Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.865
Filtrar
1.
Vet Res ; 55(1): 13, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303095

RESUMO

Mastitis, inflammation of the mammary gland, is the costliest disease in dairy cattle and a major animal welfare concern. Mastitis is usually caused by bacteria, of which staphylococci, streptococci and Escherichia coli are most frequently isolated from bovine mastitis. Bacteria activate the mammary immune system in variable ways, thereby influencing the severity of the disease. Escherichia coli is a common cause of mastitis in cattle causing both subclinical and clinical mastitis. Understanding of the molecular mechanisms that activate and regulate the host response would be central to effective prevention of mastitis and breeding of cows more resistant to mastitis. We used primary bovine mammary epithelial cell cultures extracted noninvasively from bovine milk samples to monitor the cellular responses to Escherichia coli challenge. Differences in gene expression between control and challenged cells were studied by total RNA-sequencing at two time points post-challenge. In total, 150 and 440 (Padj < 0.05) differentially expressed genes were identified at 3 h and 24 h post-challenge, respectively. The differentially expressed genes were mostly upregulated at 3 h (141/150) and 24 h (424/440) post-challenge. Our results are in line with known effects of E. coli infection, with a strong early inflammatory response mediated by pathogen receptor families. Among the most significantly enriched early KEGG pathways were the TNF signalling pathway, the cytokine-cytokine receptor interaction, and the NF-kappa B signalling pathway. At 24 h post-challenge, most significantly enriched were the Influenza A, the NOD-like receptor signalling, and the IL-17 signaling pathway.


Assuntos
Doenças dos Bovinos , Infecções por Escherichia coli , Mastite Bovina , Feminino , Bovinos , Animais , Escherichia coli/genética , Leite/microbiologia , Glândulas Mamárias Animais/microbiologia , Perfilação da Expressão Gênica/veterinária , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Células Epiteliais/microbiologia , Mastite Bovina/microbiologia , Doenças dos Bovinos/metabolismo
2.
Fish Shellfish Immunol ; 148: 109504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508539

RESUMO

Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.


Assuntos
Anguilla , Doenças dos Peixes , Animais , Aeromonas hydrophila , Virulência , Proteínas da Membrana Bacteriana Externa , Perfilação da Expressão Gênica/veterinária
3.
Fish Shellfish Immunol ; 144: 109260, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043874

RESUMO

To explore the immune defense mechanisms of the ancient crustacean fairy shrimp (B.kugenumaensis) and uncover antibacterial-related gene resources, the present study analyzed the pathological changes in B. kugenumaensis infected with E. anguillarum. Differential gene expression changes between the infected and uninfected groups were investigated through comparative transcriptome sequencing to elucidate the molecular responses to the infection. Under transmission electron microscopy, the intestinal mucosal structure of B. kugenumaensis was damaged, the microvilli disappeared, the number of mitochondria and endoplasmic reticulum increased, mitochondria vacuolated and arranged disordered. The transcriptome data indicated that a total of 250,520,580 clean reads were assembled into 66,502 unigenes, with an average length of 789 bp and an N50 length of 1326 bp. Following bacterial infection, approximately 2678 differentially expressed genes (DEGs) were identified, with 1732 genes upregulated and 946 genes downregulated. The detected DEGs related to immune responses, particularly involving apoptosis, lysosome, autophagy, phagosome, and MAPK signaling pathways. Moreover, 9 immunity-related genes with different expressions were confirmed by using real-time quantitative PCR (RT-qPCR). This study first reports the pathogenicity of E. anguillarum on B. kugenumaensis and speculates that immune effectors such as lysozyme and lectin, as well as apoptosis, lysosome, and the MAPK signaling pathway, play crucial roles in the innate immunity of fairy shrimp. These findings deepen our understanding of fairy shrimp immune regulatory mechanisms and provide a theoretical foundation for disease prevention and control.


Assuntos
Anostraca , Perfilação da Expressão Gênica , Animais , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Imunidade Inata/genética
4.
Fish Shellfish Immunol ; 144: 109251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040133

RESUMO

nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in the homeostatic regulation of physiological functions. Our previous studies showed that nAChRs in the genome of pearl oyster Pinctada fucata martensii (PmnAChRs) were expanded through tandem duplication. This study aimed to analyze the function of five tandemly duplicated PmnAChRs in the transplantation immunity in P. f. martensii. Transcriptome analysis reveals that the differentially expressed genes (DEGs) shared between PmnAChR-RNAi and the control group were functionally involved in Signal transduction, Immune system et al., and most of the related genes were down-regulated in the PmnAChR-RNAi group. The different copies of PmnAChR may regulate transplantation immunity through various pathways, such as Wnt, protein digestion and absorption, Hippo, and gap junction pathway. The inflammation factor interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were down-regulated in PmnAChR-1, 4, 5-RNAi group, and the serum from the pearl oysters in the PmnAChR-1-4-RNAi group could promote the proliferation of the Vibrio harveyi, indicating the immunosuppressive function after down-regulation of PmnAChRs. The different responses of antioxidant enzymes and diverse signal pathways after down-regulation of PmnAChRs suggested that the five tandemly duplicated PmnAChRs may cooperate with different α type PmnAChRs and constitute the functional ion channel in the membrane. Results of this study not only provide insight for the effective regulation of the transplantation immunity, but also provide a theoretical reference for the study of the adaptive evolutionary mechanism of repeating genes.


Assuntos
Pinctada , Receptores Nicotínicos , Animais , Transcriptoma , Receptores Nicotínicos/metabolismo , Perfilação da Expressão Gênica/veterinária , Genoma
5.
Fish Shellfish Immunol ; 146: 109420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325592

RESUMO

The impact of carbonate alkalinity in saline-alkaline water on aquatic organisms, particularly Penaeus vannamei, a significant species in aquaculture, remains a critical area of study. To elucidate the acute response mechanisms of P. vannamei to elevated carbonate alkalinity environments, we utilized 16S rRNA gene and transcriptome sequencing technologies to analyze intestinal bacteria and gene expressions within various tissues. Our investigation revealed notable changes in specific intestinal bacterial OTUs, whose abundances varied preceding the overall bacterial community, indicating the sensitivity to carbonate alkalinity exposure. These shifts are accompanied by a simplification in bacterial networks and alterations in pathogenic OTUs, notably Aeromonas OTU. Concurrently, gene expression variations were observed across the hepatopancreas, gills, muscles, and intestines, with decreasing numbers of DEGs in the mentioned order. Annotation of these DEGs revealed enrichments in pathways related to transport, catabolism, immune responses, circulatory functions, and lipid metabolism. Notably, correlations between specific intestinal bacterial OTUs and gene expression shifts were identified across these tissues. Several OTUs, attributed to Rhizobiales, Saccharimonadales, Acidovora, and Aeromona, exhibited a correlation with DEGs in all four tissues, primarily associated with amino acid metabolism, signal transduction, and transport and catabolism pathways. Our study provides comprehensive insights into the dynamic responses of P. vannamei to elevated carbonate alkalinity stress. These findings contribute crucial knowledge for effective P. vannamei cultivation in saline-alkaline water, advancing our understanding in this field.


Assuntos
Penaeidae , Animais , RNA Ribossômico 16S , Perfilação da Expressão Gênica/veterinária , Carbonatos , Bactérias , Água , Transcriptoma
6.
Fish Shellfish Immunol ; 148: 109505, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521144

RESUMO

The E11 cell line, derived from striped snakehead fish (Channa striata), possesses a distinctive feature: it is persistently infected with a C-type retrovirus. Notably, it exhibits high permissiveness to piscine nodavirus and the emerging tilapia lake virus (TiLV). Despite its popularity in TiLV research, the absence of genome assembly for the E11 cell line and Channa striata has constrained research on host-virus interactions. This study aimed to fill this gap by sequencing, assembling, and annotating the E11 cell line genome. Our efforts yielded a 600.5 Mb genome including 24 chromosomes with a BUSCO score of 98.8%. In addition, the complete proviral DNA sequence of snakehead retrovirus (SnRV) was identified in the E11 cell genome. Comparative genomic analysis between the E11 cell line and another snakehead species Channa argus revealed the loss of many immune-related gene families in the E11 cell genome, indicating a compromised immune response. We also conducted transcriptome analysis of mock- and TiLV-infected E11 cells, unveiling new perspectives on virus-virus and host-virus interactions. The TiLV infection suppressed the high expression of SnRV in E11 cells, and activated some other endogenous retroviruses. The protein-coding gene comparison revealed a pronounced up-regulation of genes involved in immune response, alongside a down-regulation of genes associated with specific metabolic processes. In summary, the genome assembly and annotation of the E11 cell line provide valuable resources to understand the SnRV and facilitate further studies on nodavirus and TiLV. The RNA-seq profiles shed light on the cellular mechanisms employed by fish cells in response to viral challenges, potentially guiding the development of therapeutic strategies against TiLV in aquaculture. This study also provides the first insights into the viral transcriptome profiles of endogenous SnRV and evading TiLV, enhancing our understanding of host-virus interactions in fish.


Assuntos
Doenças dos Peixes , Tilápia , Vírus , Animais , Retroviridae , Cromossomos , Perfilação da Expressão Gênica/veterinária
7.
Fish Shellfish Immunol ; 144: 109258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042226

RESUMO

Large yellow croaker (Larimichthys crocea) is the most productive marine fish in China. Cryptocaryon irritans is an extremely destructive parasite that causes great economic losses in large yellow croaker aquaculture industry. Therefore, it is very necessary to study the immune response of large yellow croaker in response to C. irritans infection. In this study, the transcriptomic profiles of large yellow croaker were sequenced and analyzed in the brain and head kidney at 72 h after C. irritans infection. Cytokines and chemokines related terms were significantly enriched based on the GO enrichment of down-regulated differentially expressed genes (DEGs) from the head kidney. Meanwhile, cytokine-cytokine receptor interaction was significantly enriched based on the KEGG enrichment of up-regulated DEGs from the brain and down-regulated DEGs from the head kidney, respectively. Moreover, the majority of inflammation-related DEGs were significantly up-regulated in the brain, but distinctly down-regulated in the head kidney. These results showed that the brain and head kidney might play different roles against C. irritans infection, and the inflammatory response of large yellow croaker may be restrained during C. irritans infection. Taken together, the transcriptomic analyses will be helpful to more comprehensively understand the immune mechanism of teleost against C. irritans infection, and provide a theoretical basis for the prevention and treatment of Cryptosporidiosis.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Cilióforos/fisiologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica/veterinária
8.
Fish Shellfish Immunol ; 148: 109472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438059

RESUMO

The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Hepatopâncreas/patologia , Necrose/microbiologia , Doença Aguda
9.
Fish Shellfish Immunol ; 144: 109301, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110106

RESUMO

Mytilus unguiculatus is an important economic bivalve species with wide consumption and aquaculture value. Disease is one of the primary limiting factors in mussel aquaculture, thus understanding the response of different tissues of M. unguiculatus to pathogens is crucial for disease prevention and control. In this study, we investigated the physiological and transcriptomic responses of the gills, adductor muscle, and mantle of M. unguiculatus infected with Vibrio alginolyticus. The results showed that V. alginolyticus infection caused inflammation and tissue structure changes in the gill, adductor muscle and mantle of M. unguiculatus. Meanwhile, the activities of superoxide dismutase and catalase in the three tissues increased, while the total antioxidant capacity decreased, suggesting that M. unguiculatus have an activated defense mechanism against infection-induced oxidative stress, despite a compromised total antioxidant capacity. Transcriptomic studies reveal that infected M. unguiculatus exhibits upregulation of endocytosis, lysosome activity, cellular apoptosis, and immune-related signaling pathways, indicating that M. unguiculatus responds to pathogen invasion by upregulating efferocytosis. Compared with the gill and adductor muscle, the mantle had a higher level of mytimycin, mytilin and myticin, and the three tissues also increased the expression of mytimycin to cope with the invasion of pathogens. In addition, the analysis of genes related to taste transduction pathways and muscle contraction and relaxation found that after infection with V. alginolyticus, M. unguiculatus may reduce appetite by inhibiting taste transduction in the gill, while improving muscle contraction of the adductor muscle and keeping the shell closed, to resist further invasion of pathogens and reduce the risk of pathogen transmission in the population.


Assuntos
Mytilus , Vibrioses , Vibrio , Animais , Mytilus/genética , Vibrio alginolyticus/fisiologia , Antioxidantes , Vibrioses/veterinária , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia
10.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181891

RESUMO

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Assuntos
Salmo salar , Animais , Salmo salar/genética , Regulação da Expressão Gênica , Rim Cefálico , Células Endoteliais , Perfilação da Expressão Gênica/veterinária , Transcriptoma , RNA Nuclear Pequeno , Mamíferos
11.
Fish Shellfish Immunol ; 151: 109696, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871144

RESUMO

The hepatopancreas is the biggest digestive organ in Amphioctopus fangsiao (A. fangsiao), but also undertakes critical functions like detoxification and immune defense. Generally, pathogenic bacteria or endotoxin from the gut microbiota would be arrested and detoxified in the hepatopancreas, which could be accompanied by the inevitable immune responses. In recent years, studies related to cephalopods immune have been increasing, but the molecular mechanisms associated with the hepatopancreatic immunity are still unclear. In this study, lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria, was used for imitating bacteria infection to stimulate the hepatopancreas of A. fangsiao. To investigate the immune process happened in A. fangsiao hepatopancreas, we performed transcriptome analysis of hepatopancreas tissue after LPS injection, and identified 2615 and 1943 differentially expressed genes (DEGs) at 6 and 24 h post-injection, respectively. GO and KEGG enrichment analysis showed that these DEGs were mainly involved in immune-related biological processes and signaling pathways, including ECM-receptor interaction signaling pathway, Phagosome signaling pathway, Lysosome signaling pathway, and JAK-STAT signaling pathways. The function relationships between these DEGs were further analyzed through protein-protein interaction (PPI) networks. It was found that Mtor, Mapk14 and Atm were the three top interacting DEGs under LPS stimulation. Finally, 15 hub genes involving multiple KEGG signaling pathways and PPI relationships were selected for qRT-PCR validation. In this study, for the first time we explored the molecular mechanisms associated with hepatopancreatic immunity in A. fangsiao using a PPI networks approach, and provided new insights for understanding hepatopancreatic immunity in A. fangsiao.


Assuntos
Perfilação da Expressão Gênica , Hepatopâncreas , Lipopolissacarídeos , Transcriptoma , Animais , Lipopolissacarídeos/farmacologia , Hepatopâncreas/imunologia , Perfilação da Expressão Gênica/veterinária , Imunidade Inata/genética , Transdução de Sinais
12.
Fish Shellfish Immunol ; 148: 109473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458502

RESUMO

Japanese flounder (Paralichthys olivaceus) is an economically crucial marine species, but diseases like hemorrhagic septicemia caused by Edwardsiella tarda have resulted in significant economic losses. E. tarda infects various hosts, and its pathogenicity in fish is not fully understood. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and are representative of typical PAMP molecules that cause activation of the immune system. The PoIEC cell line is a newly established intestinal epithelial cell line from P. olivaceus. In order to investigate whether it can be used as an in vitro model for studying the pathogenesis of E. tarda and LPS stimulation, we conducted RNA-seq experiments for the PoIECs model of E. tarda infection and LPS stimulation. In this study, transcriptome sequencing was carried out in the PoIEC cell line after treatment with LPS and E. tarda. A total of 62.52G of high-quality data from transcriptome sequencing results were obtained in nine libraries, of which an average of 87.96% data could be aligned to the P. olivaceus genome. Data analysis showed that 283 and 414 differentially expressed genes (DEGs) in the LPS versus Control (LPS-vs-Con) and E. tarda versus Control groups (Et-vs-Con), respectively, of which 60 DEGs were shared in two comparation groups. The GO terms were predominantly enriched in the extracellular space, inflammatory response, and cytokine activity in the LPS-vs-Con group, whereas GO terms were predominantly enriched in nucleus and positive regulation of transcription by RNA polymerase II in the Et-vs-Con group. KEGG analysis revealed that three immune-related pathways were co-enriched in both comparison groups, including the Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, and Cytokine-cytokine receptor interaction. Five genes were randomly screened to confirm the validity and accuracy of the transcriptome data. These results suggest that PoIEC cell line can be an ideal in vitro model for studies of marine fish gut immunity and pathogenesis of Edwardsiellosis.


Assuntos
Infecções por Enterobacteriaceae , Doenças dos Peixes , Linguado , Animais , Linguado/genética , Lipopolissacarídeos/farmacologia , Perfilação da Expressão Gênica/veterinária , Citocinas/genética , Edwardsiella tarda/fisiologia , Imunidade
13.
Fish Shellfish Immunol ; 146: 109386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242261

RESUMO

Red drum (Sciaenops ocellatus), as an important economical marine fish, has been affected by various bacterial diseases in recent years. Vibrio harveyi cause fatal vibriosis in S. ocellatus, leading to massive mortality and causing significant setbacks in aquaculture. However, the regulatory mechanisms of S. ocellatus response to V. harveyi infection are poorly understood. In this regard, we performed transcriptomic analysis with head kidney tissues of S. ocellatus after V. harveyi infection from 12 h to 48 h to reveal genes, gene expression profiles, and pathways involved in immune and inflammation responses. Specifically, a total of 9,599, 5,728, and 7144 differentially expressed genes (DEGs) were identified after V. harveyi infection at 12 h, 24 h, and 48 h, respectively, and 1,848 shared DEGs have been identified from the above three comparison groups. Subsequent pathway analysis revealed that the shared DEGs following V. harveyi were involved in complement and coagulation cascades (C1R, C1QC, C3, C4, C5, C7, C8A, C8B, C8G, C9, CFB, CFH, and CFI), MAPK signaling pathway, chemokine signaling pathway (CCL19, CXCL8, CXCL12, CXCL14, CCR4, CCR7, and CXCR2), PPAR signaling pathway (PPAR-α, PPAR-γ and PPAR-ß), and TNF signaling pathway. Finally, the expression patterns of DEGs in head kidney tissues and S. ocellatus macrophages were validated by qRT-PCR, suggesting the reliability of RNA sequencing for gene expression analysis. This dynamic transcriptome analyses provided insights into gene expression regulation and immune related pathways involved in S. ocellatus after V. harveyi infection, and provides useful information for further study on the immune defense mechanisms in S. ocellatus as well as other teleost species.


Assuntos
Doenças dos Peixes , Perciformes , Vibrioses , Vibrio , Animais , Transcriptoma , Receptores Ativados por Proliferador de Peroxissomo/genética , Reprodutibilidade dos Testes , Vibrio/fisiologia , Perfilação da Expressão Gênica/veterinária , Perciformes/genética
14.
Fish Shellfish Immunol ; 144: 109275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081443

RESUMO

MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.


Assuntos
Doenças dos Peixes , Linguados , MicroRNAs , Vibrioses , Vibrio , Animais , Processamento Alternativo , Vibrio/fisiologia , Transcriptoma , Fígado/metabolismo , Peixes/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica/veterinária
15.
Fish Shellfish Immunol ; 151: 109698, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871141

RESUMO

In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.


Assuntos
Sequência de Aminoácidos , Filogenia , Animais , Alinhamento de Sequência/veterinária , Trematódeos/fisiologia , Perforina/genética , Perforina/imunologia , Perforina/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Caramujos/imunologia , Caramujos/genética , Perfilação da Expressão Gênica/veterinária
16.
Fish Shellfish Immunol ; 151: 109694, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871143

RESUMO

Type I interferons (IFN-I) play a pivotal role in vertebrate innate immunity against viruses. This study is an analysis of IFN-I genes in an updated version of the Atlantic salmon genome published in 2021 (version Ssal_v3.1), revealing 47 IFN-I genes in the Atlantic salmon genome. The GH1 locus of chromosome (Chr) 3 harbors 9 IFNa genes, 5 IFNb genes, 6 IFNc genes, 11 IFNe genes and 1 IFNf gene. The GH2 locus on Chr6 contains 1 IFNa gene, 12 IFNc genes and 1 IFNf gene while Chr19 carries a single IFNd gene. Intraperitoneal injection of Atlantic salmon presmolts with poly I:C, a mimic of virus double-stranded RNA, significantly up-regulated IFNc genes from both Chr3 and Chr6 in heart, with lower expression in head kidney. IFNe expression increased in the heart, but not in the head kidney while IFNf was strongly up-regulated in both tissues. Antiviral activity of selected IFNs was assessed by transfection of salmon cells with IFN-expressing plasmids followed by infectious pancreatic necrosis virus infection, and by injection of fish with IFN-plasmids followed by measuring expression of the antiviral Mx1 gene. The results demonstrated that IFNc from both Chr3 and Chr6 provided full protection of cells against virus infection, whereas IFNe and IFNf showed lesser protection. IFNc from Chr3 and Chr6 along with IFNe and IFNf, up-regulated the Mx1 gene in the muscle, while only the IFNcs caused induction of Mx1 in liver. Overall, this study reveals that Atlantic salmon possesses an even more potent innate immune defense against viruses than previously understood.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Interferon Tipo I , Poli I-C , Salmo salar , Animais , Salmo salar/genética , Salmo salar/imunologia , Doenças dos Peixes/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Poli I-C/farmacologia , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/genética , Vírus da Necrose Pancreática Infecciosa/fisiologia , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária
17.
Fish Shellfish Immunol ; 151: 109709, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901684

RESUMO

Metabotropic glutamate receptors (mGluRs) play a pivotal role in the neuroendocrine-immune regulation. In this study, eight mGluRs were identified in the Pacific Oyster Crassostrea gigas, which were classified into three subfamilies based on genetic similarity. All CgmGluRs harbor variable numbers of PBP1 domains at the N-terminus. The sequence and structural features of CgmGluRs are highly similar to mGluRs in other species. A uniformly upregulated expression of CgmGluRs was observed during D-shaped larval stage compared to early D-shaped larval stage. The transcripts of CgmGluRs were detectable in various tissues of oyster. Different CgmGluR exhibited diverse expression patterns response against different PAMP stimulations, among which CgmGluR5 was significantly downregulated under these stimulations, reflecting its sensitivity and broad-spectrum responsiveness to microbes. Following LPS stimulation, the mRNA expression of CgmGluR5 and CgCALM1 in haemocytes was suppressed within 6 h and returned to normal levels by 12 h. Inhibition of CgmGluR5 activity resulted in a significant reduction in CgCALM1 expression after 12 h. Further KEGG enrichment analysis suggested that CgmGluR5 might modulate calcium ion homeostasis and metabolic pathways by regulating CgCALM1. This research delivers the systematic analysis of mGluR in the Pacific Oyster, offering insights into evolutionary characteristics and immunoregulatory function of mGluR in mollusks.


Assuntos
Crassostrea , Regulação da Expressão Gênica , Imunidade Inata , Receptores de Glutamato Metabotrópico , Animais , Crassostrea/imunologia , Crassostrea/genética , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/imunologia , Receptores de Glutamato Metabotrópico/metabolismo , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Filogenia , Perfilação da Expressão Gênica/veterinária , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos , Lipopolissacarídeos/farmacologia
18.
Fish Shellfish Immunol ; 150: 109616, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734118

RESUMO

Enteritis posed a significant health challenge to golden pompano (Trachinotus ovatus) populations. In this research, a comprehensive multi-omics strategy was implemented to elucidate the pathogenesis of enteritis by comparing both healthy and affected golden pompano. Histologically, enteritis was characterized by villi adhesion and increased clustering after inflammation. Analysis of the intestinal microbiota revealed a significant increase (P < 0.05) in the abundance of specific bacterial strains, including Photobacterium and Salinivibrio, in diseased fish compared to the healthy group. Metabolomic analysis identified 5479 altered metabolites, with significant impacts on terpenoid and polyketide metabolism, as well as lipid metabolism (P < 0.05). Additionally, the concentrations of several compounds such as calcitetrol, vitamin D2, arachidonic acid, and linoleic acid were significantly reduced in the intestines of diseased fish post-enteritis (P < 0.05), with the detection of harmful substances such as Efonidipine. In transcriptomic profiling, enteritis induced 68 upregulated and 73 downregulated genes, predominantly affecting steroid hormone receptor activity (P < 0.05). KEGG pathway enrichment analysis highlighted upregulation of SQLE and CYP51 in steroidogenesis, while the HSV-1 associated MHC1 gene exhibited significant downregulation. Integration of multi-omics results suggested a potential pathogenic mechanism: enteritis may have resulted from concurrent infection of harmful bacteria, specifically Photobacterium and Salinivibrio, along with HSV-1. Efonidipine production within the intestinal tract may have blocked certain calcium ion channels, leading to downregulation of MHC1 gene expression and reduced extracellular immune recognition. Upregulation of SQLE and CYP51 genes stimulated steroid hormone synthesis within cells, which, upon binding to G protein-coupled receptors, influenced calcium ion transport, inhibited immune activation reactions, and further reduced intracellular synthesis of anti-inflammatory substances like arachidonic acid. Ultimately, this cascade led to inflammation progression, weakened intestinal peristalsis, and villi adhesion. This study utilized multi-level omics detection to investigate the pathological symptoms of enteritis and proposed a plausible pathogenic mechanism, providing innovative insights into enteritis verification and treatment in offshore cage culture of golden pompano.


Assuntos
Enterite , Doenças dos Peixes , Microbioma Gastrointestinal , Animais , Enterite/veterinária , Enterite/imunologia , Enterite/microbiologia , Doenças dos Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Perciformes/imunologia , Perciformes/genética , Transcriptoma , Metabolômica , Multiômica
19.
Fish Shellfish Immunol ; 151: 109660, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830519

RESUMO

Heat shock factor binding protein 1 (HSBP1) is known to regulate the activity of heat shock factor 1 (HSF1) and the early development of organisms. To understand the involvement of HSBP1 in the heat shock response and embryonic and larval development of Pacific abalone (Haliotis discus hannai), the Hdh-HSBP1 gene was sequenced from the digestive gland (DG) tissue. The full-length sequence of Hdh-HSBP1 encompassed 738 nucleotides, encoding an 8.42 kDa protein consisting of 75 deduced amino acids. The protein contains an HSBP1 domain and a coiled-coil domain, which are conserved features in the HSBP1 protein family. Protein-protein molecular docking revealed that the coiled-coil region of Hdh-HSBP1 binds to the coiled-coil region of Hdh-HSF1. Tissue expression analysis demonstrated that the highest Hdh-HSBP1 expression occurred in the DG, whereas seasonal expression analysis revealed that this gene was most highly expressed in summer. In heat-stressed abalone, the highest expression of Hdh-HSBP1 occurred at 30 °C. Moreover, time-series analysis revealed that the expression of this gene began to increase significantly at 6 h post-heat stress, with higher expression observed at 12 h and 24 h post-heat stress. Furthermore, Hdh-HSBP1 mRNA expression showed a link to ROS production. Additionally, the expression of Hdh-HSBP1 showed significantly higher expression in the early stages of embryonic development in Pacific abalone. These results suggest that Hdh-HSBP1 plays a crucial role in the stress physiology of Pacific abalone by interacting with Hdh-HSF1, as well as its embryonic development.


Assuntos
Sequência de Aminoácidos , Gastrópodes , Resposta ao Choque Térmico , Filogenia , Animais , Gastrópodes/genética , Alinhamento de Sequência/veterinária , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica , Sequência de Bases , Simulação de Acoplamento Molecular
20.
Fish Shellfish Immunol ; 148: 109476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447780

RESUMO

Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.


Assuntos
Resposta ao Choque Frio , Perfilação da Expressão Gênica , Animais , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica/veterinária , Peixes/genética , Fígado/metabolismo , Temperatura Baixa , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa