Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2206163120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897970

RESUMO

How collectives remain coordinated as they grow in size is a fundamental challenge affecting systems ranging from biofilms to governments. This challenge is particularly apparent in multicellular organisms, where coordination among a vast number of cells is vital for coherent animal behavior. However, the earliest multicellular organisms were decentralized, with indeterminate sizes and morphologies, as exemplified by Trichoplax adhaerens, arguably the earliest-diverged and simplest motile animal. We investigated coordination among cells in T. adhaerens by observing the degree of collective order in locomotion across animals of differing sizes and found that larger individuals exhibit increasingly disordered locomotion. We reproduced this effect of size on order through a simulation model of active elastic cellular sheets and demonstrate that this relationship is best recapitulated across all body sizes when the simulation parameters are tuned to a critical point in the parameter space. We quantify the trade-off between increasing size and coordination in a multicellular animal with a decentralized anatomy that shows evidence of criticality and hypothesize as to the implications of this on the evolution hierarchical structures such as nervous systems in larger organisms.


Assuntos
Placozoa , Animais , Placozoa/fisiologia , Tamanho Corporal , Sistema Nervoso Central , Evolução Biológica
2.
Annu Rev Genet ; 51: 455-476, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28934592

RESUMO

The evolution of a nervous system as a control system of the body's functions is a key innovation of animals. Its fundamental units are neurons, highly specialized cells dedicated to fast cell-cell communication. Neurons pass signals to other neurons, muscle cells, or gland cells at specialized junctions, the synapses, where transmitters are released from vesicles in a Ca2+-dependent fashion to activate receptors in the membrane of the target cell. Reconstructing the origins of neuronal communication out of a more simple process remains a central challenge in biology. Recent genomic comparisons have revealed that all animals, including the nerveless poriferans and placozoans, share a basic set of genes for neuronal communication. This suggests that the first animal, the Urmetazoan, was already endowed with neurosecretory cells that probably started to connect into neuronal networks soon afterward. Here, we discuss scenarios for this pivotal transition in animal evolution.


Assuntos
Evolução Biológica , Comunicação Celular/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cnidários/anatomia & histologia , Cnidários/fisiologia , Endossomos/fisiologia , Endossomos/ultraestrutura , Lisossomos/fisiologia , Lisossomos/ultraestrutura , Sistema Nervoso/citologia , Neurônios/citologia , Placozoa/anatomia & histologia , Placozoa/fisiologia , Poríferos/anatomia & histologia , Poríferos/fisiologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura , Vertebrados/anatomia & histologia , Vertebrados/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
3.
PLoS Biol ; 19(11): e3001471, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788294

RESUMO

Trichoplax adhaerens is the simplest multicellular animal with tissue differentiation and somatic cell turnover. Like all other multicellular organisms, it should be vulnerable to cancer, yet there have been no reports of cancer in T. adhaerens or any other placozoan. We investigated the cancer resistance of T. adhaerens, discovering that they are able to tolerate high levels of radiation damage (218.6 Gy). To investigate how T. adhaerens survive levels of radiation that are lethal to other animals, we examined gene expression after the X-ray exposure, finding overexpression of genes involved in DNA repair and apoptosis including the MDM2 gene. We also discovered that T. adhaerens extrudes clusters of inviable cells after X-ray exposure. T. adhaerens is a valuable model organism for studying the molecular, genetic, and tissue-level mechanisms underlying cancer suppression.


Assuntos
Reparo do DNA/genética , Placozoa/genética , Tolerância a Radiação/genética , Regulação para Cima/genética , Animais , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Placozoa/anatomia & histologia , Placozoa/efeitos da radiação , Exposição à Radiação , Análise de Sequência de DNA , Regulação para Cima/efeitos da radiação , Sequenciamento Completo do Genoma , Raios X
4.
J Biol Chem ; 298(4): 101741, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182524

RESUMO

CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage-activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts.


Assuntos
Canais de Cálcio , Calmodulina , Evolução Molecular , Placozoa , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Retroalimentação Fisiológica , Placozoa/classificação , Placozoa/genética , Placozoa/metabolismo , Ratos
5.
Bioessays ; 43(10): e2100083, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34490659

RESUMO

The placozoan Trichoplax adhaerens has been bridging gaps between research disciplines like no other animal. As outlined in part 1, placozoans have been subject of hot evolutionary debates and placozoans have challenged some fundamental evolutionary concepts. Here in part 2 we discuss the exceptional genetics of the phylum Placozoa and point out some challenging model system applications for the best known species, Trichoplax adhaerens.


Assuntos
Placozoa , Animais , Evolução Biológica , Planeta Terra , Filogenia , Placozoa/genética
6.
Bioessays ; 43(10): e2100080, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34472126

RESUMO

The placozoan Trichoplax adhaerens is a tiny hairy plate and more simply organized than any other living metazoan. After its original description by F.E. Schulze in 1883, it attracted attention as a potential model for the ancestral state of metazoan organization, the "Urmetazoon". Trichoplax lacks any kind of symmetry, organs, nerve cells, muscle cells, basal lamina, and extracellular matrix. Furthermore, the placozoan genome is the smallest (not secondarily reduced) genome of all metazoan genomes. It harbors a remarkably rich diversity of genes and has been considered the best living surrogate for a metazoan ancestor genome. The phylum Placozoa presently harbors three formally described species, while several dozen "cryptic" species are yet awaiting their description. The phylogenetic position of placozoans has recently become a contested arena for modern phylogenetic analyses and view-driven claims. Trichoplax offers unique prospects for understanding the minimal requirements of metazoan animal organization and their corresponding malfunctions.


Assuntos
Placozoa , Animais , Evolução Biológica , Genoma , Filogenia , Placozoa/genética
7.
Mol Biol (Mosk) ; 57(5): 895-897, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37752654

RESUMO

The marine free-living organism Trichoplax (phylum Placozoa) resembles a unicellular amoeba in shape and type of movement. Trichoplax diverged from the main evolutionary tree in the Neoproterozoic Era. Trichoplax provides one of the simplest models of multicellular animals and a strong example of how cells of an organism interact to form an ensemble during its development and movement. Two orthologs of the mouse Piezo1 protein (6B3R) were found in two Trichoplax haplotypes, H1 and H2, as a result of a search for similar sequences in the NCBI databases. Spatial models of the respective proteins XP_002112008.1 and RDD46920.1 were created via a structural alignment with 6KG7 (mouse Piezo2) template. Their domain structures were analyzed, and a limited graph of protein-protein interactions was constructed for the hypothetical mechanosensor XP_002112008.1. The possibility of signal transduction from the mechanoreceptor to membrane complexes, the cytoplasm, and the cell nucleus was shown. Trichoplax mechanoreceptors were assumed to play a role in perception of force stimuli from neighbor cells and the environment. Based on the results, the primitive Trichoplax organism was proposed as the simplest multicellular model of mechanical and morphogenetic movements.


Assuntos
Placozoa , Animais , Camundongos , Placozoa/genética , Mapas de Interação de Proteínas , Citoplasma , Canais Iônicos/genética
8.
Proc Natl Acad Sci U S A ; 116(18): 8901-8908, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30979806

RESUMO

Trichoplax adhaerens is a small, ciliated marine animal that glides on surfaces grazing upon algae, which it digests externally. It has no muscles or nervous system and only six cell types, all but two of which are embedded in its epithelium. The epithelial cells are joined by apical adherens junctions; neither tight junctions nor gap junctions are present. Monociliated epithelial cells on the lower surface propel gliding. The cilia beat regularly, but asynchronously, and transiently contact the substrate with each stroke. The animal moves in random directions in the absence of food. We show here that it exhibits chemotaxis, moving preferentially toward algae embedded in a disk of agar. We present a mathematical model to explain how coherent, directional movements could arise from the collective actions of a set of ciliated epithelial cells, each independently sensing and responding to a chemoattractant gradient. The model incorporates realistic values for viscoelastic properties of cells and produces coordinated movements and changes in body shape that resemble the actual movements of the animal. The model demonstrates that an animal can move coherently in search of food without any need for chemical signaling between cells and introduces a different approach to modeling behavior in primitive multicellular organisms.


Assuntos
Quimiotaxia/fisiologia , Comportamento Alimentar , Alimentos , Microalgas , Placozoa/fisiologia , Animais , Cílios , Transdução de Sinais
9.
J Biol Chem ; 295(52): 18553-18578, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33097592

RESUMO

The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1-CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage-activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+ Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gßγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Ativação do Canal Iônico , Transmissão Sináptica , Sequência de Aminoácidos , Animais , Cádmio/farmacologia , Níquel/farmacologia , Filogenia , Placozoa , Homologia de Sequência de Aminoácidos
10.
Cell Tissue Res ; 385(3): 623-637, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33876313

RESUMO

From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species-Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and "shiny spheres"-bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated.


Assuntos
Filogenia , Placozoa/ultraestrutura , Animais
11.
PLoS Biol ; 16(7): e2005359, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063702

RESUMO

Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.


Assuntos
Genômica , Placozoa/genética , Alelos , Animais , Sequência de Bases , DNA Ribossômico/genética , Duplicação Gênica , Rearranjo Gênico/genética , Especiação Genética , Variação Genética , Genoma , Anotação de Sequência Molecular , Filogenia , Placozoa/ultraestrutura , Isolamento Reprodutivo
12.
Proc Natl Acad Sci U S A ; 115(44): E10333-E10341, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30309963

RESUMO

By definition of multicellularity, all animals need to keep their cells attached and intact, despite internal and external forces. Cohesion between epithelial cells provides this key feature. To better understand fundamental limits of this cohesion, we study the epithelium mechanics of an ultrathin (∼25 µm) primitive marine animal Trichoplax adhaerens, composed essentially of two flat epithelial layers. With no known extracellular matrix and no nerves or muscles, T. adhaerens has been claimed to be the "simplest known living animal," yet is still capable of coordinated locomotion and behavior. Here we report the discovery of the fastest epithelial cellular contractions known in any metazoan, to be found in T. adhaerens dorsal epithelium (50% shrinkage of apical cell area within one second, at least an order of magnitude faster than other known examples). Live imaging reveals emergent contractile patterns that are mostly sporadic single-cell events, but also include propagating contraction waves across the tissue. We show that cell contraction speed can be explained by current models of nonmuscle actin-myosin bundles without load, while the tissue architecture and unique mechanical properties are softening the tissue, minimizing the load on a contracting cell. We propose a hypothesis, in which the physiological role of the contraction dynamics is to resist external stresses while avoiding tissue rupture ("active cohesion"), a concept that can be further applied to engineering of active materials.


Assuntos
Organismos Aquáticos/fisiologia , Células Epiteliais/fisiologia , Epitélio/fisiologia , Placozoa/fisiologia , Actinas/metabolismo , Animais , Organismos Aquáticos/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Epitélio/metabolismo , Miosinas/metabolismo , Placozoa/metabolismo
13.
J Biol Chem ; 294(44): 16320-16336, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527080

RESUMO

Acid-sensitive ion channels belonging to the degenerin/epithelial sodium channel (DEG/ENaC) family activate in response to extracellular protons and are considered unique to deuterostomes. However, sensitivity to pH/protons is more widespread, where, for example, human ENaC Na+ leak channels are potentiated and mouse BASIC and Caenorhabditis elegans ACD-1 Na+ leak channels are blocked by extracellular protons. For many DEG/ENaC channels, extracellular Ca2+ ions modulate gating, and in some cases, the binding of protons and Ca2+ is interdependent. Here, we functionally characterize a DEG/ENaC channel from the early-diverging animal Trichoplax adhaerens, TadNaC6, that conducts Na+-selective leak currents in vitro sensitive to blockade by both extracellular protons and Ca2+ We determine that proton block is enhanced in low external Ca2+ concentration, whereas calcium block is enhanced in low external proton concentration, indicative of competitive binding of these two ligands to extracellular sites of the channel protein. TadNaC6 lacks most determinant residues for proton and Ca2+ sensitivity in other DEG/ENaC channels, and a mutation of one conserved residue (S353A) associated with Ca2+ block in rodent BASIC channels instead affected proton sensitivity, all indicative of independent evolution of H+ and Ca2+ sensitivity. Strikingly, TadNaC6 was potently activated by the general DEG/ENaC channel blocker amiloride, a rare feature only reported for the acid-activated channel ASIC3. The sequence and structural divergence of TadNaC6, coupled with its noncanonical functional features, provide unique opportunities for probing the proton, Ca2+, and amiloride regulation of DEG/ENaC channels and insight into the possible core-gating features of ancestral ion channels.


Assuntos
Canais de Sódio Degenerina/metabolismo , Canais Epiteliais de Sódio/metabolismo , Placozoa/metabolismo , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/fisiologia , Transporte de Íons , Íons/metabolismo , Prótons , Receptores de Detecção de Cálcio/metabolismo , Sódio/metabolismo , Canais de Sódio/metabolismo
14.
Mol Biol Evol ; 36(5): 966-973, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726986

RESUMO

Placozoa are a morphologically simplistic group of marine animals found globally in tropical and subtropical environments. They consist of two named species, Trichoplax adhaerens and more recently Hoilungia hongkongensis, both with roughly six morphologically distinct cell types. With a sequenced genome, a limited number of cell types, and a simple flattened morphology, Trichoplax is an ideal model organism from which to explore the biology of an animal with a cellular complexity analagous to that of the earliest animals. Using a new approach for identification of gene expression patterns, this research looks at the relationship of Chordin/TgfΒ signaling and the axial patterning system of Placozoa. Our results suggest that placozoans have an oral-aboral axis similar to cnidarians and that the parahoxozoan ancestor (common ancestor of Placozoa and Cnidaria) was likely radially symmetric.


Assuntos
Padronização Corporal/genética , Placozoa/genética , Animais , Evolução Biológica , Hibridização In Situ
15.
Biochem Biophys Res Commun ; 532(1): 120-126, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32828537

RESUMO

Placozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5-7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched metazoan lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals.


Assuntos
Placozoa/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Potenciais de Ação , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Evolução Molecular , Variação Genética , Modelos Moleculares , Filogenia , Placozoa/classificação , Placozoa/genética , Conformação Proteica , Canais de Sódio/química , Canais de Sódio/genética
16.
Biochem Biophys Res Commun ; 527(4): 947-952, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32439167

RESUMO

D-amino acids are unique and essential signaling molecules in neural, hormonal, and immune systems. However, the presence of D-amino acids and their recruitment in early animals is mostly unknown due to limited information about prebilaterian metazoans. Here, we performed the comparative survey of L-/D-aspartate and L-/D-glutamate in representatives of four phyla of early-branching Metazoa: cnidarians (Aglantha); placozoans (Trichoplax), sponges (Sycon) and ctenophores (Pleurobrachia, Mnemiopsis, Bolinopsis, and Beroe), which are descendants of ancestral animal lineages distinct from Bilateria. Specifically, we used high-performance capillary electrophoresis for microchemical assays and quantification of the enantiomers. L-glutamate and L-aspartate were abundant analytes in all species studied. However, we showed that the placozoans, cnidarians, and sponges had high micromolar concentrations of D-aspartate, whereas D-glutamate was not detectable in our assays. In contrast, we found that in ctenophores, D-glutamate was the dominant enantiomer with no or trace amounts of D-aspartate. This situation illuminates prominent lineage-specific diversifications in the recruitment of D-amino acids and suggests distinct signaling functions of these molecules early in the animal evolution. We also hypothesize that a deep ancestry of such recruitment events might provide some constraints underlying the evolution of neural and other signaling systems in Metazoa.


Assuntos
Cnidários/química , Ctenóforos/química , Ácido D-Aspártico/análise , Ácido Glutâmico/análise , Placozoa/química , Poríferos/química , Animais , Eletroforese Capilar , Estereoisomerismo
17.
Bioessays ; 40(5): e1800029, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575018

RESUMO

The biannual international workshop entitled "The diversification of early emerging metazoans: A window into animal evolution?" took place at the Evangelische Akademie Tutzing, Germany, 11-14. September 2017. It was organized by Thomas Bosch (Kiel), Thomas Holstein (Heidelberg), and Ulrich Technau (Vienna), and it was sponsored by the Deutsche Forschungsgemeinschaft (DFG). The meeting gathered over 140 researchers to discuss the contribution of non-bilaterian metazoan models (Porifera, Ctenophora, Placozoa, and Cnidaria) to our understanding of: a. The evolution of metazoan developmental processes; b. Fundamental molecular mechanisms underlying metazoan features; and c. The complex interactions that animals establish with their environment.


Assuntos
Evolução Biológica , Animais , Cnidários/classificação , Ctenóforos/classificação , Evolução Molecular , Alemanha , Filogenia , Placozoa/classificação , Poríferos/classificação
18.
BMC Genomics ; 20(1): 5, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611207

RESUMO

BACKGROUND: Innate immunity provides the core recognition system in animals for preventing infection, but also plays an important role in managing the relationship between an animal host and its symbiont. Most of our knowledge about innate immunity stems from a few animal model systems, but substantial variation between metazoan phyla has been revealed by comparative genomic studies. The exploration of more taxa is still needed to better understand the evolution of immunity related mechanisms. Placozoans are morphologically the simplest organized metazoans and the association between these enigmatic animals and their rickettsial endosymbionts has recently been elucidated. Our analyses of the novel placozoan nuclear genome of Trichoplax sp. H2 and its associated rickettsial endosymbiont genome clearly pointed to a mutualistic and co-evolutionary relationship. This discovery raises the question of how the placozoan holobiont manages symbiosis and, conversely, how it defends against harmful microorganisms. In this study, we examined the annotated genome of Trichoplax sp. H2 for the presence of genes involved in innate immune recognition and downstream signaling. RESULTS: A rich repertoire of genes belonging to the Toll-like and NOD-like receptor pathways, to scavenger receptors and to secreted fibrinogen-related domain genes was identified in the genome of Trichoplax sp. H2. Nevertheless, the innate immunity related pathways in placozoans deviate in several instances from well investigated vertebrates and invertebrates. While true Toll- and NOD-like receptors are absent, the presence of many genes of the downstream signaling cascade suggests at least primordial Toll-like receptor signaling in Placozoa. An abundance of scavenger receptors, fibrinogen-related domain genes and Apaf-1 genes clearly constitutes an expansion of the immunity related gene repertoire specific to Placozoa. CONCLUSIONS: The found wealth of immunity related genes present in Placozoa is surprising and quite striking in light of the extremely simple placozoan body plan and their sparse cell type makeup. Research is warranted to reveal how Placozoa utilize this immune repertoire to manage and maintain their associated microbiota as well as to fend-off pathogens.


Assuntos
Genoma/imunologia , Imunidade Inata/genética , Filogenia , Placozoa/imunologia , Animais , Invertebrados/genética , Invertebrados/imunologia , Placozoa/genética , Simbiose/genética , Simbiose/imunologia
19.
Cell Tissue Res ; 377(3): 353-367, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31270610

RESUMO

Trichoplax, a member of the phylum Placozoa, is a tiny ciliated marine animal that glides on surfaces feeding on algae and cyanobacteria. It stands out from other animals in that it lacks an internal digestive system and, instead, digests food trapped under its lower surface. Here we review recent work on the phenotypes of its six cell types and their roles in digestion and feeding behavior. Phylogenomic analyses place Placozoa as sister to Eumetazoa, the clade that includes Cnidaria and Bilateria. Comparing the phenotypes of cells in Trichoplax to those of cells in the digestive epithelia of Eumetazoa allows us to make inferences about the cell types and mode of feeding of their ancestors. From our increasingly mechanistic understanding of feeding in Trichoplax, we get a glimpse into how primitive animals may have hunted and consumed food prior to the evolution of neurons, muscles, and internal digestive systems.


Assuntos
Sistema Digestório/citologia , Placozoa/citologia , Animais , Evolução Biológica , Comportamento Alimentar , Filogenia
20.
Nucleic Acids Res ; 44(17): 8352-62, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27557707

RESUMO

The Muscleblind (MBL) protein family is a deeply conserved family of RNA binding proteins that regulate alternative splicing, alternative polyadenylation, RNA stability and RNA localization. Their inactivation due to sequestration by expanded CUG repeats causes symptoms in the neuromuscular disease myotonic dystrophy. MBL zinc fingers are the most highly conserved portion of these proteins, and directly interact with RNA. We identified putative MBL homologs in Ciona intestinalis and Trichoplax adhaerens, and investigated their ability, as well as that of MBL homologs from human/mouse, fly and worm, to regulate alternative splicing. We found that all homologs can regulate alternative splicing in mouse cells, with some regulating over 100 events. The cis-elements through which each homolog exerts its splicing activities are likely to be highly similar to mammalian Muscleblind-like proteins (MBNLs), as suggested by motif analyses and the ability of expanded CUG repeats to inactivate homolog-mediated splicing. While regulation of specific target exons by MBL/MBNL has not been broadly conserved across these species, genes enriched for MBL/MBNL binding sites in their introns may play roles in cell adhesion, ion transport and axon guidance, among other biological pathways, suggesting a specific, conserved role for these proteins across a broad range of metazoan species.


Assuntos
Splicing de RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Animais , Ciona intestinalis/metabolismo , Sequência Conservada , Evolução Molecular , Éxons/genética , Ontologia Genética , Genes Reporter , Células HeLa , Humanos , Íntrons/genética , Camundongos , Motivos de Nucleotídeos/genética , Placozoa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa