Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.357
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Mol Cell ; 81(22): 4591-4604.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34592134

RESUMO

Protein ADP-ribosylation is a reversible post-translational modification that transfers ADP-ribose from NAD+ onto acceptor proteins. Poly(ADP-ribosyl)ation (PARylation), catalyzed by poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs), which remove the modification, regulates diverse cellular processes. However, the chemistry and physiological functions of mono(ADP-ribosyl)ation (MARylation) remain elusive. Here, we report that Arabidopsis zinc finger proteins SZF1 and SZF2, key regulators of immune gene expression, are MARylated by the noncanonical ADP-ribosyltransferase SRO2. Immune elicitation promotes MARylation of SZF1/SZF2 via dissociation from PARG1, which has an unconventional activity in hydrolyzing both poly(ADP-ribose) and mono(ADP-ribose) from acceptor proteins. MARylation antagonizes polyubiquitination of SZF1 mediated by the SH3 domain-containing proteins SH3P1/SH3P2, thereby stabilizing SZF1 proteins. Our study uncovers a noncanonical ADP-ribosyltransferase mediating MARylation of immune regulators and underpins the molecular mechanism of maintaining protein homeostasis by the counter-regulation of ADP-ribosylation and polyubiquitination to ensure proper immune responses.


Assuntos
ADP-Ribosilação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Imunidade Vegetal , Ubiquitinação , Dedos de Zinco , ADP Ribose Transferases/metabolismo , Difosfato de Adenosina/química , Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Genes de Plantas , Glicosídeo Hidrolases/metabolismo , Homeostase , Humanos , Hidrólise , Mutação , Plantas Geneticamente Modificadas , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteostase , Plântula/metabolismo , Especificidade por Substrato , Tristetraprolina/química , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/química
2.
Plant Cell ; 36(3): 497-509, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38124350

RESUMO

Protein O-glycosylation is a nutrient signaling mechanism that plays an essential role in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) posttranslationally modify hundreds of intracellular proteins with O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation, and loss of both SPY and SEC causes embryo lethality in Arabidopsis (Arabidopsis thaliana). Using structure-based virtual screening of chemical libraries followed by in vitro and in planta assays, we identified a SPY O-fucosyltransferase inhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. In vitro assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and elicited phenotypes similar to the spy mutants, including early seed germination, increased root hair density, and defective sugar-dependent growth. In contrast, SOFTI did not visibly affect the spy mutant. Similarly, SOFTI inhibited the sugar-dependent growth of tomato (Solanum lycopersicum) seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor that can be used as a chemical tool for functional studies of O-fucosylation and potentially for agricultural management.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Repressoras/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Fucose/metabolismo , Plântula/metabolismo , Açúcares/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(2): e2304135120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147542

RESUMO

Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO3- more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.


Assuntos
Fenômenos Biológicos , Plântula , Plântula/metabolismo , Hidroponia/métodos , Raízes de Plantas/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(6): e2317408121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285953

RESUMO

Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteína-Arginina N-Metiltransferases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Plântula/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Luz
5.
Plant Cell ; 35(9): 3413-3428, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37338062

RESUMO

The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sirolimo , Regulação da Expressão Gênica de Plantas/genética , Proteínas Serina-Treonina Quinases/genética
6.
Plant Cell ; 35(1): 390-408, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321994

RESUMO

Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escuridão , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Plântula/genética , Plântula/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
7.
Plant Cell ; 35(7): 2654-2677, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043544

RESUMO

Cellulose, the main component of the plant cell wall, is synthesized by the multimeric cellulose synthase (CESA) complex (CSC). In plant cells, CSCs are assembled in the endoplasmic reticulum or Golgi and transported through the endomembrane system to the plasma membrane (PM). However, how CESA catalytic activity or conserved motifs around the catalytic core influence vesicle trafficking or protein dynamics is not well understood. Here, we used yellow fluorescent protein (YFP)-tagged AtCESA6 and created 18 mutants in key motifs of the catalytic domain to analyze how they affected seedling growth, cellulose biosynthesis, complex formation, and CSC dynamics and trafficking in Arabidopsis thaliana. Seedling growth and cellulose content were reduced by nearly all mutations. Moreover, mutations in most conserved motifs slowed CSC movement in the PM as well as delivery of CSCs to the PM. Interestingly, mutations in the DDG and QXXRW motifs affected YFP-CESA6 abundance in the Golgi. These mutations also perturbed post-Golgi trafficking of CSCs. The 18 mutations were divided into 2 groups based on their phenotypes; we propose that Group I mutations cause CSC trafficking defects, whereas Group II mutations, especially in the QXXRW motif, affect protein folding and/or CSC rosette formation. Collectively, our results demonstrate that the CESA6 catalytic domain is essential for cellulose biosynthesis as well as CSC formation, protein folding and dynamics, and vesicle trafficking.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Mutação Puntual , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Parede Celular/metabolismo , Plântula/metabolismo , Celulose/metabolismo
8.
Plant Cell ; 35(2): 852-873, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36427252

RESUMO

CONSTANS (CO) is a master flowering-time regulator that integrates photoperiodic and circadian signals in Arabidopsis thaliana. CO is expressed in multiple tissues, including young leaves and seedling roots, but little is known about the roles and underlying mechanisms of CO in mediating physiological responses other than flowering. Here, we show that CO expression is responsive to jasmonate. CO negatively modulated jasmonate-imposed root-growth inhibition and anthocyanin accumulation. Seedlings from co mutants were more sensitive to jasmonate, whereas overexpression of CO resulted in plants with reduced sensitivity to jasmonate. Moreover, CO mediated the diurnal gating of several jasmonate-responsive genes under long-day conditions. We demonstrate that CO interacts with JASMONATE ZIM-DOMAIN (JAZ) repressors of jasmonate signaling. Genetic analyses indicated that CO functions in a CORONATINE INSENSITIVE1 (COI1)-dependent manner to modulate jasmonate responses. Furthermore, CO physically associated with the basic helix-loop-helix (bHLH) subgroup IIId transcription factors bHLH3 and bHLH17. CO acted cooperatively with bHLH17 in suppressing jasmonate signaling, but JAZ proteins interfered with their transcriptional functions and physical interaction. Collectively, our results reveal the crucial regulatory effects of CO on mediating jasmonate responses and explain the mechanism by which CO works together with JAZ and bHLH subgroup IIId factors to fine-tune jasmonate signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Plântula/genética , Plântula/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética
9.
Proc Natl Acad Sci U S A ; 120(29): e2304870120, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37410814

RESUMO

Lipid droplets are organelles conserved across eukaryotes that store and release neutral lipids to regulate energy homeostasis. In oilseed plants, fats stored in seed lipid droplets provide fixed carbon for seedling growth before photosynthesis begins. As fatty acids released from lipid droplet triacylglycerol are catabolized in peroxisomes, lipid droplet coat proteins are ubiquitinated, extracted, and degraded. In Arabidopsis seeds, the predominant lipid droplet coat protein is OLEOSIN1 (OLE1). To identify genes modulating lipid droplet dynamics, we mutagenized a line expressing mNeonGreen-tagged OLE1 expressed from the OLE1 promoter and isolated mutants with delayed oleosin degradation. From this screen, we identified four miel1 mutant alleles. MIEL1 (MYB30-interacting E3 ligase 1) targets specific MYB transcription factors for degradation during hormone and pathogen responses [D. Marino et al., Nat. Commun. 4, 1476 (2013); H. G. Lee and P. J. Seo, Nat. Commun. 7, 12525 (2016)] but had not been implicated in lipid droplet dynamics. OLE1 transcript levels were unchanged in miel1 mutants, indicating that MIEL1 modulates oleosin levels posttranscriptionally. When overexpressed, fluorescently tagged MIEL1 reduced oleosin levels, causing very large lipid droplets. Unexpectedly, fluorescently tagged MIEL1 localized to peroxisomes. Our data suggest that MIEL1 ubiquitinates peroxisome-proximal seed oleosins, targeting them for degradation during seedling lipid mobilization. The human MIEL1 homolog (PIRH2; p53-induced protein with a RING-H2 domain) targets p53 and other proteins for degradation and promotes tumorigenesis [A. Daks et al., Cells 11, 1515 (2022)]. When expressed in Arabidopsis, human PIRH2 also localized to peroxisomes, hinting at a previously unexplored role for PIRH2 in lipid catabolism and peroxisome biology in mammals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Gotículas Lipídicas/metabolismo , Mobilização Lipídica , Peroxissomos/metabolismo , Plântula/genética , Plântula/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
Plant J ; 118(1): 191-202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116956

RESUMO

Seed vigor has major impact on the rate and uniformity of seedling growth, crop yield, and quality. However, the epigenetic regulatory mechanism of crop seed vigor remains unclear. In this study, a (jumonji C) JmjC gene of the histone lysine demethylase OsJMJ718 was cloned in rice, and its roles in seed germination and its epigenetic regulation mechanism were investigated. OsJMJ718 was located in the nucleus and was engaged in H3K9 methylation. Histochemical GUS staining analysis revealed OsJMJ718 was highly expressed in seed embryos. Abiotic stress strongly induced the OsJMJ718 transcriptional accumulation level. Germination percentage and seedling vigor index of OsJMJ718 knockout lines (OsJMJ718-CR) were lower than those of the wild type (WT). Chromatin immunoprecipitation followed by sequencing (ChIP-seq) of seeds imbibed for 24 h showed an increase in H3K9me3 deposition of thousands of genes in OsJMJ718-CR. ChIP-seq results and transcriptome analysis showed that differentially expressed genes were enriched in ABA and ethylene signal transduction pathways. The content of ABA in OsJMJ718-CR was higher than that in WT seeds. OsJMJ718 overexpression enhanced sensitivity to ABA during germination and early seedling growth. In the seed imbibition stage, ABA and ethylene content diminished and augmented, separately, suggesting that OsJMJ718 may adjust rice seed germination through the ABA and ethylene signal transduction pathways. This study displayed the important function of OsJMJ718 in adjusting rice seed germination and vigor, which will provide an essential reference for practical issues, such as improving rice vigor and promoting direct rice sowing production.


Assuntos
Germinação , Oryza , Germinação/genética , Oryza/metabolismo , Epigênese Genética , Sementes/metabolismo , Plântula/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácido Abscísico/metabolismo
11.
Plant J ; 118(1): 141-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128030

RESUMO

The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Plant J ; 117(5): 1466-1486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059656

RESUMO

The establishment of moss spores is considered a milestone in plant evolution. They harbor protein networks underpinning desiccation tolerance and accumulation of storage compounds that can be found already in algae and that are also utilized in seeds and pollen. Furthermore, germinating spores must produce proteins that drive the transition through heterotrophic growth to the autotrophic plant. To get insight into the plasticity of this proteome, we investigated it at five timepoints of moss (Physcomitrium patens) spore germination and in protonemata and gametophores. The comparison to previously published Arabidopsis proteome data of seedling establishment showed that not only the proteomes of spores and seeds are functionally related, but also the proteomes of germinating spores and young seedlings. We observed similarities with regard to desiccation tolerance, lipid droplet proteome composition, control of dormancy, and ß-oxidation and the glyoxylate cycle. However, there were also striking differences. For example, spores lacked any obvious storage proteins. Furthermore, we did not detect homologs to the main triacylglycerol lipase in Arabidopsis seeds, SUGAR DEPENDENT1. Instead, we discovered a triacylglycerol lipase of the oil body lipase family and a lipoxygenase as being the overall most abundant proteins in spores. This finding indicates an alternative pathway for triacylglycerol degradation via oxylipin intermediates in the moss. The comparison of spores to Nicotiana tabacum pollen indicated similarities for example in regards to resistance to desiccation and hypoxia, but the overall developmental pattern did not align as in the case of seedling establishment and spore germination.


Assuntos
Arabidopsis , Bryopsida , Arabidopsis/metabolismo , Proteoma/metabolismo , Germinação , Processos Heterotróficos , Lipase/metabolismo , Plântula/metabolismo , Esporos/metabolismo , Bryopsida/metabolismo , Sementes/metabolismo
13.
Plant J ; 118(1): 159-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212943

RESUMO

Increasing nutrient uptake and use efficiency in plants can contribute to improved crop yields and reduce the demand for fertilizers in crop production. In this study, we characterized a rice mutant, 88n which showed long roots under low nitrogen (N) or phosphorus (P) conditions. Low expression levels of N transporter genes were observed in 88n root, and total N concentration in 88n shoots were decreased, however, C concentrations and shoot dry weight in 88n were comparable to that in WT. Therefore, 88n showed high nitrogen utilization efficiency (NUtE). mRNA accumulation of Pi transporter genes was higher in 88n roots, and Pi concentration and uptake activity were higher in 88n than in WT. Therefore, 88n also showed high phosphorus uptake efficiency (PUpE). Molecular genetic analysis revealed that the causal gene of 88n phenotypes was OsbZIP1, a monocot-specific ortholog of the A. thaliana bZIP transcription factor HY5. Similar to the hy5 mutant, chlorophyll content in roots was decreased and root angle was shallower in 88n than in WT. Finally, we tested the yield of 88n in paddy fields over 3 years because 88n mutant plants showed higher PUpE and NUtE activity and different root architecture at the seedling stage. 88n showed large panicles and increased panicle weight/plant. Taken together, a mutation in OsbZIP1 could contribute to improved crop yields.


Assuntos
Arabidopsis , Oryza , Fósforo/metabolismo , Fenótipo , Nitrogênio/metabolismo , Plântula/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo
14.
Plant J ; 118(6): 1774-1792, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468425

RESUMO

Saline-alkali stress is an important abiotic stress factor affecting tomato (Solanum lycopersicum L.) plant growth. Although the involvement of the tomato SlWRKY gene family in responses to saline-alkali stress has been well established, the mechanism underlying resistance to saline-alkali stress remains unclear. In this study, we investigated the role of SlWRKY81 in conferring saline-alkali stress resistance by using overexpression and knockout tomato seedlings obtained via genetic modification. We demonstrated that SlWRKY81 improves the ability of tomato to withstand saline-alkali stress by enhancing antioxidant capacity, root activity, and proline content while reducing malondialdehyde levels. Saline-alkali stress induces an increase in jasmonic acid (JA) content in tomato seedlings, and the SlWRKY81 promoter responds to JA signaling, leading to an increase in SlWRKY81 expression. Furthermore, the interaction between SlJAZ1 and SlWRKY81 represses the expression of SlWRKY81. SlWRKY81 binds to W-box motifs in the promoter regions of SlSPDS2 and SlNHX4, thereby positively regulating their expression. This regulation results in increased spermidine (Spd) content and enhanced potassium (K+) absorption and sodium (Na+) efflux, which contribute to the resistance of tomato to saline-alkali stress. However, JA and SlJAZ1 exhibit antagonistic effects. Elevated JA content reduces the inhibitory effect of SlJAZ1 on SlWRKY81, leading to the release of additional SlWRKY81 protein and further augmenting the resistance of tomato to saline-alkali stress. In summary, the modulation of Spd synthesis and Na+/K+ homeostasis mediated by the interaction between SlWRKY81 and SlJAZ1 represents a novel pathway underlying tomato response to saline-alkali stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Potássio , Sódio , Solanum lycopersicum , Espermidina , Álcalis/metabolismo , Ciclopentanos/metabolismo , Homeostase , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Potássio/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Transdução de Sinais , Sódio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Espermidina/metabolismo
15.
Plant J ; 118(3): 823-838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224529

RESUMO

Acyl-acyl carrier protein (ACP) thioesterases (FAT) hydrolyze acyl-ACP complexes to release FA in plastids, which ultimately affects FA biosynthesis and profiles. Soybean GmFATA1 and GmFATA2 are homoeologous genes encoding oleoyl-ACP thioesterases whose role in seed oil accumulation and plant growth has not been defined. Using CRISPR/Cas9 gene editing mutation of Gmfata1 or 2 led to reduced leaf FA content and growth defect at the early seedling stage. In contrast, no homozygous double mutants were obtained. Combined this indicates that GmFATA1 and GmFATA2 display overlapping, but not complete functional redundancy. Combined transcriptomic and lipidomic analysis revealed a large number of genes involved in FA synthesis and FA chain elongation are expressed at reduced level in the Gmfata1 mutant, accompanied by a lower triacylglycerol abundance at the early seedling stage. Further analysis showed that the Gmfata1 or 2 mutants had increased composition of the beneficial FA, oleic acid. The growth defect of Gmfata1 could be at least partially attributed to reduced acetyl-CoA carboxylase activity, reduced abundance of five unsaturated monogalactosyldiacylglycerol lipids, and altered chloroplast morphology. On the other hand, overexpression of GmFATA in soybean led to significant increases in leaf FA content by 5.7%, vegetative growth, and seed yield by 26.9%, and seed FA content by 23.2%. Thus, overexpression of GmFATA is an effective strategy to enhance soybean oil content and yield.


Assuntos
Ácidos Graxos , Glycine max , Proteínas de Plantas , Tioléster Hidrolases , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/enzimologia , Ácidos Graxos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Sistemas CRISPR-Cas , Triglicerídeos/metabolismo , Edição de Genes
16.
Plant J ; 118(6): 1815-1831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494883

RESUMO

Rapid hypocotyl elongation allows buried seedlings to emerge, where light triggers de-etiolation and inhibits hypocotyl growth mainly by photoreceptors. Phosphorylation/dephosphorylation events regulate many aspects of plant development. Only recently we have begun to uncover the earliest phospho-signaling responders to light. Here, we reported a large-scale phosphoproteomic analysis and identified 20 proteins that changed their phosphorylation pattern following a 20 min light pulse compared to darkness. Microtubule-associated proteins were highly overrepresented in this group. Among them, we studied CIP7 (COP1-INTERACTING-PROTEIN 7), which presented microtubule (MT) localization in contrast to the previous description. An isoform of CIP7 phosphorylated at Serine915 was detected in etiolated seedlings but was undetectable after a light pulse in the presence of photoreceptors, while CIP7 transcript expression decays with long light exposure. The short hypocotyl phenotype and rearrangement of MTs in etiolated cip7 mutants are complemented by CIP7-YFP and the phospho-mimetic CIP7S915D-YFP, but not the phospho-null CIP7S915A-YFP suggesting that the phosphorylated S915CIP7 isoform promotes hypocotyl elongation through MT reorganization in darkness. Our evidence on Serine915 of CIP7 unveils phospho-regulation of MT-based processes during skotomorphogenic hypocotyl growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Escuridão , Hipocótilo , Proteínas Associadas aos Microtúbulos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilação , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Luz , Regulação da Expressão Gênica de Plantas , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação
17.
Plant J ; 119(1): 218-236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565312

RESUMO

The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplasmático , Proteínas de Choque Térmico HSP90 , Homeostase , Ácidos Indolacéticos , Plântula , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
18.
EMBO J ; 40(21): e106847, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34523752

RESUMO

The preference for nitrate over chloride through regulation of transporters is a fundamental feature of plant ion homeostasis. We show that Medicago truncatula MtNPF6.5, an ortholog of Arabidopsis thaliana AtNPF6.3/NRT1.1, can mediate nitrate and chloride uptake in Xenopus oocytes but is chloride selective and that its close homologue, MtNPF6.7, can transport nitrate and chloride but is nitrate selective. The MtNPF6.5 mutant showed greatly reduced chloride content relative to wild type, and MtNPF6.5 expression was repressed by high chloride, indicating a primary role for MtNPF6.5 in root chloride uptake. MtNPF6.5 and MtNPF6.7 were repressed and induced by nitrate, respectively, and these responses required the transcription factor MtNLP1. Moreover, loss of MtNLP1 prevented the rapid switch from chloride to nitrate as the main anion in nitrate-starved plants after nitrate provision, providing insight into the underlying mechanism for nitrate preference. Sequence analysis revealed three sub-types of AtNPF6.3 orthologs based on their predicted substrate-binding residues: A (chloride selective), B (nitrate selective), and C (legume specific). The absence of B-type AtNPF6.3 homologues in early diverged plant lineages suggests that they evolved from a chloride-selective MtNPF6.5-like protein.


Assuntos
Proteínas de Transporte de Ânions/genética , Cloretos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Evolução Biológica , Transporte Biológico , Sequência Conservada , Homeostase , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Oócitos , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Xenopus laevis
19.
EMBO J ; 40(15): e106800, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156108

RESUMO

How organisms integrate metabolism with the external environment is a central question in biology. Here, we describe a novel regulatory small molecule, a proteogenic dipeptide Tyr-Asp, which improves plant tolerance to oxidative stress by directly interfering with glucose metabolism. Specifically, Tyr-Asp inhibits the activity of a key glycolytic enzyme, glyceraldehyde 3-phosphate dehydrogenase (GAPC), and redirects glucose toward pentose phosphate pathway (PPP) and NADPH production. In line with the metabolic data, Tyr-Asp supplementation improved the growth performance of both Arabidopsis and tobacco seedlings subjected to oxidative stress conditions. Moreover, inhibition of Arabidopsis phosphoenolpyruvate carboxykinase (PEPCK) activity by a group of branched-chain amino acid-containing dipeptides, but not by Tyr-Asp, points to a multisite regulation of glycolytic/gluconeogenic pathway by dipeptides. In summary, our results open the intriguing possibility that proteogenic dipeptides act as evolutionarily conserved small-molecule regulators at the nexus of stress, protein degradation, and metabolism.


Assuntos
Arabidopsis/efeitos dos fármacos , Dipeptídeos/farmacologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Nicotiana/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Dipeptídeos/química , Dipeptídeos/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , NADP/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Plântula/efeitos dos fármacos , Plântula/metabolismo , Nicotiana/metabolismo
20.
Plant Physiol ; 194(2): 902-917, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37934825

RESUMO

Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Criptocromos/genética , Criptocromos/metabolismo , Arabidopsis/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plântula/metabolismo , Hipocótilo , Transdução de Sinais , Luz , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa