Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Virol ; 97(4): e0030223, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039677

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified phlebovirus associated with severe hemorrhagic fever in humans. Studies have shown that SFTSV nucleoprotein (N) induces BECN1-dependent autophagy to promote viral assembly and release. However, the function of other SFTSV proteins in regulating autophagy has not been reported. In this study, we identify SFTSV NSs, a nonstructural protein that forms viroplasm-like structures in the cytoplasm of infected cells as the virus component mediating SFTSV-induced autophagy. We found that SFTSV NSs-induced autophagy was inclusion body independent, and most phenuivirus NSs had autophagy-inducing effects. Unlike N protein-induced autophagy, SFTSV NSs was key in regulating autophagy by interacting with the host's vimentin in an inclusion body-independent manner. NSs interacted with vimentin and induced vimentin degradation through the K48-linked ubiquitin-proteasome pathway. This negatively regulating Beclin1-vimentin complex formed and promoted autophagy. Furthermore, we identified the NSs-binding domain of vimentin and found that overexpression of wild-type vimentin antagonized the induced effect of NSs on autophagy and inhibited viral replication, suggesting that vimentin is a potential antiviral target. The present study shows a novel mechanism through which SFTSV nonstructural protein activates autophagy, which provides new insights into the role of NSs in SFTSV infection and pathogenesis. IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly emerging tick-borne pathogen that causes multifunctional organ failure and even death in humans. As a housekeeping mechanism for cells to maintain steady state, autophagy plays a dual role in viral infection and the host's immune response. However, the relationship between SFTSV infection and autophagy has not been described in detail yet. Here, we demonstrated that SFTSV infection induced complete autophagic flux and facilitated viral proliferation. We also identified a key mechanism underlying NSs-induced autophagy, in which NSs interacted with vimentin to inhibit the formation of the Beclin1-vimentin complex and induced vimentin degradation through K48-linked ubiquitination modification. These findings may help us understand the new functions and mechanisms of NSs and may aid in the identification of new antiviral targets.


Assuntos
Autofagia , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Vimentina , Proteínas não Estruturais Virais , Humanos , Autofagia/genética , Proteína Beclina-1/metabolismo , Phlebovirus/metabolismo , Febre Grave com Síndrome de Trombocitopenia/fisiopatologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Vimentina/genética , Vimentina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Regulação para Baixo , Domínios Proteicos
2.
Metabolomics ; 20(4): 84, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066899

RESUMO

INTRODUCTION: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV), which has a wide geographic distribution. The primary clinical manifestations of SFTS are fever and thrombocytopenia, with multiorgan failure being the leading cause of death. While most patients recover with treatment, little is known about the potential long-term metabolic effects of SFTSV infection. OBJECTIVES: This study aimed to shed light on dysregulated metabolic pathways and cytokine responses following SFTSV infection, which pose significant risks to the short-term and long-term health of affected individuals. METHODS: Fourteen laboratory-confirmed clinical SFTS cases and thirty-eight healthy controls including 18 SFTSV IgG-positive and 20 IgG-negative individuals were recruited from Taizhou city of Zhejiang province, Eastern China. Inclusion criteria of healthy controls included residing in the study area for at least one year, absence of fever or other symptoms in the past two weeks, and no history of SFTS diagnosis. Ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS) was used to obtain the relative abundance of plasma metabolites. Short-term metabolites refer to transient alterations present only during SFTSV infection, while long-term metabolites persistently deviate from normal levels even after recovery from SFTSV infection. Additionally, the concentrations of 12 cytokines were quantified through fluorescence intensity measurements. Differential metabolites were screened using orthogonal projections to latent structures discriminant analysis (OPLS-DA) and the Wilcoxon rank test. Metabolic pathway analysis was performed using MetaboAnalyst. Between-group differences of metabolites and cytokines were examined using the Wilcoxon rank test. Correlation matrices between identified metabolites and cytokines were analyzed using Spearman's method. RESULTS AND CONCLUSIONS: We screened 122 long-term metabolites and 108 short-term metabolites by analytical comparisons and analyzed their correlations with 12 cytokines. Glycerophospholipid metabolism (GPL) was identified as a significant short-term metabolic pathway suggesting that the activation of GPL might be linked to the self-replication of SFTSV, whereas pentose phosphate pathway and alanine, aspartate, and glutamate metabolism were indicated as significant long-term metabolic pathways playing a role in combating long-standing oxidative stress in the patients. Furthermore, our study suggests a new perspective that α-ketoglutarate could serve as a dietary supplement to protect recovering SFTS patients.


Assuntos
Citocinas , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Febre Grave com Síndrome de Trombocitopenia/virologia , Citocinas/metabolismo , Citocinas/sangue , Pessoa de Meia-Idade , Masculino , Feminino , Phlebovirus/metabolismo , Idoso , Adulto , Cromatografia Líquida de Alta Pressão , Metabolômica/métodos , Estudos de Casos e Controles , Redes e Vias Metabólicas , Espectrometria de Massas/métodos , China
3.
Appl Microbiol Biotechnol ; 108(1): 303, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639795

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes the highly fatal disease in humans. To facilitate diagnosis, the native form of subunit glycoprotein (Gn), a prime target for potential vaccines and therapies, was produced in Nicotiana benthamiana using a Bamboo mosaic virus-based vector system. By fusion with secretory signal tags, SSExt, derived from the extension protein, and the (SP)10 motif, the yield of the recombinant Gn (rGn) was remarkably increased to approximately 7 mg/kg infiltrated leaves. Ultimately, an rGn-based ELISA was successfully established for the detection of SFTSV-specific antibodies in serum samples from naturally infected monkeys. As validated with the reference method, the specificity and sensitivity of rGn-ELISA were 94% and 96%, respectively. In conclusion, utilizing well-suited fusion tags facilitates rGn production and purification in substantial quantities while preserving its antigenic properties. The rGn-ELISA, characterized by its commendable sensitivity and specificity could serve as a viable alternative diagnostic method for assessing SFTSV seroprevalence. KEY POINTS: • SFTSV Gn, fused with secretory signal tags, was expressed by the BaMV-based vector. • The plant fusion tags increased expression levels and eased the purification of rGn. • The rGn-ELISA was established and validated; its specificity and sensitivity > 94%.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Phlebovirus/genética , Phlebovirus/metabolismo , Estudos Soroepidemiológicos , Glicoproteínas/metabolismo , Anticorpos
4.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38928101

RESUMO

In our prior investigations, we elucidated the role of the tryptophan-to-tyrosine substitution at the 61st position in the nonstructural protein NSsW61Y in diminishing the interaction between nonstructural proteins (NSs) and nucleoprotein (NP), impeding viral replication. In this study, we focused on the involvement of NSs in replication via the modulation of autophagosomes. Initially, we examined the impact of NP expression levels, a marker for replication, upon the infection of HeLa cells with severe fever thrombocytopenia syndrome virus (SFTSV), with or without the inhibition of NP binding. Western blot analysis revealed a reduction in NP levels in NSsW61Y-expressing conditions. Furthermore, the expression levels of the canonical autophagosome markers p62 and LC3 decreased in HeLa cells expressing NSsW61Y, revealing the involvement of individual viral proteins on autophagy. Subsequent experiments confirmed that NSsW61Y perturbs autophagy flux, as evidenced by reduced levels of LC3B and p62 upon treatment with chloroquine, an inhibitor of autophagosome-lysosome fusion. LysoTracker staining demonstrated a decrease in lysosomes in cells expressing the NS mutant compared to those expressing wild-type NS. We further explored the mTOR-associated regulatory pathway, a key regulator affected by NS mutant expression. The observed inhibition of replication could be linked to conformational changes in the NSs, impairing their binding to NP and altering mTOR regulation, a crucial upstream signaling component in autophagy. These findings illuminate the intricate interplay between NSsW61Y and the suppression of host autophagy machinery, which is crucial for the generation of autophagosomes to facilitate viral replication.


Assuntos
Autofagossomos , Autofagia , Phlebovirus , Triptofano , Tirosina , Proteínas não Estruturais Virais , Replicação Viral , Humanos , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Autofagossomos/metabolismo , Células HeLa , Phlebovirus/genética , Phlebovirus/fisiologia , Phlebovirus/metabolismo , Autofagia/genética , Tirosina/metabolismo , Triptofano/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mutação , Substituição de Aminoácidos , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Febre Grave com Síndrome de Trombocitopenia/virologia , Febre Grave com Síndrome de Trombocitopenia/genética , Lisossomos/metabolismo , Nucleoproteínas/metabolismo , Nucleoproteínas/genética
5.
J Virol ; 96(13): e0045422, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695504

RESUMO

In this issue, Gao and colleagues (J Virol 96:e00167-22, https://doi.org/10.1128/JVI.00167-22) dissect innate immune signaling in a microglial cell line infected with severe fever with thrombocytopenia syndrome virus (SFTSV). This virus has been designated a priority pathogen by the World Health Organization due to its capacity to induce a fatal cytokine storm. The study's findings attribute the pathogenesis to induction of the host inflammasome response by the SFTSV nonstructural protein.


Assuntos
Infecções por Bunyaviridae , Encefalite , Phlebovirus , Infecções por Bunyaviridae/imunologia , Infecções por Bunyaviridae/virologia , Encefalite/imunologia , Encefalite/virologia , Humanos , Phlebovirus/metabolismo , Transdução de Sinais/fisiologia , Proteínas não Estruturais Virais/metabolismo
6.
J Virol ; 96(13): e0016722, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35695505

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne febrile disease caused by SFTS virus (SFTSV), or Dabie bandavirus, in the Phenuiviridae family. Clinically neurological disorders in SFTS have been commonly reported, but their neuropathogenesis has rarely been studied. Microglia are a type of neuroglia accounting for 10 to 12% of all cells in the brain. As resident immune cells, microglial cells are the first line of immune defense present in the central nervous system (CNS). Here, we report that SFTSV was able to infect microglial cells and stimulate interleukin 1ß (IL-1ß) secretion in the brains of infected neonatal BALB/c mice. We characterized the cell death induced in infected human microglial HMC3 cells, also susceptible to SFTSV, and found that the NOD-like receptor protein 3 (NLRP3) inflammasome was activated, leading to secretion of IL-1ß and pyroptosis. Knockdown of NLRP3 or inhibition of the NLRP3 inflammasome activation suppressed the viral replication, suggesting that the activation of the NLRP3 inflammasome may support SFTSV replication in microglial cells. Viral nonstructural protein NSs, a known modulator of immune responses, interacted and colocalized with NLRP3 for the inflammasome activation. It appeared that the N-terminal fragment, amino acids 1 to 66, of NSs was critical to promote the assembly of the inflammasome complex by interacting with NLRP3 for its activation in microglial cells. Our findings provide evidence that SFTSV may cause neurological disorders through infecting microglia and activating the inflammasome through its nonstructural protein NSs for neural cell death and inflammation. This study may have revealed a novel mechanism of SFTSV NSs in dysregulating host response. IMPORTANCE Encephalitis or encephalopathy during severe fever with thrombocytopenia syndrome (SFTS) is considered a critical risk factor leading to high mortality, but there have been no studies to date on the pathogenesis of encephalitis or encephalopathy caused by SFTS virus. Here, we report that SFTSV infection can active the NLRP3 inflammasome and induce IL-1ß secretion in the brains of infected newborn mice. In infected human HMC3 microglia, SFTSV activated the NLRP3 inflammasome via the viral nonstructural protein NSs through interaction with its N-terminal fragment. Notably, our findings suggest that the activation of the NLRP3 inflammasome may promote SFTSV replication in infected microglial cells. This study may reveal a novel mechanism by SFTSV to dysregulate host responses through its nonstructural protein, which could help us understand viral neuropathogenesis in SFTS patients.


Assuntos
Encefalite , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Phlebovirus , Piroptose , Proteínas não Estruturais Virais , Animais , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Camundongos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Phlebovirus/metabolismo , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia , Proteínas não Estruturais Virais/metabolismo
7.
Microb Pathog ; 178: 106079, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36966885

RESUMO

Experimental animal model is indispensable to evaluate the prophylactic and therapeutic candidates against severe fever with thrombocytopenia syndrome virus (SFTSV). To develop a suitable mouse model for SFTSV infection, we delivered human dendritic cell-specific ICAM-3-grabbing non-integrin (hDC-SIGN) by adeno-associated virus (AAV2) and validated its susceptibility for SFTSV infection. Western blot and RT-PCR assays confirmed the expression of hDC-SIGN in transduced cell lines and a significantly increased viral infectivity was observed in cells expressing hDC-SIGN. The C57BL/6 mice transduced with AAV2 exhibited a stable hDC-SIGN expression in the organs for 7 days. Upon SFTSV challenge with 1 × 105 FAID50, the mice transduced with rAAV-hDC-SIGN showed a 12.5% mortality and reduced platelet and white blood cell count in accordance with higher viral titer than control group. Liver and spleen samples collected from the transduced mice had pathological signs similar to the IFNAR-/- mice with severe SFTSV infection. Collectively, the rAAV-hDC-SIGN transduced mouse model can be used as an accessible and promising tool for studying the SFTSV pathogenesis and pre-clinical evaluation of vaccines and therapeutics against the SFTSV infection.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Phlebovirus/genética , Phlebovirus/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Modelos Animais de Doenças
8.
J Immunol ; 207(2): 590-601, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34244294

RESUMO

The nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) plays multiple functions in the virus life cycle. Proteomic screening for host proteins interacting with NSs identified the cellular protein LSm14A. LSm14A, a member of the LSm family involved in RNA processing in the processing bodies, binds to viral RNA or synthetic homolog and mediates IFN regulatory factor 3 activation and IFN-ß induction. NSs interacted with and colocalized with LSm14A, and this interaction effectively inhibited downstream phosphorylation and dimerization of IFN regulatory factor 3, resulting in the suppression of antiviral signaling and IFN induction in several cell types of human origin. Knockdown of NSs resulted in the suppression of SFTSV replication in host cells. Viral RNA bound to LSm14A-NSs protein complex during the interaction. A newly discovered LRRD motif of NSs functioned to interact with LSm14A. Altogether, our data demonstrated a mechanism used by SFTSV to inhibit host innate immune response.


Assuntos
Antivirais/metabolismo , Phlebovirus/metabolismo , Ribonucleoproteínas/metabolismo , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Imunidade Inata/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Proteômica/métodos , Transdução de Sinais/fisiologia
9.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852783

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) dissociates from its inhibitor, Keap1, upon stress signals and subsequently induces an antioxidant response that critically controls the viral life cycle and pathogenesis. Besides intracellular Fc receptor function, tripartite motif 21 (TRIM21) E3 ligase plays an essential role in the p62-Keap1-Nrf2 axis pathway for redox homeostasis. Specifically, TRIM21-mediated p62 ubiquitination abrogates p62 oligomerization and sequestration activity and negatively regulates the Keap1-Nrf2-mediated antioxidant response. A number of viruses target the Nrf2-mediated antioxidant response to generate an optimal environment for their life cycle. Here we report that a nonstructural protein (NSs) of severe fever with thrombocytopenia syndrome virus (SFTSV) interacts with and inhibits TRIM21 to activate the Nrf2 antioxidant signal pathway. Mass spectrometry identified TRIM21 to be a binding protein for NSs. NSs bound to the carboxyl-terminal SPRY subdomain of TRIM21, enhancing p62 stability and oligomerization. This facilitated p62-mediated Keap1 sequestration and ultimately increased Nrf2-mediated transcriptional activation of antioxidant genes, including those for heme oxygenase 1, NAD(P)H quinone oxidoreductase 1, and CD36. Mutational analysis found that the NSs-A46 mutant, which no longer interacted with TRIM21, was unable to increase Nrf2-mediated transcriptional activation. Functionally, the NS wild type (WT), but not the NSs-A46 mutant, increased the surface expression of the CD36 scavenger receptor, resulting in an increase in phagocytosis and lipid uptake. A combination of reverse genetics and assays with Ifnar-/- mouse models revealed that while the SFTSV-A46 mutant replicated similarly to wild-type SFTSV (SFTSV-WT), it showed weaker pathogenic activity than SFTSV-WT. These data suggest that the activation of the p62-Keap1-Nrf2 antioxidant response induced by the NSs-TRIM21 interaction contributes to the development of an optimal environment for the SFTSV life cycle and efficient pathogenesis.IMPORTANCE Tick-borne diseases have become a growing threat to public health. SFTSV, listed by the World Health Organization as a prioritized pathogen, is an emerging phlebovirus, and fatality rates among those infected with this virus are high. Infected Haemaphysalis longicornis ticks are the major source of human SFTSV infection. In particular, the recent spread of this tick to over 12 states in the United States has increased the potential for outbreaks of this disease beyond Far East Asia. Due to the lack of therapies and vaccines against SFTSV infection, there is a pressing need to understand SFTSV pathogenesis. As the Nrf2-mediated antioxidant response affects viral life cycles, a number of viruses deregulate Nrf2 pathways. Here we demonstrate that the SFTSV NSs inhibits the TRIM21 function to upregulate the p62-Keap1-Nrf2 antioxidant pathway for efficient viral pathogenesis. This study not only demonstrates the critical role of SFTSV NSs in viral pathogenesis but also suggests potential future therapeutic approaches to treat SFTSV-infected patients.


Assuntos
Infecções por Bunyaviridae/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Phlebovirus/metabolismo , Ribonucleoproteínas/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo , Animais , Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/patologia , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Phlebovirus/genética , Ribonucleoproteínas/genética , Proteína Sequestossoma-1/genética , Proteínas não Estruturais Virais/genética
10.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842332

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging, highly pathogenic, infectious disease caused by infection with a newly discovered tick-borne phlebovirus, SFTS virus (SFTSV). Limited information on the molecular mechanism of SFTSV infection and pathogenesis impedes the development of effective vaccines and drugs for SFTS prevention and treatment. In this study, an isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of SFTSV-infected HEK 293 cells was performed to explore dynamic host cellular protein responses toward SFTSV infection. A total of 433 of 5,606 host proteins involved in different biological processes were differentially regulated by SFTSV infection. The proteomic results highlighted a potential role of endoplasmic reticular stress-triggered unfolded-protein response (UPR) in SFTSV infection. Further functional studies confirmed that all three major branches of the UPR, including the PKR-like endoplasmic reticulum kinase (PERK), the activating transcription factor-6 (ATF6), and the inositol-requiring protein-1 (IRE1)/X-box-binding protein 1 (XBP1) pathways, were activated by SFTSV. However, only the former two pathways play a crucial role in SFTSV infection. Furthermore, expression of SFTSV glycoprotein (GP) alone was sufficient to stimulate the UPR, whereas suppression of PERK and ATF6 notably decreased GP expression. Interestingly, two other newly discovered phleboviruses, Heartland virus and Guertu virus, also stimulated the UPR, suggesting a common mechanism shared by these genetically related phleboviruses. This study provides a global view to our knowledge on how host cells respond to SFTSV infection and highlights that host cell UPR plays an important role in phlebovirus infection.IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe fever with thrombocytopenia syndrome in humans, with a mortality rate reaching up to 30% in some outbreaks. There are currently no U.S. Food and Drug Administration-approved vaccines or specific antivirals available against SFTSV. To comprehensively understand the molecular interactions occurring between SFTSV and the host cell, we exploit quantitative proteomic approach to investigate the dynamic host cellular responses to SFTSV infection. The results highlight multiple biological processes being regulated by SFTSV infection. Among these, we focused on exploration of the mechanism of how SFTSV infection stimulates the host cell's unfolded-protein response (UPR) and identified the UPR as a common feature shared by SFTSV-related new emerging phleboviruses. This study, for the first time to our knowledge, provides a global map for host cellular responses to SFTSV infection and highlighted potential host targets for further research.


Assuntos
Infecções por Bunyaviridae/metabolismo , Phlebovirus/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Fator 6 Ativador da Transcrição/metabolismo , Infecções por Bunyaviridae/virologia , Endorribonucleases/metabolismo , Glicoproteínas/metabolismo , Células HEK293 , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Phlebovirus/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Trombocitopenia/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/metabolismo
11.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814285

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel emerging virus that has been identified in China, South Korea, and Japan, and it induces thrombocytopenia and leukocytopenia in humans with a high case fatality rate. SFTSV is pathogenic to humans, while immunocompetent adult mice and golden Syrian hamsters infected with SFTSV never show apparent symptoms. However, mice deficient for the gene encoding the α chain of the alpha- and beta-interferon receptor (Ifnar1-/- mice) and golden Syrian hamsters deficient for the gene encoding signal transducer and activator of transcription 2 (Stat2-/- hamsters) are highly susceptible to SFTSV infection, with infection resulting in death. The nonstructural protein (NSs) of SFTSV has been reported to inhibit the type I IFN response through sequestration of human STAT proteins. Here, we demonstrated that SFTSV induces lethal acute disease in STAT2-deficient mice but not in STAT1-deficient mice. Furthermore, we discovered that NSs cannot inhibit type I IFN signaling in murine cells due to an inability to bind to murine STAT2. Taken together, our results imply that the dysfunction of NSs in antagonizing murine STAT2 can lead to inefficient replication and the loss of pathogenesis of SFTSV in mice.IMPORTANCE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTSV, which has been reported in China, South Korea, and Japan. Here, we revealed that mice lacking STAT2, which is an important factor for antiviral innate immunity, are highly susceptible to SFTSV infection. We also show that SFTSV NSs cannot exert its anti-innate immunity activity in mice due to the inability of the protein to bind to murine STAT2. Our findings suggest that the dysfunction of SFTSV NSs as an IFN antagonist in murine cells confers a loss of pathogenicity of SFTSV in mice.


Assuntos
Infecções por Bunyaviridae/metabolismo , Phlebovirus/metabolismo , Fator de Transcrição STAT2/metabolismo , Animais , Antivirais/metabolismo , Infecções por Bunyaviridae/virologia , Glicoproteínas/metabolismo , Células HEK293 , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Febre por Flebótomos/virologia , Phlebovirus/patogenicidade , Fosforilação , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/fisiologia , Especificidade da Espécie , Trombocitopenia/metabolismo , Proteínas não Estruturais Virais/metabolismo , Virulência
12.
Proc Natl Acad Sci U S A ; 114(36): E7564-E7573, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827346

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) and Rift Valley fever virus (RVFV) are two arthropod-borne phleboviruses in the Bunyaviridae family, which cause severe illness in humans and animals. Glycoprotein N (Gn) is one of the envelope proteins on the virus surface and is a major antigenic component. Despite its importance for virus entry and fusion, the molecular features of the phleboviruse Gn were unknown. Here, we present the crystal structures of the Gn head domain from both SFTSV and RVFV, which display a similar compact triangular shape overall, while the three subdomains (domains I, II, and III) making up the Gn head display different arrangements. Ten cysteines in the Gn stem region are conserved among phleboviruses, four of which are responsible for Gn dimerization, as revealed in this study, and they are highly conserved for all members in Bunyaviridae Therefore, we propose an anchoring mode on the viral surface. The complex structure of the SFTSV Gn head and human neutralizing antibody MAb 4-5 reveals that helices α6 in subdomain III is the key component for neutralization. Importantly, the structure indicates that domain III is an ideal region recognized by specific neutralizing antibodies, while domain II is probably recognized by broadly neutralizing antibodies. Collectively, Gn is a desirable vaccine target, and our data provide a molecular basis for the rational design of vaccines against the diseases caused by phleboviruses and a model for bunyavirus Gn embedding on the viral surface.


Assuntos
Anticorpos Neutralizantes/metabolismo , Epitopos/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Phlebovirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , Infecções por Bunyaviridae/virologia , Linhagem Celular , Cristalografia por Raios X , Epitopos/química , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/metabolismo , Células Sf9 , Internalização do Vírus
13.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30232186

RESUMO

Sandfly fever Sicilian virus (SFSV) is one of the most widespread and frequently identified members of the genus Phlebovirus (order Bunyavirales, family Phenuiviridae) infecting humans. Being transmitted by Phlebotomus sandflies, SFSV causes a self-limiting, acute, often incapacitating febrile disease ("sandfly fever," "Pappataci fever," or "dog disease") that has been known since at least the beginning of the 20th century. We show that, similarly to other pathogenic phleboviruses, SFSV suppresses the induction of the antiviral type I interferon (IFN) system in an NSs-dependent manner. SFSV NSs interfered with the TBK1-interferon regulatory factor 3 (IRF3) branch of the RIG-I signaling pathway but not with NF-κB activation. Consistently, we identified IRF3 as a host interactor of SFSV NSs. In contrast to IRF3, neither the IFN master regulator IRF7 nor any of the related transcription factors IRF2, IRF5, and IRF9 were bound by SFSV NSs. In spite of this specificity for IRF3, NSs did not inhibit its phosphorylation, dimerization, or nuclear accumulation, and the interaction was independent of the IRF3 activation or multimerization state. In further studies, we identified the DNA-binding domain of IRF3 (amino acids 1 to 113) as sufficient for NSs binding and found that SFSV NSs prevented the association of activated IRF3 with the IFN-ß promoter. Thus, unlike highly virulent phleboviruses, which either destroy antiviral host factors or sequester whole signaling chains into inactive aggregates, SFSV modulates type I IFN induction by directly masking the DNA-binding domain of IRF3.IMPORTANCE Phleboviruses are receiving increased attention due to the constant discovery of new species and the ongoing spread of long-known members of the genus. Outbreaks of sandfly fever were reported in the 19th century, during World War I, and during World War II. Currently, SFSV is recognized as one of the most widespread phleboviruses, exhibiting high seroprevalence rates in humans and domestic animals and causing a self-limiting but incapacitating disease predominantly in immunologically naive troops and travelers. We show how the nonstructural NSs protein of SFSV counteracts the upregulation of the antiviral interferon (IFN) system. SFSV NSs specifically inhibits promoter binding by IFN transcription factor 3 (IRF3), a molecular strategy which is unique among phleboviruses and, to our knowledge, among human pathogenic RNA viruses in general. This IRF3-specific and stoichiometric mechanism, greatly distinct from the ones exhibited by the highly virulent phleboviruses, correlates with the intermediate level of pathogenicity of SFSV.


Assuntos
DNA/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/farmacologia , Febre por Flebótomos/metabolismo , Phlebovirus/metabolismo , Psychodidae/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/farmacologia , DNA/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Febre por Flebótomos/tratamento farmacológico , Febre por Flebótomos/virologia , Phlebovirus/efeitos dos fármacos , Phlebovirus/genética , Fosforilação , Psychodidae/genética , Psychodidae/virologia , Transdução de Sinais , Proteínas não Estruturais Virais/genética
14.
PLoS Pathog ; 13(4): e1006316, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28388693

RESUMO

A novel bunyavirus was recently found to cause severe febrile illness with high mortality in agricultural regions of China, Japan, and South Korea. This virus, named severe fever with thrombocytopenia syndrome virus (SFTSV), represents a new group within the Phlebovirus genus of the Bunyaviridae. Little is known about the viral entry requirements beyond showing dependence on dynamin and endosomal acidification. A haploid forward genetic screen was performed to identify host cell requirements for SFTSV entry. The screen identified dependence on glucosylceramide synthase (ugcg), the enzyme responsible for initiating de novo glycosphingolipid biosynthesis. Genetic and pharmacological approaches confirmed that UGCG expression and enzymatic activity were required for efficient SFTSV entry. Furthermore, inhibition of UGCG affected a post-internalization stage of SFTSV entry, leading to the accumulation of virus particles in enlarged cytoplasmic structures, suggesting impaired trafficking and/or fusion of viral and host membranes. These findings specify a role for glucosylceramide in SFTSV entry and provide a novel target for antiviral therapies.


Assuntos
Infecções por Bunyaviridae/metabolismo , Febre/virologia , Glicolipídeos/metabolismo , Trombocitopenia/virologia , Internalização do Vírus , Animais , Infecções por Bunyaviridae/virologia , China , Humanos , Japão , Orthobunyavirus/isolamento & purificação , Orthobunyavirus/metabolismo , Phlebovirus/isolamento & purificação , Phlebovirus/metabolismo , República da Coreia
15.
Proc Natl Acad Sci U S A ; 113(26): 7154-9, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27325770

RESUMO

An emergent viral pathogen termed severe fever with thrombocytopenia syndrome virus (SFTSV) is responsible for thousands of clinical cases and associated fatalities in China, Japan, and South Korea. Akin to other phleboviruses, SFTSV relies on a viral glycoprotein, Gc, to catalyze the merger of endosomal host and viral membranes during cell entry. Here, we describe the postfusion structure of SFTSV Gc, revealing that the molecular transformations the phleboviral Gc undergoes upon host cell entry are conserved with otherwise unrelated alpha- and flaviviruses. By comparison of SFTSV Gc with that of the prefusion structure of the related Rift Valley fever virus, we show that these changes involve refolding of the protein into a trimeric state. Reverse genetics and rescue of site-directed histidine mutants enabled localization of histidines likely to be important for triggering this pH-dependent process. These data provide structural and functional evidence that the mechanism of phlebovirus-host cell fusion is conserved among genetically and patho-physiologically distinct viral pathogens.


Assuntos
Febre por Flebótomos/virologia , Phlebovirus/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Humanos , Phlebovirus/química , Phlebovirus/genética , Conformação Proteica , Alinhamento de Sequência , Proteínas do Envelope Viral/genética , Internalização do Vírus
16.
Biometals ; 31(1): 81-89, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29209895

RESUMO

Here we report on the results obtained from an antiviral screening, including herpes simplex virus, vaccinia virus, vesicular stomatitis virus, Coxsackie B4 virus or respiratory syncytial virus, parainfluenza-3 virus, reovirus-1 and Punta Toro virus, of three 2-hydroxy-3-methoxyphenyl acylhydrazone compounds in three cell lines (i.e. human embryonic lung fibroblast cells, human cervix carcinoma cells, and African Green monkey kidney cells). Interesting antiviral EC50 values are obtained against herpes simplex virus-1 and vaccinia virus. The biological activity of acylhydrazones is often attributed to their metal coordinating abilities, so potentiometric and microcalorimetric studies are here discussed to unravel the behavior of the three 2-hydroxy-3-methoxyphenyl compounds in solution. It is worth of note that the acylhydrazone with the higher affinity for Cu(II) ions shows the best antiviral activity against herpes simplex and vaccinia virus (EC50 ~ 1.5 µM, minimal cytotoxic concentration = 60 µM, selectivity index = 40).


Assuntos
Antivirais/farmacologia , Quelantes/farmacologia , Hidrazonas/farmacologia , Simplexvirus/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/metabolismo , Chlorocebus aethiops , Cobre/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Humanos , Hidrazonas/síntese química , Hidrazonas/metabolismo , Concentração Inibidora 50 , Magnésio/metabolismo , Manganês/metabolismo , Orthoreovirus de Mamíferos/efeitos dos fármacos , Orthoreovirus de Mamíferos/crescimento & desenvolvimento , Orthoreovirus de Mamíferos/metabolismo , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Vírus da Parainfluenza 3 Humana/crescimento & desenvolvimento , Vírus da Parainfluenza 3 Humana/metabolismo , Phlebovirus/efeitos dos fármacos , Phlebovirus/crescimento & desenvolvimento , Phlebovirus/metabolismo , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/crescimento & desenvolvimento , Vírus Sinciciais Respiratórios/metabolismo , Simplexvirus/crescimento & desenvolvimento , Simplexvirus/metabolismo , Vaccinia virus/crescimento & desenvolvimento , Vaccinia virus/metabolismo , Células Vero , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/crescimento & desenvolvimento , Vesiculovirus/metabolismo
17.
Acta Virol ; 61(3): 289-298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854793

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-ß response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-ß production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.


Assuntos
Febre/virologia , Phlebovirus/metabolismo , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferons/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Células Vero
18.
J Virol ; 89(6): 3026-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25552716

RESUMO

UNLABELLED: Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen that was first reported in China in 2009. Phylogenetic analysis of the viral genome showed that SFTS virus represents a new lineage within the Phlebovirus genus, distinct from the existing sandfly fever and Uukuniemi virus groups, in the family Bunyaviridae. SFTS disease is characterized by gastrointestinal symptoms, chills, joint pain, myalgia, thrombocytopenia, leukocytopenia, and some hemorrhagic manifestations with a case fatality rate of about 2 to 15%. Here we report the development of reverse genetics systems to study STFSV replication and pathogenesis. We developed and optimized functional T7 polymerase-based M- and S-segment minigenome assays, which revealed errors in the published terminal sequences of the S segment of the Hubei 29 strain of SFTSV. We then generated recombinant viruses from cloned cDNAs prepared to the antigenomic RNAs both of the minimally passaged virus (HB29) and of a cell culture-adapted strain designated HB29pp. The growth properties, pattern of viral protein synthesis, and subcellular localization of viral N and NSs proteins of wild-type HB29pp (wtHB29pp) and recombinant HB29pp viruses were indistinguishable. We also show that the viruses fail to shut off host cell polypeptide production. The robust reverse genetics system described will be a valuable tool for the design of therapeutics and the development of killed and attenuated vaccines against this important emerging pathogen. IMPORTANCE: SFTSV and related tick-borne phleboviruses such as Heartland virus are emerging viruses shown to cause severe disease in humans in the Far East and the United States, respectively. Study of these novel pathogens would be facilitated by technology to manipulate these viruses in a laboratory setting using reverse genetics. Here, we report the generation of infectious SFTSV from cDNA clones and demonstrate that the behavior of recombinant viruses is similar to that of the wild type. This advance will allow for further dissection of the roles of each of the viral proteins in the context of virus infection, as well as help in the development of antiviral drugs and protective vaccines.


Assuntos
Febre por Flebótomos/virologia , Phlebovirus/genética , Genética Reversa/métodos , Sequência de Aminoácidos , Sequência de Bases , China , Feminino , Genoma Viral , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Phlebovirus/química , Phlebovirus/metabolismo , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
J Virol ; 89(8): 4227-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631085

RESUMO

UNLABELLED: The type I interferon (IFN) system, including IFN induction and signaling, is the critical component of the host defense line against viral infection, which, in turn, is also a vulnerable target for viral immune evasion. Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus. Previous data have shown that SFTSV can interfere with the early induction of type I IFNs through targeting host kinases TBK1/IKKε. In this study, we demonstrated that SFTSV also can suppress type I IFN-triggered signaling and interferon-stimulated gene (ISG) expression. Interestingly, we observed the significant inhibition of IFN signaling in cells transfected with the plasmids encoding the nonstructural protein (NSs) but not the nucleocapsid protein (NP), indicating the role of NSs as an antagonist of IFN signaling. Furthermore, coimmunoprecipitation (Co-IP) and pulldown assays indicated that NSs interacts with the cellular signal transducer and activator of transcription 2 (STAT2), and the DNA-binding domain of STAT2 may contribute to the NSs-STAT2 interaction. Combined with confocal microscopy analyses, we demonstrated that NSs sequesters STAT2 and STAT1 into viral inclusion bodies (IBs) and impairs IFN-induced STAT2 phosphorylation and nuclear translocation of both STATs, resulting in the inhibition of IFN signaling and ISG expression. SFTSV NSs-mediated hijacking of STATs in IBs represents a novel mechanism of viral suppression of IFN signaling, highlighting the role of viral IBs as the virus-built "jail" sequestering some crucial host factors and interfering with the corresponding cellular processes. IMPORTANCE: SFTSV is an emerging bunyavirus which can cause a severe hemorrhagic fever-like disease with high case fatality rates in humans, posing a serious health threat. However, there are no specific antivirals available, and the pathogenesis and virus-host interactions are largely unclear. Here, we demonstrated that SFTSV can inhibit type I IFN antiviral signaling by the NSs-mediated hijacking of STAT2 and STAT1 into viral IBs, highlighting the interesting role of viral IBs in virus-host interactions as the virus-built jail. Sequestering signaling molecules into IBs represents a novel and, perhaps, also a general mechanism of viral suppression of IFN signaling, the understanding of which may benefit the study of viral pathogenesis and the development of antiviral therapies.


Assuntos
Corpos de Inclusão/metabolismo , Interferon Tipo I/metabolismo , Phlebovirus/metabolismo , Transdução de Sinais/fisiologia , Proteínas não Estruturais Virais/metabolismo , Anticorpos Monoclonais , Western Blotting , Imunofluorescência , Genes Reporter/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunoprecipitação , Luciferases , Microscopia Confocal , Phlebovirus/genética , Mapeamento de Interação de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo
20.
J Gen Virol ; 96(11): 3204-3211, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26353965

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen causing significant morbidity and mortality in Asia. NSs protein of SFTSV is known to perturb type I IFN induction and signalling, but the mechanism remains to be fully understood. Here, we showed the suppression of both type I and type III IFN signalling by SFTSV NSs protein is mediated through inhibition of STAT1 phosphorylation and activation. Infection with live SFTSV or expression of NSs potently suppressed IFN-stimulated genes but not NFkB activation. NSs was capable of counteracting the activity of IFN-α1, IFN-ß, IFN-λ1 and IFN-λ2. Mechanistically, NSs associated with STAT1 and STAT2, mitigated IFN-ß-induced phosphorylation of STAT1 at S727, and reduced the expression and activity of STAT1 protein in IFN-ß-treated cells, resulting in the inhibition of STAT1 and STAT2 recruitment to IFNstimulated promoters. Taken together, SFTSV NSs protein is an IFN antagonist that suppresses phosphorylation and activation of STAT1.


Assuntos
Interferon-alfa/genética , Interferon beta/genética , Interleucinas/genética , Febre por Flebótomos/genética , Phlebovirus/metabolismo , Fator de Transcrição STAT1/metabolismo , Proteínas não Estruturais Virais/metabolismo , Humanos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Interferons , Interleucinas/metabolismo , Febre por Flebótomos/metabolismo , Febre por Flebótomos/virologia , Phlebovirus/genética , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa