of R. metallica and show that the colony-wide venom consists of an exceptionally high diversity of functionally distinct toxins for an ant. These toxins have evolved under strong positive selection, which is normally expected to reduce genetic variance. Yet, R. metallica exhibits remarkable intra-colony variation, with workers sharing only a relatively small proportion of toxins in their venoms. This variation is not due to the presence of chemical castes, but has a genetic foundation that is at least in part explained by toxin allelic diversity. CONCLUSIONS: Taken together, our results suggest that the toxin diversity contained in R. metallica colonies may be maintained by a form of group selection that selects for colonies that can exploit more resources and defend against a wider range of predators. We propose that increased intra-colony genetic variance resulting from low kinship may itself provide a selective advantage in the form of an expanded pharmacological venom repertoire. These findings provide an example of how group selection on adaptive phenotypes may contribute to maintaining eusociality where a prerequisite for kin selection is diminished.


Assuntos
Formigas , Animais , Formigas/genética , Peçonhas , Austrália , Reprodução , Comportamento Social
16.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125859

RESUMO

Venoms are a complex cocktail of potent biomolecules and are present in many animal lineages. Owed to their translational potential in biomedicine, agriculture and industrial applications, they have been targeted by several biodiscovery programs in the past. That said, many venomous animals are relatively small and deliver minuscule venom yields. Thus, the most commonly employed activity-guided biodiscovery pipeline cannot be applied effectively. Cell-free protein production may represent an attractive tool to produce selected venom components at high speed and without the creation of genetically modified organisms, promising rapid and highly efficient access to biomolecules for bioactivity studies. However, these methods have only sporadically been used in venom research and their potential remains to be established. Here, we explore the ability of a prokaryote-based cell-free system to produce a range of venom toxins of different types and from various source organisms. We show that only a very limited number of toxins could be expressed in small amounts. Paired with known problems to facilitate correct folding, our preliminary investigation underpins that venom-tailored cell-free systems probably need to be developed before this technology can be employed effectively in venom biodiscovery.


Assuntos
Sistema Livre de Células , Peçonhas , Animais , Peçonhas/metabolismo
17.
Wiad Lek ; 77(1): 120-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38431816

RESUMO

OBJECTIVE: Aim: To establish features of immune reactivity of the spleen and mechanisms of organ damage under the influence of animal venom toxins including scorpions. PATIENTS AND METHODS: Materials and Methods: A thorough literature analysis was conducted on the basis of PubMed, Google Scholar, Web of Science, and Scopus databases. When processing the search results, we chose the newest publications up to 5 years old or the most thorough publications that vividly described the essence of our topic. CONCLUSION: Conclusions: Spleen plays a leading role in the implementation of the body's defense processes, the elimination of structural elements affected by toxins, and the restoration of immune homeostasis. Its participation in the formation of the immune response can be accompanied by qualitative and quantitative changes in histological organization. Morpho-functional changes in the spleen under the action of animal venom toxins currently require careful study, because from the information available in the literature today, it is not possible to clearly construct a complete picture of lesions of certain components of the organ at the microscopic or submicroscopic levels. Therefore, this direction of research in the medical field is currently relevant, taking into account the existence of a large number of poisonous animals, including scorpions.


Assuntos
Escorpiões , Baço , Animais , Escorpiões/química , Peçonhas
18.
Semin Cancer Biol ; 80: 356-369, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32846203

RESUMO

Due to advances in detection and treatment of cancer, especially the rise in the targeted therapy, the five-year relative survival rate of all cancers has increased significantly. However, according to the analysis of the survival rate of cancer patients in 2019, the survival rate of most cancers is still less than five years. Therefore, to combat complex cancer and further improve the 5-year survival rate of cancer patients, it is necessary to develop some new anticancer drugs. Because of the adaptive evolution of toxic species for millions of years, the venom sac is a "treasure bank", which has millions of biomolecules with high affinity and stability awaiting further development. Complete utilization of venom-based and bacteria-derived drugs in the market is still staggering because of incomplete understanding regarding their mode of action. In this review, we focused on the currently identified targets for anticancer effects based on venomous and bacterial biomolecules, such as ion channels, membrane non-receptor molecules, integrins, and other related target molecules. This review will serve as the key for exploring the molecular mechanisms behind the anticancer potential of venom-based and bacteria-derived drugs and will also lay the path for the development of anticancer targeted therapy.


Assuntos
Neoplasias , Peçonhas , Bactérias , Humanos , Neoplasias/tratamento farmacológico , Peçonhas/farmacologia , Peçonhas/uso terapêutico
19.
Biochemistry ; 62(21): 3061-3075, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37862039

RESUMO

Two novel redox conopeptides with proline residues outside and within the active site disulfide loop were derived from the venom duct transcriptome of the marine cone snails Conus frigidus and Conus amadis. Mature peptides with possible post-translational modification of 4-trans-hydroxylation of proline, namely, Fr874, Fr890[P1O], Fr890[P2O], Fr906, Am1038, and Am1054, have been chemically synthesized and characterized using mass spectrometry. The estimated reduction potential of cysteine disulfides of synthetic peptides varied from -298 to -328 mV, similar to the active site cysteine disulfide motifs of the redox family of proteins. Fr906/Am1054 exhibited pronounced catalytic activity and assisted in improving the yields of natively folded globular form α-conotoxin ImI. Three-dimensional (3D) structures of the redox conopeptides were optimized using computational methods and verified by 2D-ROESY NMR spectroscopy: C. frigidus peptides adopt an N-terminal helical fold and C. amadis peptides adopt distinct structures based on the Phe4-Pro/Hyp5 peptide bond configuration. The shift in the cis-trans configuration of the Phe4-Pro/Hyp5 peptide bond of Am1038/Am1054 was observed between reduced free thiol and oxidized disulfide forms of the optimized peptides. The report confirms the position-specific effect of hydroxyproline on the oxidative folding of conotoxins and sequence diversity of redox conopeptides in the venom duct of cone snails.


Assuntos
Conotoxinas , Caramujo Conus , Animais , Transcriptoma , Peçonhas , Cisteína/metabolismo , Conotoxinas/química , Caramujo Conus/genética , Peptídeos/química , Prolina/metabolismo , Dissulfetos/metabolismo , Cistina/metabolismo , Oxirredução , Estresse Oxidativo
20.
J Cell Physiol ; 238(6): 1354-1367, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042220

RESUMO

The voltage-gated sodium channel NaV 1.7 is involved in various pain phenotypes and is physiologically regulated by the NaV -ß3-subunit. Venom toxins ProTx-II and OD1 modulate NaV 1.7 channel function and may be useful as therapeutic agents and/or research tools. Here, we use patch-clamp recordings to investigate how the ß3-subunit can influence and modulate the toxin-mediated effects on NaV 1.7 function, and we propose a putative binding mode of OD1 on NaV 1.7 to rationalise its activating effects. The inhibitor ProTx-II slowed the rate of NaV 1.7 activation, whilst the activator OD1 reduced the rate of fast inactivation and accelerated recovery from inactivation. The ß3-subunit partially abrogated these effects. OD1 induced a hyperpolarising shift in the V1/2 of steady-state activation, which was not observed in the presence of ß3. Consequently, OD1-treated NaV 1.7 exhibited an enhanced window current compared with OD1-treated NaV 1.7-ß3 complex. We identify candidate OD1 residues that are likely to prevent the upward movement of the DIV S4 helix and thus impede fast inactivation. The binding sites for each of the toxins and the predicted location of the ß3-subunit on the NaV 1.7 channel are distinct. Therefore, we infer that the ß3-subunit influences the interaction of toxins with NaV 1.7 via indirect allosteric mechanisms. The enhanced window current shown by OD1-treated NaV 1.7 compared with OD1-treated NaV 1.7-ß3 is discussed in the context of differing cellular expressions of NaV 1.7 and the ß3-subunit in dorsal root ganglion (DRG) neurons. We propose that ß3, as the native binding partner for NaV 1.7 in DRG neurons, should be included during screening of molecules against NaV 1.7 in relevant analgesic discovery campaigns.


Assuntos
Peçonhas , Canais de Sódio Disparados por Voltagem , Humanos , Peçonhas/uso terapêutico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Analgésicos/uso terapêutico , Dor/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa