Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.799
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Immunol ; 211(1): 130-139, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154684

RESUMO

Methyltransferase (METTL3), the most important N6-methyladenosine (m6A) writer, plays a vital role in regulating immune-related signaling pathways. However, the underlying mechanism of METTL3 action remains largely unknown, especially in lower vertebrates. The results of this study show that METTL3 inhibits innate immune response and promotes the infection of miiuy croaker, Miichthys miiuy, by Siniperca chuatsi rhabdovirus and Vibrio anguillarum. Significantly, the function of METTL3 in inhibiting immunity depends on its methylase activity. Mechanistically, METTL3 increases the methylation level of trif and myd88 mRNA, rendering them sensitive to degradation by the YTHDF2/3 reader proteins. By contrast, we found that the YTHDF1 reader protein promotes the translation of myd88 mRNA. In summary, these results indicate that METTL3-mediated m6A modification of trif and myd88 mRNAs suppresses innate immunity by inhibiting the TLR pathway, unveiling a molecular mechanism by which RNA methylation controls innate immunity to pathogens in the teleost fish.


Assuntos
Fator 88 de Diferenciação Mieloide , Perciformes , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Perciformes/genética , Imunidade Inata , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
2.
BMC Genomics ; 25(1): 233, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438840

RESUMO

BACKGROUND: Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. RESULTS: A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. CONCLUSIONS: We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.


Assuntos
Perciformes , Animais , Perciformes/genética , Genômica , Regiões Antárticas , Evolução Biológica , Proteínas Anticongelantes
3.
BMC Genomics ; 25(1): 215, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413941

RESUMO

BACKGROUND: Phylogenetic gaps of public databases of reference sequences are a major obstacle for comparative genomics and management of marine resources, particularly in the Global South, where economically important fisheries and conservation flagship species often lack closely-related references. We applied target-enrichment to obtain complete mitochondrial genomes of marine ichthyofauna from the Brazilian coast selected based on economic significance, conservation status and lack of phylogenetically-close references. These included sardines (Dorosomatidae, Alosidae), mackerels (Scombridae) croakers (Sciaenidae), groupers (Epinephelidae) and snappers (Lutjanidae). RESULTS: Custom baits were designed to enrich mitochondrial DNA across a broad phylogenetic range of fishes. Sequencing generated approximately 100k reads per sample, which were assembled in a total of 70 complete mitochondrial genomes and include fifty-two new additions to GenBank, including five species with no previous mitochondrial data. Departures from the typical gene content and order occurred in only three taxa and mostly involved tRNA gene duplications. Start-codons for all genes, except Cytochrome C Oxidase subunit I (COI), were consistently ATG, whilst a wide range of stop-codons deviated from the prevailing TAA. Phylogenetic analysis confirmed assembly accuracy and revealed signs of cryptic diversification within the Mullus genus. Lineage delimitation methods using Sardinella aurita and S. brasiliensis mitochondrial genomes support a single Operational Taxonomic Unit. CONCLUSIONS: Target enrichment was highly efficient, providing complete novel mitochondrial genomes with little sequencing effort. These sequences are deposited in public databases to enable subsequent studies in population genetics and adaptation of Latin American fish species and serve as a vital resource for conservation and management programs that rely on molecular data for species and genus-level identification.


Assuntos
Genoma Mitocondrial , Perciformes , Animais , Filogenia , Pesqueiros , Peixes/genética , Perciformes/genética , DNA Mitocondrial/genética , Códon
4.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806940

RESUMO

White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group.


Assuntos
Adaptação Fisiológica , Perciformes , Animais , Regiões Antárticas , Peixes/genética , Perciformes/genética , Genômica , Proteínas Anticongelantes
5.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37879119

RESUMO

Expression of multiple hemoglobin isoforms with differing physiochemical properties likely helps species adapt to different environmental and physiological conditions. Antarctic notothenioid fishes inhabit the icy Southern Ocean and display fewer hemoglobin isoforms, each with less affinity for oxygen than temperate relatives. Reduced hemoglobin multiplicity was proposed to result from relaxed selective pressure in the cold, thermally stable, and highly oxygenated Antarctic waters. These conditions also permitted the survival and diversification of white-blooded icefishes, the only vertebrates living without hemoglobin. To understand hemoglobin evolution during adaptation to freezing water, we analyzed hemoglobin genes from 36 notothenioid genome assemblies. Results showed that adaptation to frigid conditions shaped hemoglobin gene evolution by episodic diversifying selection concomitant with cold adaptation and by pervasive evolution in Antarctic notothenioids compared to temperate relatives, likely a continuing adaptation to Antarctic conditions. Analysis of hemoglobin gene expression in adult hematopoietic organs in various temperate and Antarctic species further revealed a switch in hemoglobin gene expression underlying hemoglobin multiplicity reduction in Antarctic fish, leading to a single hemoglobin isoform in adult plunderfishes and dragonfishes, the sister groups to icefishes. The predicted high hemoglobin multiplicity in Antarctic fish embryos based on transcriptomic data, however, raises questions about the molecular bases and physiological implications of diverse hemoglobin isoforms in embryos compared to adults. This analysis supports the hypothesis that the last common icefish ancestor was vulnerable to detrimental mutations affecting the single ancestral expressed alpha- and beta-globin gene pair, potentially predisposing their subsequent loss.


Assuntos
Peixes , Perciformes , Animais , Peixes/genética , Hemoglobinas/genética , Vertebrados , Evolução Molecular , Isoformas de Proteínas , Regiões Antárticas , Perciformes/genética
6.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37770059

RESUMO

Reef stonefish (Synanceia verrucosa) is one of the most venomous fishes, but its biomedical study has been restricted to molecular cloning and purification of its toxins, instead of high-throughput genetic research on related toxin genes. In this study, we constructed a chromosome-level haplotypic genome assembly for the reef stonefish. The genome was assembled into 24 pseudo-chromosomes, and the length totaled 689.74 Mb, reaching a contig N50 of 11.97 Mb and containing 97.8% of complete BUSCOs. A total of 24,050 protein-coding genes were annotated, of which metalloproteinases, C-type lectins, and stonustoxins (sntx) were the most abundant putative toxin genes. Multitissue transcriptomic and venom proteomic data showed that sntx genes, especially those clustered within a 50-kb region on the chromosome 2, had higher transcription levels than other types of toxins as well as those sntx genes scatteringly distributed on other chromosomes. Further comparative genomic analysis predicted an expansion of sntx-like genes in the Percomorpha lineage including nonvenomous fishes, but Scorpaenoidei species experienced extra independent sntx duplication events, marking the clear-cut origin of authentic toxic stonustoxins. In summary, this high-quality genome assembly and related comparative analysis of toxin genes highlight valuable genetic differences for potential involvement in the evolution of venoms among Scorpaeniformes fishes.


Assuntos
Venenos de Peixe , Perciformes , Animais , Proteômica , Venenos de Peixe/genética , Venenos de Peixe/toxicidade , Peixes/genética , Perciformes/genética , Cromossomos/genética
7.
Mol Ecol ; 33(4): e17250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38179694

RESUMO

While haplotype-specific genetic load shapes the evolutionary trajectory of natural and captive populations, mixed-haplotype assembly and genotyping hindered its characterization in diploids. Herein, we produced two phased genome assemblies of the critically endangered fish Chinese Bahaba (Bahaba taipingensis, Sciaenidae, Teleostei) and resequenced 20 whole genomes to quantify population genetic load at a haplotype level. We identified frame-shifting variants as the most deleterious type, followed by mutations in the 5'-UTR, 3'-UTR and missense mutations at conserved amino acids. Phased haplotypes revealed gene deletions and high-impact deleterious variants. We estimated ~1.12% of genes missing or interrupted per haplotype, with a significant overlap of disrupted genes (30.35%) between haplotype sets. Relative proportions of deleterious variant categories differed significantly between haplotypes. Simulations suggested that purifying selection struggled to purge slightly deleterious genetic load in captive breeding compared to genotyping interventions, and that higher inter-haplotypic variance of genetic load predicted more efficient purging by artificial selection. Combining the knowledge of haplotype-resolved genetic load with predictive modelling will be immensely useful for understanding the evolution of deleterious variants and guiding conservation planning.


Assuntos
Variação Genética , Perciformes , Animais , Haplótipos/genética , Carga Genética , Mutação , Perciformes/genética , China
8.
Mol Ecol ; 33(14): e17436, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38872589

RESUMO

Even seemingly homogeneous on the surface, the oceans display high environmental heterogeneity across space and time. Indeed, different soft barriers structure the marine environment, which offers an appealing opportunity to study various evolutionary processes such as population differentiation and speciation. Here, we focus on Amphiprion clarkii (Actinopterygii; Perciformes), the most widespread of clownfishes that exhibits the highest colour polymorphism. Clownfishes can only disperse during a short pelagic larval phase before their sedentary adult lifestyle, which might limit connectivity among populations, thus facilitating speciation events. Consequently, the taxonomic status of A. clarkii has been under debate. We used whole-genome resequencing data of 67 A. clarkii specimens spread across the Indian and Pacific Oceans to characterize the species' population structure, demographic history and colour polymorphism. We found that A. clarkii spread from the Indo-Pacific Ocean to the Pacific and Indian Oceans following a stepping-stone dispersal and that gene flow was pervasive throughout its demographic history. Interestingly, colour patterns differed noticeably among the Indonesian populations and the two populations at the extreme of the sampling distribution (i.e. Maldives and New Caledonia), which exhibited more comparable colour patterns despite their geographic and genetic distances. Our study emphasizes how whole-genome studies can uncover the intricate evolutionary past of wide-ranging species with diverse phenotypes, shedding light on the complex nature of the species concept paradigm.


Assuntos
Fluxo Gênico , Genética Populacional , Perciformes , Animais , Perciformes/genética , Perciformes/classificação , Oceano Pacífico , Pigmentação/genética , Oceano Índico , Evolução Biológica , Sequenciamento Completo do Genoma , Cor
9.
Mol Ecol ; 33(11): e17347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38624248

RESUMO

Clownfish (subfamily Amphiprioninae) are an iconic group of coral reef fish that evolved a mutualistic interaction with sea anemones, which triggered the adaptive radiation of the clade. Within clownfishes, the "skunk complex" is particularly interesting. Besides ecological speciation, interspecific gene flow and hybrid speciation are thought to have shaped the evolution of the group. We investigated the mechanisms characterizing the diversification of this complex. By taking advantage of their disjunct geographical distribution, we obtained whole-genome data of sympatric and allopatric populations of the three main species of the complex (Amphiprion akallopisos, A. perideraion and A. sandaracinos). We examined population structure, genomic divergence and introgression signals and performed demographic modelling to identify the most realistic diversification scenario. We excluded scenarios of strict isolation or hybrid origin of A. sandaracinos. We discovered moderate gene flow from A. perideraion to the ancestor of A. akallopisos + A. sandaracinos and weak gene flow between the species in the Indo-Australian Archipelago throughout the diversification of the group. We identified introgressed regions in A. sandaracinos and detected in A. perideraion two large regions of high divergence from the two other species. While we found that gene flow has occurred throughout the species' diversification, we also observed that recent admixture was less pervasive than initially thought, suggesting a role of host repartition or behavioural barriers in maintaining the genetic identity of the species in sympatry.


Assuntos
Fluxo Gênico , Especiação Genética , Genética Populacional , Perciformes , Animais , Perciformes/genética , Simpatria , Austrália , Filogenia , Recifes de Corais , Simbiose/genética
10.
Mol Ecol ; 33(11): e17360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656687

RESUMO

Connectivity is a fundamental process of population dynamics in marine ecosystems. In the last decade, with the emergence of new methods, combining different approaches to understand the patterns of connectivity among populations and their regulation has become increasingly feasible. The Western Antarctic Peninsula (WAP) is characterized by complex oceanographic dynamics, where local conditions could act as barriers to population connectivity. Here, the notothenioid fish Harpagifer antarcticus, a demersal species with a complex life cycle (adults with poor swim capabilities and pelagic larvae), was used to assess connectivity along the WAP by combining biophysical modelling and population genomics methods. Both approaches showed congruent patterns. Areas of larvae retention and low potential connectivity, observed in the biophysical model output, coincide with four genetic groups within the WAP: (1) South Shetland Islands, (2) Bransfield Strait, (3) the central and (4) the southern area of WAP (Marguerite Bay). These genetic groups exhibited limited gene flow between them, consistent with local oceanographic conditions, which would represent barriers to larval dispersal. The joint effect of geographic distance and larval dispersal by ocean currents had a greater influence on the observed population structure than each variable evaluated separately. The combined effect of geographic distance and a complex oceanographic dynamic would be generating limited levels of population connectivity in the fish H. antarcticus along the WAP. Based on this, population connectivity estimations and priority areas for conservation were discussed, considering the marine protected area proposed for this threatened region of the Southern Ocean.


Assuntos
Fluxo Gênico , Genética Populacional , Animais , Regiões Antárticas , Dinâmica Populacional , Perciformes/genética , Genômica , Ecossistema , Larva/genética , Peixes/genética
11.
Mol Phylogenet Evol ; 199: 108159, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39029548

RESUMO

Gadopsis (Percichthyidae) is a freshwater genus distributed in south-eastern Australia, including Tasmania, and comprises two recognized species. Previous molecular phylogenetic investigations of the genus, mostly conducted in the pre-genomics era and reflecting a range of geographic and molecular sampling intensities, have supported the recognition of up to seven candidate species. Here we analyze a genome-wide SNP dataset that provides comprehensive geographic and genomic coverage of Gadopsis to produce a robust hypothesis of species boundaries and evolutionary relationships. We then leverage the SNP dataset to characterize relationships within candidate species that lack clear intraspecific phylogenetic relationships. We find further support for the seven previously identified candidate species of Gadopsis and evidence that the Bass Strait centered candidate species (SBA) originated from ancient hybridization. The SNP dataset permits a high degree of intraspecific resolution, providing improvements over previous studies, with numerous candidate species showing intraspecific divisions in phylogenetic analysis. Further population genetic analysis of the Murray-Darling candidate species (NMD) and SBA finds support for K = 6 and K = 7 genetic clusters, respectively. The SNP data generated for this study have diverse applications in natural resource management for these fishes of conservation concern.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Perciformes , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Perciformes/genética , Perciformes/classificação , Genética Populacional , Austrália
12.
Syst Biol ; 72(3): 530-543, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36331534

RESUMO

Phylogenomic analysis of large genome-wide sequence data sets can resolve phylogenetic tree topologies for large species groups, help test the accuracy of and improve resolution for earlier multi-locus studies and reveal the level of agreement or concordance within partitions of the genome for various tree topologies. Here we used a target-capture approach to sequence 1088 single-copy exons for more than 200 labrid fishes together with more than 100 outgroup taxa to generate a new data-rich phylogeny for the family Labridae. Our time-calibrated phylogenetic analysis of exon-capture data pushes the root node age of the family Labridae back into the Cretaceous to about 79 Ma years ago. The monotypic Centrogenys vaigiensis, and the order Uranoscopiformes (stargazers) are identified as the sister lineages of Labridae. The phylogenetic relationships among major labrid subfamilies and within these clades were largely congruent with prior analyses of select mitochondrial and nuclear datasets. However, the position of the tribe Cirrhilabrini (fairy and flame wrasses) showed discordance, resolving either as the sister to a crown julidine clade or alternatively sister to a group formed by the labrines, cheilines and scarines. Exploration of this pattern using multiple approaches leads to slightly higher support for this latter hypothesis, highlighting the importance of genome-level data sets for resolving short internodes at key phylogenetic positions in a large, economically important groups of coral reef fishes. More broadly, we demonstrate how accounting for sources of biological variability from incomplete lineage sorting and exploring systematic error at conflicting nodes can aid in evaluating alternative phylogenetic hypotheses. [coral reefs; divergence time estimation; exon-capture; fossil calibration; incomplete lineage sorting.].


Assuntos
Peixes , Perciformes , Animais , Filogenia , Perciformes/genética , Genoma
13.
Fish Shellfish Immunol ; 146: 109372, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218420

RESUMO

The large yellow croaker (Larimichthys crocea) stands as a cornerstone of mariculture in China due to its significant value. However, the threat of Pseudomonas plecoglossicida infection looms large, capable of triggering "visceral white spot disease" and subsequently inflicting severe economic ramifications. Through a prior genome-wide association analysis (GWAS) aimed at understanding the resistance of the large yellow croaker to this ailment, a pivotal player emerged: the complement component 1q binding protein, aptly named LcC1qbp. This protein assumes a crucial role in the activation of the complement system. This study delves deeper into the immune response by examining the expression patterns of LcC1QBP when confronted with P. plecoglossicida. The investigation into gene expression patterns reveals LcC1qbp's widespread presence, with its highest transcriptional abundance identified in the kidney tissues. Upon infection by P. plecoglossicida, the up-regulation of LcC1qbp in major immune organs manifests at both the transcriptional and translational levels. In the context of RNA interference, transcriptome analysis of C1qbp in HEK 293T cells uncovers 1327 differentially expressed genes (DEGs), featuring 41 significant immune genes. This includes pivotal components such as C1S and C3 of the complement system, along with IL11, IL12RB2, and Myd88, among others. The outcomes of enrichment analysis spotlight the prevalence of DEGs within key pathways like immune system development, myeloid leukocyte-mediated immunity, MAPK signaling, and other immune-related routes. By unveiling the immune response mechanisms of the large yellow croaker to P. plecoglossicida infection, this study bolsters our understanding. Furthermore, it lays the groundwork for pursuing effective strategies in both preventing and treating "visceral white spot disease" in the large yellow croaker.


Assuntos
Doenças dos Peixes , Perciformes , Infecções por Pseudomonas , Animais , Estudo de Associação Genômica Ampla , Pseudomonas/genética , Imunidade , Perciformes/genética , Proteínas de Peixes/genética
14.
Fish Shellfish Immunol ; 149: 109568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636741

RESUMO

Pompano fishes have been widely farmed worldwide. As a representative commercial marine species of the Carangidae family, the golden pompano (Trachinotus blochii) has gained significant popularity in China and worldwide. However, because of rapid growth and high-density aquaculture, the golden pompano has become seriously threatened by various diseases. Cell lines are the most cost-effective resource for in vitro studies and are widely used for physiological and pathological research owing to their accessibility and convenience. In this study, we established a novel immortal cell line, GPF (Golden pompano fin cells). GPF has been passaged over 69 generations for 10 months. The morphology, adhesion and extension processes of GPF were evaluated using light and electron microscopy. GPF cells were passaged every 3 days with L-15 containing 20 % fetal bovine serum (FBS) at 1:3. The optimum conditions for GPF growth were 28 °C and a 20 % FBS concentration. DNA sequencing of 18S rRNA and mitochondrial 16S rRNA confirmed that GPF was derived from the golden pompano. Chromosomal analysis revealed that the number pattern of GPF was 48 chromosomes. Transfection experiments demonstrated that GPF could be utilized to express foreign genes. Furthermore, heavy metals (Cd, Cu, and Fe) exhibited dose-dependent cytotoxicity against GPF. After polyinosinic-polycytidylic acid (poly I:C) treatment, transcription of the retinoic acid-inducible gene I-like receptor (RLR) pathway genes, including mda5, mita, tbk1, irf3, and irf7 increased, inducing the expression of interferon (IFN) and anti-viral proteins in GPF cells. In addition, lipopolysaccharide (LPS) stimulation up-regulated the expression of inflammation-related factors, including myd88, irak1, nfκb, il1ß, il6, and cxcl10 expression. To the best of our knowledge, this is the first study on the immune response signaling pathways of the golden pompano using an established fin cell line. In this study, we describe a preliminary investigation of the GPF cell line immune response to poly I:C and LPS, and provide a more rapid and efficient experimental material for research on marine fish immunology.


Assuntos
Doenças dos Peixes , Animais , Linhagem Celular , Doenças dos Peixes/imunologia , Nadadeiras de Animais/imunologia , Poli I-C/farmacologia , Imunidade Inata , Perciformes/imunologia , Perciformes/genética , Peixes/imunologia
15.
Fish Shellfish Immunol ; 146: 109386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242261

RESUMO

Red drum (Sciaenops ocellatus), as an important economical marine fish, has been affected by various bacterial diseases in recent years. Vibrio harveyi cause fatal vibriosis in S. ocellatus, leading to massive mortality and causing significant setbacks in aquaculture. However, the regulatory mechanisms of S. ocellatus response to V. harveyi infection are poorly understood. In this regard, we performed transcriptomic analysis with head kidney tissues of S. ocellatus after V. harveyi infection from 12 h to 48 h to reveal genes, gene expression profiles, and pathways involved in immune and inflammation responses. Specifically, a total of 9,599, 5,728, and 7144 differentially expressed genes (DEGs) were identified after V. harveyi infection at 12 h, 24 h, and 48 h, respectively, and 1,848 shared DEGs have been identified from the above three comparison groups. Subsequent pathway analysis revealed that the shared DEGs following V. harveyi were involved in complement and coagulation cascades (C1R, C1QC, C3, C4, C5, C7, C8A, C8B, C8G, C9, CFB, CFH, and CFI), MAPK signaling pathway, chemokine signaling pathway (CCL19, CXCL8, CXCL12, CXCL14, CCR4, CCR7, and CXCR2), PPAR signaling pathway (PPAR-α, PPAR-γ and PPAR-ß), and TNF signaling pathway. Finally, the expression patterns of DEGs in head kidney tissues and S. ocellatus macrophages were validated by qRT-PCR, suggesting the reliability of RNA sequencing for gene expression analysis. This dynamic transcriptome analyses provided insights into gene expression regulation and immune related pathways involved in S. ocellatus after V. harveyi infection, and provides useful information for further study on the immune defense mechanisms in S. ocellatus as well as other teleost species.


Assuntos
Doenças dos Peixes , Perciformes , Vibrioses , Vibrio , Animais , Transcriptoma , Receptores Ativados por Proliferador de Peroxissomo/genética , Reprodutibilidade dos Testes , Vibrio/fisiologia , Perfilação da Expressão Gênica/veterinária , Perciformes/genética
16.
Fish Shellfish Immunol ; 150: 109602, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729252

RESUMO

Greater amberjack (Seriola dumerili) is a fish species that has significant economic and cultural value. It has a large size and grows rapidly. However, the intolerance to hypoxia poses a major obstacle to the growth of its aquaculture industry. This study focuses on the gills and spleen, two organs closely associated with the response to acute hypoxic stress. By simulating the acute hypoxic environment and using Illumina RNA-Seq technology, we explored the gills and spleen transcriptome changes in the acute hypoxia intolerant and tolerant groups of greater amberjack. It was discovered that gill tissues in the tolerant group may maintain a stable intracellular energy supply by promoting glycolysis and ß-oxidation compared to the intolerant group. Additionally, it promotes angiogenesis, enhances the ability to absorb dissolved oxygen, and accelerates oxygen transport to the mitochondria, adapting to the hypoxic environment. Anti-apoptotic genes were up-regulated in gill tissues in the tolerant group compared to the intolerant group, thereby minimizing the damage of acute hypoxia. On the other hand, the spleen inhibited the TCA and energy-consuming lipid synthesis pathways to supply energy under acute hypoxic stress. Pro-angiogenic genes were down-regulated in the spleen of individuals in the tolerant group compared to the intolerant group, which may be related to organ function. The suppressed reactive oxygen species (ROS) production and the impaired immune response function of the spleen were also found. The study explored the acute hypoxic stress response in greater amberjack and the molecular mechanisms underlying its tolerance to acute hypoxia.


Assuntos
Brânquias , Baço , Estresse Fisiológico , Animais , Baço/metabolismo , Baço/imunologia , Brânquias/metabolismo , Brânquias/imunologia , Hipóxia/genética , Hipóxia/veterinária , Regulação da Expressão Gênica/imunologia , Transcriptoma , Perciformes/genética , Perciformes/imunologia , Expressão Gênica , Peixes/genética , Peixes/imunologia
17.
Fish Shellfish Immunol ; 150: 109616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734118

RESUMO

Enteritis posed a significant health challenge to golden pompano (Trachinotus ovatus) populations. In this research, a comprehensive multi-omics strategy was implemented to elucidate the pathogenesis of enteritis by comparing both healthy and affected golden pompano. Histologically, enteritis was characterized by villi adhesion and increased clustering after inflammation. Analysis of the intestinal microbiota revealed a significant increase (P < 0.05) in the abundance of specific bacterial strains, including Photobacterium and Salinivibrio, in diseased fish compared to the healthy group. Metabolomic analysis identified 5479 altered metabolites, with significant impacts on terpenoid and polyketide metabolism, as well as lipid metabolism (P < 0.05). Additionally, the concentrations of several compounds such as calcitetrol, vitamin D2, arachidonic acid, and linoleic acid were significantly reduced in the intestines of diseased fish post-enteritis (P < 0.05), with the detection of harmful substances such as Efonidipine. In transcriptomic profiling, enteritis induced 68 upregulated and 73 downregulated genes, predominantly affecting steroid hormone receptor activity (P < 0.05). KEGG pathway enrichment analysis highlighted upregulation of SQLE and CYP51 in steroidogenesis, while the HSV-1 associated MHC1 gene exhibited significant downregulation. Integration of multi-omics results suggested a potential pathogenic mechanism: enteritis may have resulted from concurrent infection of harmful bacteria, specifically Photobacterium and Salinivibrio, along with HSV-1. Efonidipine production within the intestinal tract may have blocked certain calcium ion channels, leading to downregulation of MHC1 gene expression and reduced extracellular immune recognition. Upregulation of SQLE and CYP51 genes stimulated steroid hormone synthesis within cells, which, upon binding to G protein-coupled receptors, influenced calcium ion transport, inhibited immune activation reactions, and further reduced intracellular synthesis of anti-inflammatory substances like arachidonic acid. Ultimately, this cascade led to inflammation progression, weakened intestinal peristalsis, and villi adhesion. This study utilized multi-level omics detection to investigate the pathological symptoms of enteritis and proposed a plausible pathogenic mechanism, providing innovative insights into enteritis verification and treatment in offshore cage culture of golden pompano.


Assuntos
Enterite , Doenças dos Peixes , Microbioma Gastrointestinal , Animais , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Doenças dos Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Perciformes/imunologia , Perciformes/genética , Transcriptoma , Metabolômica , Multiômica
18.
Fish Shellfish Immunol ; 145: 109308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122956

RESUMO

Galectin-9, a tandem-repeat galectin, plays an important role in the regulation of innate immune response against various microbial infections. Here, galectin-9 from mudskipper (Boleophthalmus pectinirostris) was identified and named as BpGal-9. Putative BpGal-9 contains two conserved carbohydrate recognition domains (CRDs), one CRD within N-terminal (N-CRD) and the other one within C-terminal (C-CRD). Multi-alignment analysis indicated that BpGal-9 shared the highest amino acid sequence identity of 64.3 % with that of Southern platyfish (Xiphophorus maculatus). Phylogenetic analysis showed that BpGal-9 grouped tightly with other teleosts galectin-9 and was most closely related to that of Southern platyfish. BpGal-9 transcripts were more abundant in the intestine, and its expression upregulated significantly in the intestine, kidney, spleen, gills, and skin after Edwardsiella tarda infection. Meanwhile, BpGal-9 expression significantly increased in hemocytes and serum of mudskipper infected by E. tarda. The recombinant BpGal-9 (rBpGal-9) and rBpGal-9C-CRD could agglutinate all tested bacteria, whereas rBpGal-9N-CRD could only agglutinate three kinds of bacteria. When targeting the same bacteria, rBpGal-9 showed stronger agglutinating activities than rBpGal-9C-CRD or rBpGal-9N-CRD. In addition, the induction effect of three recombinant proteins on the mRNA expression of anti-inflammatory cytokines (BpIL-10 and BpTGF-ß) was better than that on the pro-inflammatory cytokines (BpIL-1ß and BpTNF-α). Our result suggested that the N-CRD and C-CRD of galectin-9 contribute differently to its multiple functions in innate immunity in teleosts.


Assuntos
Proteínas de Peixes , Perciformes , Animais , Proteínas de Peixes/genética , Filogenia , Alinhamento de Sequência , Peixes , Perciformes/genética , Imunidade Inata/genética , Citocinas/genética , Galectinas/genética
19.
Fish Shellfish Immunol ; 150: 109636, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762095

RESUMO

As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1ß, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Lectinas Tipo C , Macrófagos , Perciformes , Receptores de Reconhecimento de Padrão , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Perciformes/imunologia , Perciformes/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Peixes/imunologia , Peixes/genética
20.
Fish Shellfish Immunol ; 151: 109651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38796043

RESUMO

A ten-week culture trial in juvenile large yellow croaker (Larimichthys crocea) (10.80 ± 0.10 g) was conducted to assess the impact of supplementing heat-killed Lactobacillus acidophilus (HLA) on growth performance, intestinal digestive enzyme activity, antioxidant capacity and inflammatory response. Five iso-nitrogenous (42 % crude protein) and iso-lipidic (12 % crude lipid) experimental feeds with different levels of HLA (0.0 %, 0.1 %, 0.2 %, 0.4 %, or 0.8 %) were prepared. They were named FO (control group), HLA0.1, HLA0.2, HLA0.4 and HLA0.8, respectively. The results indicated that HLA addition had no impact on survival (P > 0.05). In this experiment, the final body weight, weight gain rate and specific growth rate showed a quadratic regression trend, initially increasing and subsequently decreasing with the increasing in HLA levels, and attained the peak value at 0.2 % HLA supplemental level (P < 0.05). In contrast to the control group, in terms of digestive ability, amylase, lipase and trypsin exhibited a notable linear and quadratic pattern, demonstrating a substantial increase when 0.1% 0.2 % HLA was added in the diets (P < 0.05). Notably, elevated levels of catalase (CAT) activity, superoxide dismutase (SOD) activity, and total antioxidant capacity (T-AOC) were observed in the liver when adding 0.1%-0.2 % HLA, and the level of malondialdehyde (MDA) was significantly decreased and the liver exhibited a notable upregulation in the mRNA expression levels of nrf2, cat, sod2, and sod3 (P < 0.05). Additionally, the mRNA levels of genes associated with tight junctions in the intestines (zo-1, zo-2 and occludin) exhibited a significant upregulation when 0.2 % HLA was added in the feed (P < 0.05). Furthermore, the levels of mRNA expression for proinflammatory genes in the intestines including tnf-α, il-1ß, il-6 and il-8 exhibited a quadratic regression trend, characterized by an initial decline followed by subsequent growth (P < 0.05). Meanwhile, the levels of mRNA expression for genes linked to anti-inflammatory responses in the intestines (including il-10, tgf-ß, and arg1) exhibited a quadratic regression pattern, initially increasing and subsequently decreasing (P < 0.05). Compare with the control group, the levels of tnf-α, il-1ß and il-8 expression were notably downregulated in all HLA addition groups (P < 0.05). When 0.2 % HLA was added, the expression levels of il-10, tgf-ß and arg1 in the intestinal tract were markedly increased (P < 0.05). Overall, the supplementation of 0.2 % HLA in the feed has been shown to enhance the growth performance. The enhancement was attributed to HLA's capacity to improve antioxidant function, intestinal barrier integrity, and mitigate inflammatory responses. This research offers a scientific foundation for the utilization of HLA in aquaculture.


Assuntos
Ração Animal , Antioxidantes , Dieta , Lactobacillus acidophilus , Perciformes , Probióticos , Animais , Perciformes/imunologia , Perciformes/crescimento & desenvolvimento , Perciformes/genética , Dieta/veterinária , Ração Animal/análise , Antioxidantes/metabolismo , Probióticos/administração & dosagem , Probióticos/farmacologia , Lactobacillus acidophilus/imunologia , Suplementos Nutricionais/análise , Digestão , Distribuição Aleatória , Inflamação/veterinária , Inflamação/imunologia , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa