RESUMO
Under defined differentiation conditions, human embryonic stem cells (hESCs) can be directed toward a mesendoderm (ME) or neuroectoderm (NE) fate, the first decision during hESC differentiation. Coupled with lineage-specific G1 lengthening, a divergent ciliation pattern emerged within the first 24 hr of induced lineage specification, and these changes heralded a neuroectoderm decision before any neural precursor markers were expressed. By day 2, increased ciliation in NE precursors induced autophagy that resulted in the inactivation of Nrf2 and thereby relieved transcriptional activation of OCT4 and NANOG. Nrf2 binds directly to upstream regions of these pluripotency genes to promote their expression and repress NE derivation. Nrf2 suppression was sufficient to rescue poorly neurogenic iPSC lines. Only after these events had been initiated did neural precursor markers get expressed at day 4. Thus, we have identified a primary cilium-autophagy-Nrf2 (PAN) control axis coupled to cell-cycle progression that directs hESCs toward NE.
Assuntos
Autofagia , Cílios/metabolismo , Células-Tronco Embrionárias/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Ciclo Celular , Proteínas de Homeodomínio/genética , Humanos , Proteína Homeobox Nanog , Placa Neural/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismoRESUMO
SoxB1 transcription factors (Sox2/3) are well known for their role in early neural fate specification in the embryo, but little is known about functional roles for SoxB1 factors in non-neural ectodermal cell types, such as the neural plate border (NPB). Using Xenopus laevis, we set out to determine whether SoxB1 transcription factors have a regulatory function in NPB formation. Here, we show that SoxB1 factors are necessary for NPB formation, and that prolonged SoxB1 factor activity blocks the transition from a NPB to a neural crest state. Using ChIP-seq, we demonstrate that Sox3 is enriched upstream of NPB genes in early NPB cells and in blastula stem cells. Depletion of SoxB1 factors in blastula stem cells results in downregulation of NPB genes. Finally, we identify Pou5f3 factors as potential Sox3 partners in regulating the formation of the NPB and show that their combined activity is needed for normal NPB gene expression. Together, these data identify a role for SoxB1 factors in the establishment and maintenance of the NPB, in part through partnership with Pou5f3 factors.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Crista Neural , Placa Neural , Fatores de Transcrição SOXB1 , Proteínas de Xenopus , Xenopus laevis , Animais , Placa Neural/metabolismo , Placa Neural/embriologia , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Crista Neural/metabolismo , Crista Neural/citologia , Blástula/metabolismo , Embrião não Mamífero/metabolismoRESUMO
The neural plate border (NPB) of vertebrate embryos is segregated from the neural plate (NP) and epidermal regions, and comprises an intermingled group of progenitors with multiple fate potential. Recent studies have shown that, during the gastrula stage, TFAP2A acts as a pioneer factor in remodeling the epigenetic landscape required to activate components of the NPB induction program. Here, we show that chick Tfap2a has two highly conserved binding sites for miR-137, and both display a reciprocal expression pattern at the NPB and NP, respectively. In addition, ectopic miR-137 expression reduced TFAP2A, whereas its functional inhibition expanded their territorial distribution overlapping with PAX7. Furthermore, we demonstrate that loss of the de novo DNA methyltransferase DNMT3A expanded miR-137 expression to the NPB. Bisulfite sequencing revealed a markedly elevated presence of non-canonical CpH methylation within the miR-137 promoter region when comparing NPB and NP samples. Our findings show that miR-137 contributes to the robustness of NPB territorial restriction in vertebrate development.
Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Placa Neural , Fator de Transcrição AP-2 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Embrião de Galinha , Metilação de DNA/genética , Placa Neural/metabolismo , Placa Neural/embriologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A/metabolismo , Regiões Promotoras Genéticas/genética , Sítios de LigaçãoRESUMO
Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here, we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in ovo inhibition in quail embryos of retinoic acid activity followed by single-cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers, indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their crucial role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes, leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. In summary, the implementation of single-cell RNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.
Assuntos
Crista Neural , Tretinoína , Animais , Tretinoína/metabolismo , Tretinoína/farmacologia , Crista Neural/metabolismo , Crista Neural/citologia , Regulação da Expressão Gênica no Desenvolvimento , Codorniz/embriologia , Movimento Celular , Receptores Notch/metabolismo , Linhagem da Célula , Padronização Corporal/genética , Padronização Corporal/efeitos dos fármacos , Placa Neural/metabolismo , Placa Neural/embriologia , Interneurônios/metabolismo , Interneurônios/citologia , Análise de Célula Única , Tubo Neural/embriologia , Tubo Neural/metabolismo , Diferenciação Celular , Melanócitos/metabolismo , Melanócitos/citologiaRESUMO
Neural-tube closure is a critical step of embryogenesis, and its failure causes serious birth defects. Coordination of two morphogenetic processes--convergent extension and neural-plate apical constriction--ensures the complete closure of the neural tube. We now provide evidence that planar cell polarity (PCP) signaling directly links these two processes. In the bending neural plates, we find that a PCP-regulating cadherin, Celsr1, is concentrated in adherens junctions (AJs) oriented toward the mediolateral axes of the plates. At these AJs, Celsr1 cooperates with Dishevelled, DAAM1, and the PDZ-RhoGEF to upregulate Rho kinase, causing their actomyosin-dependent contraction in a planar-polarized manner. This planar-polarized contraction promotes simultaneous apical constriction and midline convergence of neuroepithelial cells. Together our findings demonstrate that PCP signals confer anisotropic contractility on the AJs, producing cellular forces that promote the polarized bending of the neural plate.
Assuntos
Polaridade Celular , Embrião de Galinha/metabolismo , Morfogênese , Tubo Neural/metabolismo , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Cães , Humanos , Camundongos , Placa Neural/metabolismoRESUMO
Understanding human organ formation is a scientific challenge with far-reaching medical implications1,2. Three-dimensional stem-cell cultures have provided insights into human cell differentiation3,4. However, current approaches use scaffold-free stem-cell aggregates, which develop non-reproducible tissue shapes and variable cell-fate patterns. This limits their capacity to recapitulate organ formation. Here we present a chip-based culture system that enables self-organization of micropatterned stem cells into precise three-dimensional cell-fate patterns and organ shapes. We use this system to recreate neural tube folding from human stem cells in a dish. Upon neural induction5,6, neural ectoderm folds into a millimetre-long neural tube covered with non-neural ectoderm. Folding occurs at 90% fidelity, and anatomically resembles the developing human neural tube. We find that neural and non-neural ectoderm are necessary and sufficient for folding morphogenesis. We identify two mechanisms drive folding: (1) apical contraction of neural ectoderm, and (2) basal adhesion mediated via extracellular matrix synthesis by non-neural ectoderm. Targeting these two mechanisms using drugs leads to morphological defects similar to neural tube defects. Finally, we show that neural tissue width determines neural tube shape, suggesting that morphology along the anterior-posterior axis depends on neural ectoderm geometry in addition to molecular gradients7. Our approach provides a new route to the study of human organ morphogenesis in health and disease.
Assuntos
Morfogênese , Tubo Neural/anatomia & histologia , Tubo Neural/embriologia , Técnicas de Cultura de Órgãos/métodos , Ectoderma/citologia , Ectoderma/embriologia , Humanos , Modelos Biológicos , Placa Neural/citologia , Placa Neural/embriologia , Tubo Neural/citologia , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/patologia , Regeneração , Células-Tronco/citologiaRESUMO
Neural crest cells exemplify cellular diversification from a multipotent progenitor population. However, the full sequence of early molecular choices orchestrating the emergence of neural crest heterogeneity from the embryonic ectoderm remains elusive. Gene-regulatory-networks (GRN) govern early development and cell specification toward definitive neural crest. Here, we combine ultradense single-cell transcriptomes with machine-learning and large-scale transcriptomic and epigenomic experimental validation of selected trajectories, to provide the general principles and highlight specific features of the GRN underlying neural crest fate diversification from induction to early migration stages using Xenopus frog embryos as a model. During gastrulation, a transient neural border zone state precedes the choice between neural crest and placodes which includes multiple converging gene programs. During neurulation, transcription factor connectome, and bifurcation analyses demonstrate the early emergence of neural crest fates at the neural plate stage, alongside an unbiased multipotent-like lineage persisting until epithelial-mesenchymal transition stage. We also decipher circuits driving cranial and vagal neural crest formation and provide a broadly applicable high-throughput validation strategy for investigating single-cell transcriptomes in vertebrate GRNs in development, evolution, and disease.
Assuntos
Crista Neural , Análise de Célula Única , Xenopus laevis , Animais , Crista Neural/citologia , Crista Neural/metabolismo , Análise de Célula Única/métodos , Xenopus laevis/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Movimento Celular , Redes Reguladoras de Genes , Transcriptoma , Gastrulação , Placa Neural/metabolismo , Placa Neural/embriologia , Placa Neural/citologia , Transição Epitelial-Mesenquimal/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Neurulação/genética , Neurulação/fisiologia , Diferenciação CelularRESUMO
The Foxi3 transcription factor, expressed in the neural plate border at the end of gastrulation, is necessary for the formation of posterior placodes and is thus important for ectodermal patterning. We have created two knock-in mouse lines expressing GFP or a tamoxifen-inducible Cre recombinase to show that Foxi3 is one of the earliest genes to label the border between the neural tube and epidermis, and that Foxi3-expressing neural plate border progenitors contribute primarily to cranial placodes and epidermis from the onset of expression, but not to the neural crest or neural tube lineages. By simultaneously knocking out Foxi3 in neural plate border cells and following their fates, we show that neural plate border cells lacking Foxi3 contribute to all four lineages of the ectoderm - placodes, epidermis, crest and neural tube. We contrast Foxi3 with another neural plate border transcription factor, Zic5, the progenitors of which initially contribute broadly to all germ layers until gastrulation and gradually become restricted to the neural crest lineage and dorsal neural tube cells. Our study demonstrates that Foxi3 uniquely acts early at the neural plate border to restrict progenitors to a placodal and epidermal fate.
Assuntos
Placa Neural , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Placa Neural/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ectoderma/metabolismo , Crista Neural/metabolismo , Fatores de Transcrição Forkhead/metabolismoRESUMO
The most anterior structure of the ascidian larva is made of three palps with sensory and adhesive functions essential for metamorphosis. They derive from the anterior neural border and their formation is regulated by FGF and Wnt. Given that they also share gene expression profiles with vertebrate anterior neural tissue and cranial placodes, their study should shed light on the emergence of the unique vertebrate telencephalon. We show that BMP signaling regulates two phases of palp formation in Ciona intestinalis. During gastrulation, the anterior neural border is specified in a domain of inactive BMP signaling, and activating BMP prevented its formation. During neurulation, BMP defines ventral palp identity and indirectly specifies the inter-papilla territory separating the ventral and dorsal palps. Finally, we show that BMP has similar functions in the ascidian Phallusia mammillata, for which we identified novel palp markers. Collectively, we provide a better molecular description of palp formation in ascidians that will be instrumental for comparative studies.
Assuntos
Urocordados , Animais , Urocordados/genética , Sistema Nervoso/metabolismo , Transdução de Sinais , Gastrulação/genética , Placa Neural/metabolismo , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
The development of the human central nervous system initiates in the early embryonic period until long after delivery. It has been shown that several neurological and neuropsychiatric diseases originate from prenatal incidents. Mathematical models offer a direct way to understand neurodevelopmental processes better. Mathematical modelling of neurodevelopment during the embryonic period is challenging in terms of how to 'Approach', how to initiate modelling and how to propose the appropriate equations that fit the underlying dynamics of neurodevelopment during the embryonic period while including the variety of elements that are built-in naturally during the process of neurodevelopment. It is imperative to answer where and how to start modelling; in other words, what is the appropriate 'Approach'? Therefore, one objective of this study was to tackle the mathematical issue broadly from different aspects and approaches. The approaches were divided into three embryonic categories: cell division, neural tube growth and neural plate growth. We concluded that the neural plate growth approach provides a suitable platform for simulation of brain formation/neurodevelopment compared to cell division and neural tube growth. We devised a novel equation and designed algorithms that include geometrical and topological algorithms that could fit most of the necessary elements of the neurodevelopmental process during the embryonic period. Hence, the proposed equations and defined mathematical structure would be a platform to generate an artificial neural network that autonomously grows and develops.
Assuntos
Modelos Biológicos , Tubo Neural , Animais , Humanos , Algoritmos , Divisão Celular , Desenvolvimento Embrionário , Modelos Neurológicos , Redes Neurais de Computação , Placa Neural/citologia , Placa Neural/embriologia , Tubo Neural/embriologia , Neurogênese , Neurônios/citologiaRESUMO
In chordates, the central nervous system arises from precursors that have distinct developmental and transcriptional trajectories. Anterior nervous systems are ontogenically associated with ectodermal lineages while posterior nervous systems are associated with mesoderm. Taking advantage of the well-documented cell lineage of ascidian embryos, we asked to what extent the transcriptional states of the different neural lineages become similar during the course of progressive lineage restriction. We performed single-cell RNA sequencing (scRNA-seq) analyses on hand-dissected neural precursor cells of the two distinct lineages, together with those of their sister cell lineages, with a high temporal resolution covering five successive cell cycles from the 16-cell to neural plate stages. A transcription factor binding site enrichment analysis of neural specific genes at the neural plate stage revealed limited evidence for shared transcriptional control between the two neural lineages, consistent with their different ontogenies. Nevertheless, PCA analysis and hierarchical clustering showed that, by neural plate stages, the two neural lineages cluster together. Consistent with this, we identified a set of genes enriched in both neural lineages at the neural plate stage, including miR-124, Celf3.a, Zic.r-b, and Ets1/2. Altogether, the current study has revealed genome-wide transcriptional dynamics of neural progenitor cells of two distinct developmental origins. Our scRNA-seq dataset is unique and provides a valuable resource for future analyses, enabling a precise temporal resolution of cell types not previously described from dissociated embryos.
Assuntos
Linhagem da Célula , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Placa Neural/embriologia , Placa Neural/metabolismo , Placa Neural/citologia , Ciona intestinalis/embriologia , Ciona intestinalis/genética , Urocordados/embriologia , Urocordados/genética , Análise de Célula Única , Embrião não Mamífero/metabolismo , Embrião não Mamífero/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologiaRESUMO
Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis.
Assuntos
Tubo Neural , Neurulação , Animais , Morfogênese/fisiologia , Placa Neural , Neurulação/fisiologia , Xenopus laevisRESUMO
The vertebrate retinas originate from a specific anlage in the anterior neural plate called the eye field. Its identity is conferred by a set of 'eye transcription factors', whose combinatorial expression has been overlooked. Here, we use the dimorphic teleost Astyanax mexicanus, which develops proper eyes in the wild type and smaller colobomatous eyes in the blind cavefish embryos, to unravel the molecular anatomy of the eye field and its variations within a species. Using a series of markers (rx3, pax6a, cxcr4b, zic1, lhx2, emx3 and nkx2.1a), we draw a comparative 3D expression map at the end of gastrulation/onset of neurulation, which highlights hyper-regionalization of the eye field into sub-territories of distinct sizes, shapes, cell identities and combinatorial gene expression levels along the three body axes. All these features show significant variations in the cavefish natural mutant. We also discover sub-domains within the prospective telencephalon and characterize cell identities at the frontiers of the eye field. We propose putative fates for some of the characterized eye-field subdivisions, and suggest the existence of a trade-off between some subdivisions in the two Astyanax morphs on a micro-evolutionary scale.
Assuntos
Characidae , Placa Neural , Animais , Evolução Biológica , Olho , Gastrulação , Estudos Prospectivos , RetinaRESUMO
Certain cranial neural crest cells are uniquely endowed with the ability to make skeletal cell types otherwise only derived from mesoderm. As these cells migrate into the pharyngeal arches, they downregulate neural crest specifier genes and upregulate so-called ectomesenchyme genes that are characteristic of skeletal progenitors. Although both external and intrinsic factors have been proposed as triggers of this transition, the details remain obscure. Here, we report the Nr2f nuclear receptors as intrinsic activators of the ectomesenchyme program: zebrafish nr2f5 single and nr2f2;nr2f5 double mutants show marked delays in upregulation of ectomesenchyme genes, such as dlx2a, prrx1a, prrx1b, sox9a, twist1a and fli1a, and in downregulation of sox10, which is normally restricted to early neural crest and non-ectomesenchyme lineages. Mutation of sox10 fully rescued skeletal development in nr2f5 single but not nr2f2;nr2f5 double mutants, but the initial ectomesenchyme delay persisted in both. Sox10 perdurance thus antagonizes the recovery but does not explain the impaired ectomesenchyme transition. Unraveling the mechanisms of Nr2f function will help solve the enduring puzzle of how cranial neural crest cells transition to the skeletal progenitor state.
Assuntos
Placa Neural , Peixe-Zebra , Animais , Peixe-Zebra/genética , Crista Neural , Mesoderma , Receptores Citoplasmáticos e Nucleares/genética , Regulação da Expressão Gênica no DesenvolvimentoRESUMO
Neurulation is the process in early vertebrate embryonic development during which the neural plate folds to form the neural tube. Spinal neural tube folding in the posterior neuropore changes over time, first showing a median hinge point, then both the median hinge point and dorsolateral hinge points, followed by dorsolateral hinge points only. The biomechanical mechanism of hinge point formation in the mammalian neural tube is poorly understood. Here we employ a mechanical finite element model to study neural tube formation. The computational model mimics the mammalian neural tube using microscopy data from mouse and human embryos. While intrinsic curvature at the neural plate midline has been hypothesized to drive neural tube folding, intrinsic curvature was not sufficient for tube closure in our simulations. We achieved neural tube closure with an alternative model combining mesoderm expansion, nonneural ectoderm expansion, and neural plate adhesion to the notochord. Dorsolateral hinge points emerged in simulations with low mesoderm expansion and zippering. We propose that zippering provides the biomechanical force for dorsolateral hinge point formation in settings where the neural plate lateral sides extend above the mesoderm. Together, these results provide a perspective on the biomechanical and molecular mechanism of mammalian spinal neurulation.
Assuntos
Tubo Neural , Neurulação , Animais , Ectoderma/embriologia , Humanos , Camundongos , Placa Neural/embriologia , Tubo Neural/embriologia , Neurulação/fisiologia , Notocorda/embriologiaRESUMO
Ribosomes are essential nanomachines responsible for protein production. Although ribosomes are present in every living cell, ribosome biogenesis dysfunction diseases, called ribosomopathies, impact particular tissues specifically. Here, we evaluate the importance of the box C/D snoRNA-associated ribosomal RNA methyltransferase fibrillarin (Fbl) in the early embryonic development of Xenopus laevis. We report that in developing embryos, the neural plate, neural crest cells (NCCs), and NCC derivatives are rich in fbl transcripts. Fbl knockdown leads to striking morphological defects affecting the eyes and craniofacial skeleton, due to lack of NCC survival caused by massive p53-dependent apoptosis. Fbl is required for efficient pre-rRNA processing and 18S rRNA production, which explains the early developmental defects. Using RiboMethSeq, we systematically reinvestigated ribosomal RNA 2'-O methylation in X. laevis, confirming all 89 previously mapped sites and identifying 15 novel putative positions in 18S and 28S rRNA. Twenty-three positions, including 10 of the new ones, were validated orthogonally by low dNTP primer extension. Bioinformatic screening of the X. laevis transcriptome revealed candidate box C/D snoRNAs for all methylated positions. Mapping of 2'-O methylation at six developmental stages in individual embryos indicated a trend towards reduced methylation at specific positions during development. We conclude that fibrillarin knockdown in early Xenopus embryos causes reduced production of functional ribosomal subunits, thus impairing NCC formation and migration.
Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Precursores de RNA/metabolismo , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 28S/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Animais , Olho/crescimento & desenvolvimento , Olho/metabolismo , Técnicas de Silenciamento de Genes , Metilação , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Placa Neural/crescimento & desenvolvimento , Placa Neural/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genéticaRESUMO
The protovertebrate Ciona intestinalis type A (sometimes called Ciona robusta) contains a series of sensory cell types distributed across the head-tail axis of swimming tadpoles. They arise from lateral regions of the neural plate that exhibit properties of vertebrate placodes and neural crest. The sensory determinant POU IV/Brn3 is known to work in concert with regional determinants, such as Foxg and Neurogenin, to produce palp sensory cells (PSCs) and bipolar tail neurons (BTNs), in head and tail regions, respectively. A combination of single-cell RNA-sequencing (scRNA-seq) assays, computational analysis, and experimental manipulations suggests that misexpression of POU IV results in variable transformations of epidermal cells into hybrid sensory cell types, including those exhibiting properties of both PSCs and BTNs. Hybrid properties are due to coexpression of Foxg and Neurogenin that is triggered by an unexpected POU IV feedback loop. Hybrid cells were also found to express a synthetic gene battery that is not coexpressed in any known cell type. We discuss these results with respect to the opportunities and challenges of reprogramming cell types through the targeted misexpression of cellular determinants.
Assuntos
Ciona intestinalis/genética , Neurônios/metabolismo , Fatores do Domínio POU/metabolismo , Animais , Evolução Biológica , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Ciona intestinalis/metabolismo , Epiderme/inervação , Epiderme/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Crista Neural/metabolismo , Placa Neural/metabolismo , Fatores do Domínio POU/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo , Vertebrados/genéticaRESUMO
The nervous system has various types of cells derived from three neuroectodermal regions: neural plate (NP), neural crest (NC), and preplacodal ectoderm (PPE). Differentiation of these regions is regulated by various morphogens. However, regulatory mechanisms of morphogen distribution in neural patterning are still debated. In general, an extracellular component, heparan sulfate (HS), is essential to regulate morphogen gradients by modulating morphogen binding. The present study focused on an HS modification enzyme, heparan sulfate 6-O-sulfotransferase 1 (Hs6st1), which is highly expressed during the neurula stage in Xenopus. Our present in situ hybridization analysis revealed that Hs6st1 is expressed in the lateral sensorial layer of neuroectoderm. Overexpression of Hs6st1 expands Sox3 (NP marker gene) expression, and slightly dampens FoxD3 (NC marker) expression. Hs6st1 knockout using the CRISPR/Cas9 system also expands the neural plate region, followed by retinal malformation. These results imply that 6-O sulfation, mediated by Hs6st1, selectively regulates morphogen distribution required for neuroectodermal patterning. Among morphogens required for patterning, Fgf8a accumulates on Hs6st1-expressing cells, whereas a secreted BMP antagonist, Noggin, diffuses away from those cells. Thus, cell-autonomous 6-O sulfation of HS at the sensorial layer of neuroectoderm also affects neuroectodermal patterning in neighboring regions, including neural plate and neural crest, not only through accumulation, but also through dispersal of specific morphogens.
Assuntos
Heparitina Sulfato , Placa Neural , Animais , Xenopus laevis/metabolismo , Placa Neural/metabolismo , Heparitina Sulfato/metabolismo , Ectoderma/metabolismo , Crista Neural/metabolismo , Proteínas de Xenopus/metabolismo , Fatores de Transcrição SOXB1RESUMO
The Ciona larva has served as a unique model for understanding the development of dopaminergic cells at single-cell resolution owing to the exceptionally small number of neurons in its brain and its fixed cell lineage during embryogenesis. A recent study suggested that the transcription factors Fer2 and Meis directly regulate the dopamine synthesis genes in Ciona, but the dopaminergic cell lineage and the gene regulatory networks that control the development of dopaminergic cells have not been fully elucidated. Here, we reveal that the dopaminergic cells in Ciona are derived from a bilateral pair of cells called a9.37 cells at the center of the neural plate. The a9.37 cells divide along the anterior-posterior axis, and all of the descendants of the posterior daughter cells differentiate into the dopaminergic cells. We show that the MAPK pathway and the transcription factor Otx are required for the expression of Fer2 in the dopaminergic cell lineage. Our findings establish the cellular and molecular framework for fully understanding the commitment to dopaminergic cells in the simple chordate brain.
Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Diferenciação Celular/genética , Ciona/genética , Neurônios Dopaminérgicos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Fatores de Transcrição Otx/genética , Animais , Biomarcadores , Linhagem da Célula/genética , Ciona/citologia , Neurônios Dopaminérgicos/citologia , Imunofluorescência , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Placa Neural/citologia , Placa Neural/metabolismo , Fatores de Transcrição Otx/metabolismo , Transdução de SinaisRESUMO
Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.