Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Plant Biol ; 24(1): 629, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961339

RESUMO

Twisted trunks are not uncommon in trees, but their effects on tree growth are still unclear. Among coniferous tree species, the phenomenon of trunk distortion is more prominent in Pinus yunnanensis. To expand the germplasm of genetic resources, we selected families with excellent phenotypic traits to provide material for advanced generation breeding. The progeny test containing 93 superior families (3240 trees) was used as the research material. Phenotypic measurements and estimated genetic parameters (family heritability, realistic gain and genetic gain) were performed at 9, 15, and 18 years of age, respectively. The genetic evaluation yielded the following results (1) The intra-family variance component of plant height (PH) was greater than that of the inter-family, while the inter-family variance components of other traits (diameter at breast height (DBH), crown diameter (CD), height under branches (HUB), degree of stem-straightness (DS)) were greater than that of the intra-family, indicating that there was abundant variation among families and potential for selection. (2) At half rotation period (18 years old), there was a significant correlation among the traits. The proportion of trees with twisted trunks (level 1-3 straightness) reached 48%. The DS significantly affected growth traits, among which PH and DBH were the most affected. The volume loss rate caused by twisted trunk was 18.06-56.75%, implying that trunk distortion could not be completely eliminated after an artificial selection. (3) The influence of tree shape, crown width, and trunk on volume increased, and the early-late correlation between PH, DBH and volume was extremely significant. The range of phenotypic coefficient of variation, genetic variation coefficient and family heritability of growth traits (PH, DBH, and volume) were 44.29-127.13%, 22.88-60.87%, and 0.79-0.83, respectively. (4) A total of 21 superior families were selected by the method of membership function combined with independent selection. Compared with the mid-term selection (18 years old), the accuracy of early selection (9 years old) reached 77.5%. The selected families' genetic gain and realistic gain range were 5.79-19.82% and 7.12-24.27%, respectively. This study can provide some useful reference for the breeding of coniferous species.


Assuntos
Fenótipo , Pinus , Pinus/genética , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/anatomia & histologia , Melhoramento Vegetal
2.
Mol Ecol ; 33(13): e17413, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38771006

RESUMO

Interspecific hybridization increases genetic diversity, which is essential for coping with changing environments. Hybrid zones, occurring naturally in overlapping habitats of closely related species, can be artificially established during afforestation. The resulting interspecific hybridization may promote sustainability in artificial forests, particularly in regions facing degradation due to climate change. Currently, there is limited evidence of hybridization during regeneration of artificial forests. Here, we studied the frequency of Pinus brutia Ten. × P. halepensis Mill. hybridization in five planted forests in Israel in three stages of forest regeneration: seeds before dispersal, emerged seedlings and recruited seedlings at the end of the dry season. We found hybrids on P. brutia, but not on P. halepensis trees due to asynchronous cone production phenology. Using 94 single-nucleotide polymorphism (SNP) markers, we found hybrids at all stages, most of which were hybrids of advanced generations. The hybrid proportions increased from 4.7 ± 2.1 to 8.2 ± 1.4 and 21.6 ± 6.4 per cent, from seeds to emerged seedlings and to recruited seedlings stages, respectively. The increased hybrid ratio implies an advantage of hybrids over P. brutia during forest regeneration. To test this hypothesis, we measured seedling growth rate and morphological traits under controlled conditions and found that the hybrid seedlings exhibited selected traits of the two parental species, which likely contributed to the fitness and survival of the hybrids during the dry season. This study highlights the potential contribution of hybrids to sustainable-planted forests and contributes to the understanding of genetic changes that occur during the regeneration of artificial forests.


Assuntos
Florestas , Hibridização Genética , Pinus , Polimorfismo de Nucleotídeo Único , Plântula , Pinus/genética , Pinus/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Israel , Conservação dos Recursos Naturais , Sementes/genética , Sementes/crescimento & desenvolvimento , Variação Genética
3.
Glob Chang Biol ; 30(8): e17459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39161210

RESUMO

Given the context of significant global warming and the intensification of extreme climate events in the last century, large-scale reforestation and afforestation have been recognized as effective strategies to mitigate the climate crisis. Since the 1970s, China has launched several afforestation programs aimed at regional ecological protection, playing an important role in reaching carbon neutrality by 2060. This study provided a detailed analysis of the growth suitability of the main planted conifers (Pinus sylvestris var. mongolica and Pinus tabulaeformis) and broadleaves (Populus spp., Robinia pseudoacacia) in the semi-arid northern China. We compared the radial growth trends of plantations and their responses to extreme droughts from 1980 to 2018. Growth of most plantations has significantly increased over time, but broadleaves showed recent growth reductions in the past decade, which may be related to tree age and reduced soil moisture. Nevertheless, under warmer climate scenarios, the growth of plantations is forecasted to continue increasing. Broadleaves showed a better post-drought recovery, probably linked to their anisohydric behavior, than conifers, which presented a better resistance to drought. Growth of conifers depended more on warmer temperature and better precipitation conditions during the growing season, whereas broadleaves mainly reacted to warm temperature. Additionally, pre-drought growth levels weakened resilience components, while post-drought precipitation compensated for drought-induced growth deficit. Growth and resilience were negatively related to tree age, while higher stand density reduced growth. This assessment and projections of growth and drought resilience indicate the sustainability of most plantations in semi-arid regions, but future warmer and drier conditions may lead to an uncertain future regarding forest health and reduce their carbon sink potential.


Assuntos
Mudança Climática , Secas , Aquecimento Global , China , Árvores/crescimento & desenvolvimento , Agricultura Florestal , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Temperatura , Conservação dos Recursos Naturais
4.
Ann Bot ; 133(7): 953-968, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366549

RESUMO

BACKGROUND AND AIMS: Secondary cell wall (SCW) thickening is a major cellular developmental stage determining wood structure and properties. Although the molecular regulation of cell wall deposition during tracheary element differentiation has been well established in primary growth systems, less is known about the gene regulatory processes involved in the multi-layered SCW thickening of mature trees. METHODS: Using third-generation [long-read single-molecule real-time (SMRT)] and second-generation [short-read sequencing by synthesis (SBS)] sequencing methods, we established a Pinus bungeana transcriptome resource with comprehensive functional and structural annotation for the first time. Using these approaches, we generated high spatial resolution datasets for the vascular cambium, xylem expansion regions, early SCW thickening, late SCW thickening and mature xylem tissues of 71-year-old Pinus bungeana trees. KEY RESULTS: A total of 79 390 non-redundant transcripts, 31 808 long non-coding RNAs and 5147 transcription factors were annotated and quantified in different xylem tissues at all growth and differentiation stages. Furthermore, using this high spatial resolution dataset, we established a comprehensive transcriptomic profile and found that members of the NAC, WRKY, SUS, CESA and LAC gene families are major players in early SCW formation in tracheids, whereas members of the MYB and LBD transcription factor families are highly expressed during late SCW thickening. CONCLUSIONS: Our results provide new molecular insights into the regulation of multi-layered SCW thickening in conifers. The high spatial resolution datasets provided can serve as important gene resources for improving softwoods.


Assuntos
Parede Celular , Pinus , Xilema , Parede Celular/genética , Parede Celular/metabolismo , Pinus/genética , Pinus/crescimento & desenvolvimento , Xilema/genética , Xilema/crescimento & desenvolvimento , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Madeira/genética , Madeira/crescimento & desenvolvimento , Madeira/anatomia & histologia
5.
Oecologia ; 205(2): 411-422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898337

RESUMO

The interplay of positive and negative species interactions controls species assembly in communities. Dryland plant communities, such as savannas, are important to global biodiversity and ecosystem functioning. Sandhill oaks in xeric savannas of the southeastern United States can facilitate longleaf pine by enhancing seedling survival, but the effects of oaks on recruitment and growth of longleaf pine have not been examined. We censused, mapped, and monitored nine contiguous hectares of longleaf pine in a xeric savanna to quantify oak-pine facilitation, and to examine other factors impacting recruitment, such as vegetation cover and longleaf pine tree density. We found that newly recruited seedlings and grass stage longleaf pines were more abundant in oak-dominated areas where densities were 230% (newly recruited seedlings) and 360% (grass stage) greater from lowest to highest oak neighborhood densities. Longleaf pine also grew faster under higher oak density. Longleaf pine recruitment was lowest under longleaf pine canopies. Mortality of grass stage and bolt stage longleaf pine was low (~1.0% yr-1) in the census interval without fire. Overall, our findings highlight the complex interactions between pines and oaks-two economically and ecologically important genera globally. Xeric oaks should be incorporated as a management option for conservation and restoration of longleaf pine ecosystems.


Assuntos
Ecossistema , Pradaria , Pinus , Quercus , Plântula , Pinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
6.
J Plant Res ; 137(4): 619-626, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568301

RESUMO

The nurse effect is a positive interaction in which a nurse plant improves the abiotic environment for another species (beneficiary plant) and facilitates its establishment. The evergreen shrub Vaccinium vitis-idaea (a beneficiary plant) grows mainly under the dwarf shrub Pinus pumila (a nurse plant) in the alpine regions of central Japan. However, whether V. vitis-idaea shrubs under various P. pumila shrubs spread through clonal growth and/or seeds remains unclear. We investigated the clonal structure of V. vitis-idaea under the nurse plant P. pumila in Japanese alpine regions. MIG-seq analysis was conducted to clarify the clonal diversity of V. vitis-idaea in isolated and patchy P. pumila plots on a ridge (PATs), and in a plot covered by dense P. pumila on a slope adjacent to the ridge (MAT) on Mt. Norikura, Japan. We detected 28 multilocus genotypes in 319 ramets of V. vitis-idaea across 11 PATs and MAT. Three genets expanded to more than 10 m in the MAT. Some genets were shared among neighboring PATs or among PATs and MAT. These findings suggest that the clonal growth of V. vitis-idaea plays an important role in the sustainability of populations. The clonal diversity of V. vitis-idaea was positively related with the spatial size of PATs and was higher in MAT than in PATs at a small scale. Therefore, the spatial spread of the nurse plant P. pumila might facilitate the nurse effect on the genetic diversity of beneficiary plants, leading to the sustainability of beneficiary populations.


Assuntos
Pinus , Vaccinium vitis-Idaea , Japão , Vaccinium vitis-Idaea/genética , Pinus/genética , Pinus/crescimento & desenvolvimento , Pinus/anatomia & histologia , Genótipo , Variação Genética , Ecossistema
7.
Int J Biometeorol ; 68(6): 1093-1108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38441667

RESUMO

The Himalayas experienced long-term climate changes and recent extreme weather events that affected plant growth and the physiology of tree species at high-elevation sites. This study presents the first statistically robust δ18OTR chronologies for two native pine species, Pinus roxburghii, and Pinus wallichiana, in the lower Nepalese Himalaya. The isotope chronologies exhibited 0.88‰ differences in overall mean isotope values attributed to varying elevations (460-2000 m asl). Comparative analysis of climate response using data sets from different sources and resolutions revealed the superiority of the APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data set calibrated for the South Asian Summer Monsoon (SASM)-dominated region. Both species exhibited negative correlations with monsoon precipitation and positive correlations with temperature. However, during the peak monsoon season (July-August), daily resolved climate data disentangled statistically insignificant relationships, and revealed that δ18OTR is influenced by atmospheric moisture. Both congeneric species showed a decoupling between the chronologies after 1995. However, no significant change in air moisture origin and monsoon regime between the study sites was observed, indicating a consistent dominant moisture source during different monsoon seasons. Besides, we also observed the decreased inter-series correlation of both δ18OTR chronologies after 1995, with P. wallichiana experiencing a steeper decrease than P. roxburghii. The weakening correlations between and within the chronologies coincided with a regional drought during 1993-1995 in both sites, highlighting the strong regulation of local climate on the impact of regional extreme climate events. Our findings emphasise the importance of employing climate data with optimal spatial and temporal resolution for improved δ18OTR-climate relationships at the intra-annual scale while considering the influence of site-specific local environmental conditions. Assessing climate data sets with station data is vital for accurately interpreting climate change's impact on forest response and long-term climate reconstructions.


Assuntos
Secas , Isótopos de Oxigênio , Pinus , Temperatura , Pinus/crescimento & desenvolvimento , Nepal , Isótopos de Oxigênio/análise , Mudança Climática , Altitude
8.
Mycorrhiza ; 34(3): 217-227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762648

RESUMO

Seedling establishment under natural conditions is limited by numerous interacting factors. Here, we tested the combined effects of drought, herbaceous competition, and ectomycorrhizal inoculation on the performance of Aleppo pine seedlings grown in a net-house. The roots of all pine seedlings were strongly dominated by Geopora, a fungal genus known to colonize seedlings in dry habitats. Ectomycorrhizal fungi (EMF) inoculum significantly increased seedling height, biomass, and the number of side branches. However, under either competition or drought, the positive effect of EMF on seedling biomass and height was greatly reduced, while the effect on shoot branching was maintained. Further, under a combination of drought and competition, EMF had no influence on either plant growth or shape. The discrepancy in pine performance across treatments highlights the complexity of benefits provided to seedlings by EMF under ecologically relevant settings.


Assuntos
Secas , Florestas , Micorrizas , Pinus , Plântula , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Micorrizas/fisiologia , Pinus/microbiologia , Pinus/fisiologia , Pinus/crescimento & desenvolvimento , Poaceae/microbiologia , Poaceae/fisiologia , Poaceae/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento
9.
J Environ Manage ; 359: 120897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669881

RESUMO

The spread of invasive alien species over natural environments has become one of the most serious threats to biodiversity and the functioning of ecosystems worldwide. Understanding the population attributes that allow a given species to become invasive is crucial for improving prevention and control interventions. Pampas grasslands are particularly sensitive to the invasion of exotic woody plants. In particular, the Ventania Mountains undergo the advance of alien woody plants; among which the Aleppo pine (Pinus halepensis) stands out due to the extension of the area it covers and the magnitude of the ecological changes associated to its presence. Using a model that describes the population dynamics of the species in the area, we evaluated the expected behavior of the population under different environmental conditions and different management scenarios. When the effect of stochastic fires was simulated, the growth rate was greater than 1 for all the frequencies considered, peaking under fires every nine years, on average. When evaluating the effect of periodic mechanical control of the adult population, the reduction in growth rate was insufficient, except for cutting intensities that significantly exceeded the current operational capacity of the area. Under prescribed fire scenarios, on the other hand, burning frequencies greater than seven years resulted in population reductions. The results highlight the importance of fire in regulating the population of P. halepensis in the Ventania Mountains, with contrasting effects depending on the frequency with which it occurs, which allows considering it as an effective environmental management option for the control of the species.


Assuntos
Pradaria , Espécies Introduzidas , Pinus , Dinâmica Populacional , Pinus/crescimento & desenvolvimento , Argentina , Biodiversidade , Ecossistema , Incêndios
10.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1205-1213, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38886418

RESUMO

Global warming would significantly impact tree growth in the Tibetan Plateau. However, the specific effects of climate change on the radial growth of Pinus wallichiana in Mount Qomolangma are still uncertain. To investigate the responses of radial growth of P. wallichiana to climate change, we analyzed tree-ring samples in Mount Qomolangma. We removed the age-related growth trends and established three chronologies by using the modified negative exponential curve, basal area index, and regional curve standardization, and conducted Pearson correlation and moving correlation analyses to examine the association between radial growth of P. wallichiana and climatic factors. The results showed that this region had experienced a significant upward trend in temperature and that the Palmer drought severity index (PDSI) indicated a decreasing trend since 1980s, while the relative humi-dity changed from a significant upward to a downward trend around 2004, implying the climate shifted toward warmer and drier. Results of Pearson correlation analysis indicated a significant and positive relationship between the radial growth of P. wallichiana and the minimum temperature of April-June and July-September, and precipitation of January-April in the current year. The radial growth of P. wallichiana was significantly and negatively associated with the relative humidity of June, July, and August in the current year. As temperature rose after 1983, the relationship between radial growth of P. wallichiana and the minimum temperature in July and September of the current year increased from a non-significant association to a significant and positive association, while the relationship between radial growth of P. wallichiana and relative humidity in August and precipitation in September of the current year changed from non-significant correlation to a significant and negative correlation. Results of the moving correlation analysis suggested that the radial growth of P. wallichiana showed a significant and stable correlation with the July-September minimum temperature of the current year. Under the background of climate warming, the rapid increases of temperature would accelerate the radial growth of P. wallichiana in Mount Qomolangma.


Assuntos
Mudança Climática , Tibet , Pinus/crescimento & desenvolvimento , Ecossistema , Temperatura , Caules de Planta/crescimento & desenvolvimento , Aquecimento Global
11.
Sci Total Environ ; 927: 172241, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582119

RESUMO

Carbon sequestration via afforestation and forest growth is effective for mitigating global warming. Accurate and robust information on forest growth characteristics by tree species, region, and large-scale land-use change is vital and future prediction of forest carbon stocks based on this information is of great significance. These predictions allow exploring forestry practices that maximize carbon sequestration by forests, including wood production. Forest inventories based on field measurements are considered the most accurate method for estimating forest carbon stocks. Japan's national forest inventories (NFIs) provide stand volumes for all Japanese forests, and estimates from direct field observations (m-NFIs) are the most reliable. Therefore, using the m-NFI from 2009 to 2013, we selected four major forest plantation species in Japan: Cryptomeria japonica, Chamaecyparis obtusa, Pinus spp., and Larix kaempferi and presented their forest age-carbon density function. We then estimated changes in forest carbon stocks from the past to the present using the functions. Next, we investigated the differences in the carbon sequestration potential of forests, including wood production, between five forestry practice scenarios with varying harvesting and afforestation rates, until 2061. Our results indicate that, for all four forest types, the estimates of growth rates and past forest carbon stocks in this study were higher than those considered until now. The predicted carbon sequestration from 2011 to 2061, assuming that 100 % of harvested carbon is retained for a long time, twice the rate of harvesting compared to the current rate, and a 100 % afforestation rate in harvested area, was three to four times higher than that in a scenario with no harvesting or replanting. Our results suggest that planted Japanese forests can exhibit a high carbon sequestration potential under the premise of active management, harvesting, afforestation, and prolonging the residence time of stored carbon in wood products with technology development.


Assuntos
Sequestro de Carbono , Carbono , Cryptomeria , Agricultura Florestal , Florestas , Árvores , Japão , Carbono/análise , Larix/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Chamaecyparis , Monitoramento Ambiental
12.
Sci Total Environ ; 935: 173465, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38788934

RESUMO

Climate change influences forest ecosystems in several ways, such as modifying forest growth or ecosystem functionality. To fully understand the impact of changing climatic conditions on forest growth it is necessary to undertake long-term spatiotemporal analyses. The main purpose of this work is to describe the major trends in tree growth of Pinus pinaster in Spain over the last 70 years, differentiating homogeneous ecological units using an unsupervised classification algorithm and additive modelling techniques. We also aim to relate these growth trends with temporal series for precipitation and temperature, as well as forest variables. We leverage information from a large data set of tree cores (around 2200) extracted during the field campaign of the Fourth Spanish National Forest Inventory. An unsupervised algorithm classified the plots into five classes, which were consistent in ecological terms. We also found a general decline in growth in three of the five ecoregions since the 1970s, concomitant with an increase in temperature and a reduction in precipitation. However, this tree growth decline has not been observed in the Atlantic influenced ecoregion, where the cooler, more humid climatic conditions are more stable. Certain stand features, such as low basal area through forest management practices, may have alleviated the impact of harsh climatic conditions on some areas of inner Spain, while denser stands display a more pronounced decline in tree growth. We concluded that Southern populations show some degrees of growth decline and low growth trends while Northern populations did not exhibit growth decline and have the largest growth rates. Under a forecasted increment of temperatures, the growth decline can be expanded.


Assuntos
Mudança Climática , Florestas , Pinus , Pinus/crescimento & desenvolvimento , Espanha , Árvores/crescimento & desenvolvimento , Análise Espaço-Temporal , Ecossistema , Monitoramento Ambiental/métodos
13.
Sci Total Environ ; 946: 174258, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925374

RESUMO

The impact of extreme weather events on carbon fluxes and water-use efficiency (WUE) in revegetated areas under water-limited conditions is poorly understood. We analyzed changes in carbon fluxes and WUE over three years of eddy-covariance measurements in a Pinus tabuliformis plantation in Northeast China to investigate carbon fluxes and WUE responses to drought events at different time scales. Mean annual net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (Re) were -368.48, 1042.42, and 673.94 g C m-2, respectively. Drought events increased NEE, as GPP was more sensitive to water stress than Re at different growing stages. Mean annual WUE was 2.46 g C kg-1 H2O, and plant phenology played a key role in WUE responses to drought. Water stress had negative and positive effects on daily WUE at the early and late growing stages, respectively, and daily WUE was generally insensitive to drought at the mid growing stage. A lagged effect existed in the carbon fluxes and WUE dynamics after drought events at various time scales. Water stress at the early growing stage was more important than that at other growing stages on annual carbon sequestration and WUE, as it dominated canopy growth in the current year. The annual mean normalized difference vegetation index controlled interannual variations in carbon fluxes and WUE in the plantation. Our findings contribute to the prediction of possible changes in carbon and water fluxes under climate warming in the afforested areas of Northeast China.


Assuntos
Secas , Pinus , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , China , Ciclo do Carbono , Água , Carbono/análise , Carbono/metabolismo , Ecossistema , Monitoramento Ambiental
14.
Sci Total Environ ; 946: 174370, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38945248

RESUMO

Summer droughts are affecting the productivity and functioning of central European forests, with potentially lasting consequences for species composition and carbon sequestration. Long-term recovery rates and individual growth responses that may diverge from species-specific and population-wide behaviour are, however, poorly understood. Here, we present 2052 pine (Pinus sylvestris) ring width series from 19 forest sites in south-west Germany to investigate growth responses of individual trees to the exceptionally hot and dry summer of 1976. This outstanding drought event presents a distinctive test case to examine long-term post-drought recovery dynamics. We have proposed a new classification approach to identify a distinct sub-population of trees, referred to as "temporarily affected trees", with a prevalence ranging from 9 to 33 % across the forest stands. These trees exhibited an exceptionally prolonged growth suppression, lasting over a decade, indicating significantly lower resilience to the 1976 drought and a 50 % reduced capacity to recover to pre-drought states. Furthermore, shifts in resilience and recovery dynamics are accompanied by changing climate sensitivities, notably an increased response to maximum temperatures and summer droughts in post-1976 affected pines. Our findings underscore the likely interplay between individual factors and micro-site conditions that contribute to divergent tree responses to droughts. Assessing these factors at the individual tree level is recommended to advancing our understanding of forest responses to extreme drought events. By analyzing sub-population growth patterns, our study provides valuable insights into the impacts of summer droughts on central European forests in context of increasing drought events.


Assuntos
Mudança Climática , Secas , Florestas , Pinus sylvestris , Alemanha , Pinus sylvestris/crescimento & desenvolvimento , Pinus sylvestris/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Estações do Ano
15.
Ying Yong Sheng Tai Xue Bao ; 35(4): 886-896, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884223

RESUMO

Elucidating the seasonal patterns of water sources for dominant species in the sub-tropical humid mountainous forest, analyzing the eco-hydrological complementarity and competition mechanisms among coexisting species, investigating the responses of plant water utilization to precipitation, could provide a theoretical basis for vegetation restoration and management. Based on the stable hydrogen and oxygen isotope technique, we analyzed the δ2H and δ18O characteristics of precipitation, xylem water from Pinus massoniana and Quercus variabilis, and soil water from 0-100 cm depth in Mount Lushan, China. The MixSIAR model, Levins index, and PS index were used to calculate the relative contribution rate of each water source, the hydrological niche breadth, and niche overlap of P. massoniana and Q. variabilis. The results showed that, in the wet season (March to July), P. massoniana primarily utilized soil water from the 0-20 cm and 20-40 cm depths, while Q. variabilis primarily utilized that from the 20-40 cm and 40-60 cm depths. During the dry season (August to September), P. massoniana and Q. variabilis utilized 40-60 cm and 60-80 cm of soil water, respectively, resulting in an increase in the depth of water absorption. In the early growing season (March to April) and the late growing season (September), there was a high hydrological niche overlap between P. massoniana and Q. variabilis, resulting in intensitive water competition. In the middle of the growing season (May to August), the water source was adequately allocated, and the hydrolo-gical niche was segregated to meet the high transpiration demand. Q. variabilis primarily utilized soil water from a depth of 60-80 cm and 60-80 cm before a precipitation event, and from a depth of 0-20 cm and 20-40 cm after the event. In contrast, P. massoniana primarily utilized soil water from a depth of 0-20 cm and 20-40 cm both before and after a precipitation event. In conclusion, water utilization patterns of P. massoniana and Q. variabilis exhibited a seasonal trend, with shallow water uptake during the rainy season and deep water uptake during the dry season. These species are capable of efficiently allocating water resources during the peak growth season, and their root systems actively respond to change in soil moisture level. They have strong adaptability to extreme precipitation events and exhibit remarkable water conservation capabilities.


Assuntos
Florestas , Pinus , Quercus , Chuva , Estações do Ano , Água , China , Água/análise , Água/metabolismo , Quercus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Ecossistema , Solo/química
16.
Ying Yong Sheng Tai Xue Bao ; 35(4): 917-925, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884226

RESUMO

Biological nitrogen (N) fixation is an important source of N in terrestrial ecosystems, but the response of soil microbial N fixation rate to N deposition in different forest ecosystems still remains uncertain. We conducted a field N addition experiment to simulate atmosphere N deposition in subtropical Pinus taiwanensis and Castanopsis faberi forests. We set up three levels of nitrogen addition using urea as the N source: 0 (control), 40 (low N), and 80 g N·hm-2·a-1(high N) to examine the chemical properties, microbial biomass C, enzyme activities, and nifH gene copies of top soils (0-10 cm). We also measured the microbial N fixation rate using the 15N labeling method. Results showed that N addition significantly reduced the soil microbial N fixation rate in the P. taiwanensis and C. faberi forests by 29%-33% and 10%-18%, respectively. Nitrogen addition significantly reduced N-acquiring enzyme (i.e., ß-1, 4-N-acetylglucosaminidase) activity and nifH gene copies in both forest soils. There was a significant positive correlation between the microbial N fixation rate and soil dissolved organic C content in the P. taiwanensis forest, but a significant negative relationship between the rate of soil microbial nitrogen fixation and NH4+-N content in the C. faberi forest. Overall, soil microbial N fixation function in the P. taiwanensis forest was more sensitive to N addition than that in the C. faberi forest, and the factors affecting microbial N fixation varied between the two forest soils. The study could provide insights into the effects of N addition on biological N fixation in forest ecosystems, and a theoretical basis for forest management.


Assuntos
Florestas , Fixação de Nitrogênio , Nitrogênio , Pinus , Microbiologia do Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Solo/química , Fagaceae/crescimento & desenvolvimento , China , Clima Tropical
17.
BMC Ecol Evol ; 24(1): 54, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664655

RESUMO

BACKGROUND: Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS: Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS: Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.


Assuntos
Micorrizas , Pinus , Quercus , Micorrizas/fisiologia , Quercus/microbiologia , Quercus/crescimento & desenvolvimento , Pinus/microbiologia , Pinus/crescimento & desenvolvimento , Basidiomycota/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Fotossíntese
18.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575023

RESUMO

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Assuntos
Secas , Florestas , Árvores , Árvores/fisiologia , Itália , Quercus/crescimento & desenvolvimento , Quercus/fisiologia , Mudança Climática , Pinus/fisiologia , Pinus/crescimento & desenvolvimento , Monitoramento Ambiental , Fraxinus/fisiologia , Fraxinus/crescimento & desenvolvimento , Acer/crescimento & desenvolvimento , Acer/fisiologia
19.
Tree Physiol ; 44(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39046267

RESUMO

The mutualistic interaction between trees and ectomycorrhizal fungi (EMF) can have a major effect on forest dynamics and specifically on seedling establishment. Here, we compared the EMF community composition associated with the roots of young saplings and mature trees of two co-habiting Pinaceae: Pinus halepensis and Cedrus deodara growing together in a post-fire forest plot, using fungal ITS metabarcoding. We found that the differences in the EMF community between the two sapling groups were mostly attributed to changes in the relative abundance of specific fungal species, with little species turnover. Specifically, Tomentella showed high abundance on pine roots, while Tuber, Russula and Sebacina were more common on the roots of cedars. The physical proximity to a specific host species was correlated with the EMF community composition of young saplings. Specifically, regardless of the sapling's own identity, the roots of saplings growing next to mature cedars had higher abundance of Tuber species, while Tomentella coerulea (Höhn. & Litsch), Russula densifolia (Secr. ex Gillet) and Tuber nitidum (Vittadini) dominated saplings next to mature pines. Cedar saplings' shoot structure was correlated with a specific EMF species. Overall, these results suggest that when germinating next to mature trees, the EMF community of saplings could be determined by extrinsic factors such as the small-scale distribution of mature trees in the forest.


Assuntos
Cedrus , Micorrizas , Pinus , Micorrizas/fisiologia , Pinus/microbiologia , Pinus/crescimento & desenvolvimento , Cedrus/microbiologia , Cedrus/crescimento & desenvolvimento , Micobioma , Florestas , Árvores/microbiologia , Árvores/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Simbiose , Incêndios
20.
Sci Rep ; 14(1): 16852, 2024 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039162

RESUMO

Plantations actively participate in the global carbon cycle and play a significant role in mitigating global climate change. However, the influence of forest management strategies, especially planting density management, on the biomass carbon storage and production value of plantations for ensuring carbon sink benefits is still unclear. In this study, we estimated the carbon sequestration and economic value of Pinus massoniana plantations with various stand densities and rotation ages using a growth model method. The results revealed that with increasing stand age, low-density plantations at 2000 trees·ha-1 (358.80 m3·ha-1), as well as high-density plantations at 4500 trees·ha-1 (359.10 m3·ha-1), exhibited nearly identical standing volumes, which indicated that reduced inter-tree competition intensity favors the growth of larger trees during later stages of development. Furthermore, an increase in planting density led to a decrease in the average carbon sequestration rate, carbon sink, and number of trees during the rapid growth period, indicating that broader spacing between trees is favorable for biomass carbon accumulation. Further, extending the rotation period from 15 to 20 years or 25 years and reducing the optimal planting density from 3000 to 2000 trees·ha-1 increased the overall benefits of combined timber and carbon sink income by 2.14 and 3.13 times, respectively. The results highlighted that optimizing the planting density positively impacts the timber productivity and carbon sink storage of Pinus massoniana plantations and boosts the expected profits of forest managers. Thus, future afforestation initiatives must consider stand age and planting density management to shift from a scale-speed pattern to a quality-benefit design.


Assuntos
Biomassa , Sequestro de Carbono , Pinus , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , China , Florestas , Carbono/metabolismo , Agricultura Florestal/métodos , Agricultura Florestal/economia , Mudança Climática , Árvores/crescimento & desenvolvimento , Árvores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa