Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.354
Filtrar
Mais filtros

Coleção SES
Eixos temáticos
Intervalo de ano de publicação
1.
Gastroenterology ; 167(3): 547-559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38494035

RESUMO

BACKGROUND & AIMS: Hirschsprung's disease is defined by the absence of the enteric nervous system (ENS) from the distal bowel. Primary treatment is "pull-through" surgery to remove bowel that lacks ENS, with reanastomosis of "normal" bowel near the anal verge. Problems after pull-through are common, and some may be due to retained hypoganglionic bowel (ie, low ENS density). Testing this hypothesis has been difficult because counting enteric neurons in tissue sections is unreliable, even for experts. Tissue clearing and 3-dimensional imaging provide better data about ENS structure than sectioning. METHODS: Regions from 11 human colons and 1 ileal specimen resected during Hirschsprung's disease pull-through surgery were cleared, stained with antibodies to visualize the ENS, and imaged by confocal microscopy. Control distal colon from people with no known bowel problems were similarly cleared, stained, and imaged. RESULTS: Quantitative analyses of human colon, ranging from 3 days to 60 years old, suggest age-dependent changes in the myenteric plexus area, ENS ganglion area, percentage of myenteric plexus occupied by ganglia, neurons/mm2, and neuron Feret's diameter. Neuron counting using 3-dimensional images was highly reproducible. High ENS density in neonatal colon allowed reliable neuron counts using 500-µm2 × 500-µm2 regions (36-fold smaller than in adults). Hirschsprung's samples varied 8-fold in proximal margin enteric neuron density and had diverse ENS architecture in resected bowel. CONCLUSIONS: Tissue clearing and 3-dimensional imaging provide more reliable information about ENS structure than tissue sections. ENS structure changes during childhood. Three-dimensional ENS anatomy may provide new insight into human bowel motility disorders, including Hirschsprung's disease.


Assuntos
Colo , Sistema Nervoso Entérico , Doença de Hirschsprung , Imageamento Tridimensional , Microscopia Confocal , Humanos , Doença de Hirschsprung/patologia , Doença de Hirschsprung/diagnóstico por imagem , Doença de Hirschsprung/cirurgia , Colo/inervação , Colo/patologia , Colo/diagnóstico por imagem , Criança , Lactente , Sistema Nervoso Entérico/patologia , Sistema Nervoso Entérico/diagnóstico por imagem , Pré-Escolar , Adolescente , Adulto , Recém-Nascido , Pessoa de Meia-Idade , Feminino , Masculino , Adulto Jovem , Plexo Mientérico/patologia , Plexo Mientérico/diagnóstico por imagem , Íleo/diagnóstico por imagem , Íleo/inervação , Íleo/patologia , Fatores Etários
2.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G567-G582, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193168

RESUMO

The enteric nervous system (ENS) comprises millions of neurons and glia embedded in the wall of the gastrointestinal tract. It not only controls important functions of the gut but also interacts with the immune system, gut microbiota, and the gut-brain axis, thereby playing a key role in the health and disease of the whole organism. Any disturbance of this intricate system is mirrored in an alteration of electrical functionality, making electrophysiological methods important tools for investigating ENS-related disorders. Microelectrode arrays (MEAs) provide an appropriate noninvasive approach to recording signals from multiple neurons or whole networks simultaneously. However, studying isolated cells of the ENS can be challenging, considering the limited time that these cells can be kept vital in vitro. Therefore, we developed an alternative approach cultivating cells on glass samples with spacers (fabricated by photolithography methods). The spacers allow the cells to grow upside down in a spatially confined environment while enabling acute consecutive recordings of multiple ENS cultures on the same MEA. Upside-down culture also shows beneficial effects on the growth and behavior of enteric neural cultures. The number of dead cells was significantly decreased, and neural networks showed a higher resemblance to the myenteric plexus ex vivo while producing more stable signals than cultures grown in the conventional way. Overall, our results indicate that the upside-down approach not only allows to investigate the impact of neurological diseases in vitro but could also offer insights into the growth and development of the ENS under conditions much closer to the in vivo environment.NEW & NOTEWORTHY In this study, we devised a novel approach for culturing and electrophysiological recording of the enteric nervous system using custom-made glass substrates with spacers. This allows to turn cultures of isolated myenteric plexus upside down, enhancing the use of the microelectrode array technique by allowing recording of multiple cultures consecutively using only one chip. In addition, upside-down culture led to significant improvements in the culture conditions, resulting in a more in vivo-like growth.


Assuntos
Sistema Nervoso Entérico , Neurônios , Neurônios/fisiologia , Sistema Nervoso Entérico/fisiologia , Plexo Mientérico/fisiologia , Plexo Submucoso
3.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G279-G290, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193160

RESUMO

The enteric nervous system (ENS) functions largely independently of the central nervous system (CNS). Glutamate, the dominant neurotransmitter in the CNS and sensory afferents, is not a primary neurotransmitter in the ENS. Only a fraction (∼2%) of myenteric neurons in the mouse distal colon and rectum (colorectum) are positive for vesicular glutamate transporter type 2 (VGLUT2), the structure and function of which remain undetermined. Here, we systematically characterized VGLUT2-positive enteric neurons (VGLUT2-ENs) through sparse labeling with adeno-associated virus, single-cell mRNA sequencing (scRNA-seq), and GCaMP6f calcium imaging. Our results reveal that the majority of VGLUT2-ENs (29 of 31, 93.5%) exhibited Dogiel type I morphology with a single aborally projecting axon; most axons (26 of 29, 89.7%) are between 4 and 10 mm long, each traversing 19 to 34 myenteric ganglia. These anatomical features exclude the VGLUT2-ENs from being intrinsic primary afferent or motor neurons. The scRNA-seq conducted on 52 VGLUT2-ENs suggests different expression profiles from conventional descending interneurons. Ex vivo GCaMP6f recordings from flattened colorectum indicate that almost all VGLUT2-EN (181 of 215, 84.2%) are indirectly activated by colorectal stretch via nicotinic cholinergic neural transmission. In conclusion, VGLUT2-ENs are a functionally unique group of enteric neurons with single aborally projecting long axons that traverse multiple myenteric ganglia and are activated indirectly by colorectal mechanical stretch. This knowledge will provide a solid foundation for subsequent studies on the potential interactions of VGLUT2-EN with extrinsic colorectal afferents via glutamatergic neurotransmission.NEW & NOTEWORTHY We reveal that VGLUT2-positive enteric neurons (EN), although constituting a small fraction of total EN, are homogeneously expressed in the myenteric ganglia, with a slight concentration at the intermediate region between the colon and rectum. Through anatomic, molecular, and functional analyses, we demonstrated that VGLUT2-ENs are activated indirectly by noxious circumferential colorectal stretch via nicotinic cholinergic transmission, suggesting their participation in mechanical visceral nociception.


Assuntos
Neoplasias Colorretais , Neurônios Motores , Camundongos , Animais , Imuno-Histoquímica , Neurotransmissores/metabolismo , Colinérgicos , Neoplasias Colorretais/metabolismo , Plexo Mientérico/metabolismo
4.
Cell Tissue Res ; 395(1): 39-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37982872

RESUMO

The pig is an important translational model for studying intestinal physiology and disorders for its many homologies with humans, including the organization of the enteric nervous system (ENS), the major regulator of gastrointestinal functions. This study focused on the quantification and neurochemical characterization of substance P (SP) neurons in the pig ascending (AC) and descending colon (DC) in wholemount preparations of the inner submucosal plexus (ISP), outer submucosal plexus (OSP), and myenteric plexus (MP). We used antibodies for the pan-neuronal marker HuCD, and choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS), markers for excitatory and inhibitory transmitters, for multiple labeling immunofluorescence and high-resolution confocal microscopy. The highest density of SP immunoreactive (IR) neurons was in the ISP (222/mm2 in the AC, 166/mm2 in the DC), where they make up about a third of HuCD-IR neurons, compared to the OSP and MP (19-22% and 13-17%, respectively, P < 0.001-0.0001). HuCD/SP/ChAT-IR neurons (up to 23%) were overall more abundant than HuCD/SP/nNOS-IR neurons (< 10%). Most SP-IR neurons contained ChAT-IR (62-85%), whereas 18-38% contained nNOS-IR with the highest peak in the OSP. A subpopulation of SP-IR neurons contains both ChAT- and nNOS-IR with the highest peak in the OSP and ISP of DC (33-36%) and the lowest in the ISP of AC (< 10%, P < 0.001). SP-IR varicose fibers were abundant in the ganglia. This study shows that SP-IR neurons are functionally distinct with variable proportions in different plexuses in the AC and DC reflecting diverse functions of specific colonic regions.


Assuntos
Plexo Mientérico , Plexo Submucoso , Humanos , Suínos , Animais , Substância P , Neurônios , Colo , Colina O-Acetiltransferase
5.
BMC Gastroenterol ; 24(1): 23, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191294

RESUMO

This study was designed to explore the expression changes of P2Y1 receptors in the distal colonic myenteric layer of rats. An opioid induced constipation(OIC) rat model was generated by intraperitoneal (i.p) injection of loperamide. At 7 days post-treatment, the model rats were assessed by calculating the fecal water content and the gastrointestinal transit ratio. The immunofluorescence (IF)-based histochemical study was used to observe the distribution of P2Y1 receptors in the distal colonic myenteric plexus. Western blotting (WB) was performed to evaluate the expression changes of P2Y1 proteins in the myenteric layer, and the electrophysiological approaches were carried out to determine the regulatory roles of P2Y1 receptors on distal colonic motor function. IF showed that P2Y1 receptors are co-expressed MOR in the enteric nerve cells of the distal colonic myenteric plexus. Moreover, the WB revealed that the protein levels of P2Y1 were significantly decreased in the distal colonic myenteric layer of OIC rats. In vitro tension experiments exhibited that the P2Y1 receptor antagonist MRS2500 enhanced the spontaneous contraction amplitude, adding EM2 and ß-FNA did not have any effect on MRS2500. Therefore, P2Y1 receptor expression could be associated with the occurrence of OIC in this rat model and the regulation of colonic motility by MOR may be related to the release of purine neurotransmitters such as ATP in the colonic nervous system.


Assuntos
Plexo Mientérico , Constipação Induzida por Opioides , Animais , Ratos , Analgésicos Opioides/efeitos adversos , Constipação Intestinal/induzido quimicamente , Western Blotting
6.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593632

RESUMO

Glia in the central nervous system exert precise spatial and temporal regulation over neural circuitry on a synapse-specific basis, but it is unclear if peripheral glia share this exquisite capacity to sense and modulate circuit activity. In the enteric nervous system (ENS), glia control gastrointestinal motility through bidirectional communication with surrounding neurons. We combined glial chemogenetics with genetically encoded calcium indicators expressed in enteric neurons and glia to study network-level activity in the intact myenteric plexus of the proximal colon. Stimulation of neural fiber tracts projecting in aboral, oral, and circumferential directions activated distinct populations of enteric glia. The majority of glia responded to both oral and aboral stimulation and circumferential pathways, while smaller subpopulations were activated only by ascending and descending pathways. Cholinergic signaling functionally specifies glia to the descending circuitry, and this network plays an important role in repressing the activity of descending neural pathways, with some degree of cross-inhibition imposed upon the ascending pathway. Glial recruitment by purinergic signaling functions to enhance activity within ascending circuit pathways and constrain activity within descending networks. Pharmacological manipulation of glial purinergic and cholinergic signaling differentially altered neuronal responses in these circuits in a sex-dependent manner. Collectively, our findings establish that the balance between purinergic and cholinergic signaling may differentially control specific circuit activity through selective signaling between networks of enteric neurons and glia. Thus, enteric glia regulate the ENS circuitry in a network-specific manner, providing profound insights into the functional breadth and versatility of peripheral glia.


Assuntos
Sistema Nervoso Entérico/fisiologia , Motilidade Gastrointestinal/fisiologia , Plexo Mientérico/fisiologia , Neuroglia/fisiologia , Animais , Comunicação Celular , Sistema Nervoso Entérico/citologia , Feminino , Masculino , Camundongos , Plexo Mientérico/citologia , Neuroglia/citologia , Neurônios/citologia , Transdução de Sinais
7.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928511

RESUMO

The influence of accelerated electrons on neuronal structures is scarcely explored compared to gamma and X-rays. This study aims to investigate the effects of accelerated electron radiation on some pivotal neurotransmitter circuits (cholinergic and serotonergic) of rats' myenteric plexus. Male Wistar rats were irradiated with an electron beam (9 MeV, 5 Gy) generated by a multimodality linear accelerator. The contractile activity of isolated smooth muscle samples from the gastric corpus was measured. Furthermore, an electrical stimulation (200 µs, 20 Hz, 50 s, 60 V) was performed on the samples and an assessment of the cholinergic and serotonergic circuits was made. Five days after irradiation, the recorded mechanical responses were biphasic-contraction/relaxation in controls and contraction/contraction in irradiated samples. The nature of the contractile phase of control samples was cholinergic with serotonin involvement. The relaxation phase involved ACh-induced nitric oxide release from gastric neurons. There was a significant increase in serotonergic involvement during the first and second contractile phases of the irradiated samples, along with a diminished role of acetylcholine in the first phase. This study demonstrates an increased involvement of serotonergic neurotransmitter circuits in the gastric myenteric plexus caused by radiation with accelerated electrons.


Assuntos
Elétrons , Plexo Mientérico , Ratos Wistar , Estômago , Animais , Plexo Mientérico/efeitos da radiação , Plexo Mientérico/metabolismo , Masculino , Ratos , Estômago/inervação , Estômago/efeitos da radiação , Estômago/fisiologia , Músculo Liso/fisiologia , Músculo Liso/efeitos da radiação , Músculo Liso/metabolismo , Serotonina/metabolismo , Contração Muscular/efeitos da radiação , Contração Muscular/fisiologia , Acetilcolina/metabolismo , Óxido Nítrico/metabolismo
8.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256111

RESUMO

Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson's disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor symptoms including gastrointestinal dysfunction. In this study, we investigated the modulatory effects of the flavonoid rutin on the behavior and myenteric plexuses in a PD animal model and the response of enteric glia. Adult male Wistar rats were submitted to stereotaxic injection with 6-hydroxydopamine or saline, and they were untreated or treated with rutin (10 mg/kg) for 14 days. The ileum was collected to analyze tissue reactivity and immunohistochemistry for neurons (HuC/HuD) and enteric glial cells (S100ß) in the myenteric plexuses. Behavioral tests demonstrated that treatment with rutin improved the motor capacity of parkinsonian animals and improved intestinal transit without interfering with the cell population; rutin treatment modulated the reactivity of the ileal musculature through muscarinic activation, reducing relaxation through the signaling pathway of nitric oxide donors, and increased the longitudinal contractility of the colon musculature in parkinsonian animals. Rutin revealed modulatory activities on the myenteric plexus, bringing relevant answers regarding the effect of the flavonoid in this system and the potential application of PD adjuvant treatment.


Assuntos
Plexo Mientérico , Doença de Parkinson , Masculino , Ratos , Animais , Ratos Wistar , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Rutina/farmacologia , Rutina/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Modelos Animais de Doenças , Neurônios Dopaminérgicos
9.
J Neurosci ; 42(46): 8694-8708, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36319118

RESUMO

Enteric glia are a unique population of peripheral neuroglia that regulate homeostasis in the enteric nervous system (ENS) and intestinal functions. Despite existing in functionally diverse regions of the gastrointestinal tract, enteric glia have been approached scientifically as a homogeneous group of cells. This assumption is at odds with the functional specializations of gastrointestinal organs and recent data suggesting glial heterogeneity in the brain and ENS. Here, we used calcium imaging in transgenic mice of both sexes expressing genetically encoded calcium sensors in enteric glia and conducted contractility studies to investigate functional diversity among myenteric glia in two functionally distinct intestinal organs: the duodenum and the colon. Our data show that myenteric glia exhibit regionally distinct responses to neuromodulators that require intercellular communication with neurons to differing extents in the duodenum and colon. Glia regulate intestinal contractility in a region-specific and pathway-specific manner, which suggests regionally diverse engagement of enteric glia in local motor patterns through discrete signaling pathways. Further, functional response profiles delineate four unique subpopulations among myenteric glia that are differentially distributed between the colon and duodenum. Our findings support the conclusion that myenteric glia exhibit both intraregional and interregional heterogeneity that contributes to region-specific mechanisms that regulate digestive functions. Glial heterogeneity adds an unexpected layer of complexity in peripheral neurocircuits, and understanding the specific functions of specialized glial subtypes will provide new insight into ENS physiology and pathophysiology.SIGNIFICANCE STATEMENT Enteric glia modulate gastrointestinal functions through intercellular communication with enteric neurons. Whether heterogeneity exists among neuron-glia interactions in the digestive tract is not understood. Here, we show that myenteric glia display regional heterogeneity in their responses to neuromodulators in the duodenum and the colon, which are functionally distinct organs. Glial-mediated control of intestinal motility is region and pathway specific. Four myenteric glial subtypes are present within a given gut region that are differently distributed between gut regions. These data provide functional and regional insights into enteric circuit specificity in the adult enteric nervous system.


Assuntos
Cálcio , Sistema Nervoso Entérico , Masculino , Feminino , Camundongos , Animais , Cálcio/metabolismo , Neuroglia/metabolismo , Sistema Nervoso Entérico/metabolismo , Colo/fisiologia , Duodeno/metabolismo , Neurotransmissores/metabolismo , Camundongos Transgênicos , Plexo Mientérico/metabolismo
10.
J Physiol ; 601(7): 1183-1206, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36752210

RESUMO

The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood. We recorded intracellular calcium in live-cell confocal recordings in neurons from intact segments of mouse intestine in order to investigate neuronal response to luminal mechanical and chemical stimuli. Wnt1-, ChAT- and Calb1-GCaMP6 mice were used to record neurons from the jejunum and colon. We measured neuronal calcium response to KCl (75 mM), veratridine (10 µM), 1,1-dimethyl-4-phenylpiperazinium (DMPP; 100 µM) or luminal nutrients (Ensure®), in the presence or absence of intraluminal distension. In the jejunum and colon, distension generated by the presence of luminal content (chyme and faecal pellets, respectively) renders the underlying enteric circuit unresponsive to depolarizing stimuli. In the distal colon, high levels of distension inhibit neuronal response to KCl, while intermediate levels of distension reorganize Ca2+ response in circumferentially propagating slow waves. Mechanosensitive channel inhibition suppresses distension-induced Ca2+ elevations, and calcium-activated potassium channel inhibition restores neuronal response to KCl, but not DMPP in the distended colon. In the jejunum, distension prevents a previously unknown tetrodotoxin-resistant neuronal response to luminal nutrient stimulation. Our results demonstrate that intestinal distension regulates the excitability of ENS circuits via mechanosensitive channels. Physiological levels of distension locally silence or synchronize neurons, dynamically regulating the excitability of enteric neural circuits based on the content of the intestinal lumen. KEY POINTS: How the enteric nervous system of the gastrointestinal tract responds to luminal distension remains to be fully elucidated. Here it is shown that intestinal distension modifies intracellular calcium levels in the underlying enteric neuronal network, locally and reversibly silencing neurons in the distended regions. In the distal colon, luminal distension is integrated by specific mechanosensitive channels and coordinates the dynamics of neuronal activation within the enteric network. In the jejunum, distension suppresses the neuronal calcium responses induced by luminal nutrients. Physiological levels of distension dynamically regulate the excitability of enteric neuronal circuits.


Assuntos
Cálcio , Sistema Nervoso Entérico , Camundongos , Animais , Sistema Nervoso Entérico/fisiologia , Neurônios/fisiologia , Intestino Delgado , Jejuno , Colo/fisiologia , Plexo Mientérico
11.
Glia ; 71(2): 305-316, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36128665

RESUMO

Old age is associated with a higher incidence of lower bowel conditions such as constipation. Recent evidence suggest that colonic motility may be influenced by enteric glial cells (EGCs). Little is known about the effect of aging on the subpopulation of EGCs in the human colon. We assessed and compared the pattern of distribution of EGCs in adult and elderly human colon. Human descending colon were obtained from 23 cancer patients comprising of adults (23-63 years; 6 male, 7 female) and elderly (66-81 year; 6 male, 4 female). Specimens were serially-sectioned and immunolabeled with anti-Sox-10, anti-S100 and anti-GFAP for morphometric analysis. Standardized procedures were utilized to ensure unbiased counting and densitometric evaluation of EGCs. The number of Sox-10 immunoreactive (IR) EGCs were unaltered with age in both the myenteric plexus (MP) (respectively, in adult and elderly patients, 1939 ± 82 and 1760 ± 44/mm length; p > .05) and submucosal plexus; there were no apparent differences between adult males and females. The density of S100-IR EGCs declined among the elderly in the circular muscle and within the MP per ganglionic area. In the adult colon, there were more S100-IR EGCs distributed in the circular muscle per unit area than the Taenia coli. There was little or no GFAP-IR EGCs in both adult and elderly colon. We concluded that aging of the human descending colon does not result in a loss of Sox-10-IR EGCs in the MP and SMP but reduces S100-IR EGCs density within the musculature. This alteration in myenteric EGCs density with age may contribute to colonic dysfunction.


Assuntos
Colo Descendente , Neuroglia , Adulto , Humanos , Masculino , Feminino , Idoso , Plexo Mientérico , Colo
12.
Histochem Cell Biol ; 159(1): 7-21, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35507035

RESUMO

The present immunohistochemical study was performed to examine the number, distribution, and chemical coding of intrinsic substance P (SP) neurons and nerve fibers within the esophagus and discuss their functional roles. Many SP neurons and nerve fibers were found in the myenteric plexus, and the SP neurons gradually decreased from the oral side toward the aboral side of the esophagus. Double-immunolabeling showed that most SP neurons were cholinergic (positive for choline acetyltransferase), and few were nitrergic (positive for nitric oxide synthase). Some cholinergic SP nerve terminals surrounded cell bodies of several myenteric neurons. In the muscularis mucosa and lower esophageal sphincter, and around blood vessels, numerous SP nerve endings were present, and many of them were cholinergic. Also, SP nerve endings were found on only a few motor endplates of the striated muscles, and most of them were calcitonin gene-related peptide (CGRP)-positive. Retrograde tracing using Fast Blue (FB) showed that numerous sensory neurons in the dorsal root ganglia (DRGs) and nodose ganglion (NG) projected to the esophagus, and most FB-labeled SP neurons were CGRP-positive. These results suggest that the intrinsic SP neurons in the rat esophagus may play roles as, at least, motor neurons, interneurons, and vasomotor neurons, which are involved in local regulation of smooth muscle motility, neuronal transmission, and blood circulation, respectively. Moreover, SP nerve endings on only a minority of motor endplates may be extrinsic, derived from DRGs or NG, and possibly detect chemical circumstances within motor endplates to modulate esophageal motility.


Assuntos
Plexo Mientérico , Substância P , Ratos , Animais , Peptídeo Relacionado com Gene de Calcitonina , Neurônios Motores , Esôfago
13.
Histochem Cell Biol ; 160(4): 321-339, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37306742

RESUMO

This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Colite/metabolismo , Colite/patologia
14.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R305-R316, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622086

RESUMO

Vagal preganglionic neurons innervate myenteric ganglia. These autonomic efferents are distributed so densely within the ganglia that it has been impractical to track individual vagal axons through the myenteric plexus with tracer labeling. To evaluate whether vagal efferent axons evidence selectivity, particularly for nitrergic or non-nitrergic myenteric neurons within the plexus, we limited the numbers and volumes of brainstem dextran biotin tracer injections per animal. Reduced labeling and the use of immunohistochemistry generated cases in which some individual axons could be distinguished and traced in three dimensions (Neurolucida) within and among successive (up to 46) myenteric ganglia. In the myenteric plexus of all stomach regions, the majority (∼86%) of vagal efferents were organized into two distinct subtypes. One subtype (∼24% of dextran-labeled efferents, designated "primarily nitrergic") selectively contacted and linked-both within and between ganglia-nitric oxide synthase positive (nNOS+) neurons into presumptive motor modules. A second subtype (∼62% of efferents, designated "primarily non-nitrergic") appeared to selectively contact and link-both within and between ganglia-non-nitrergic enteric neurons into a second type of effector ensemble. A third candidate type (∼14% of labeled preganglionics), appeared to lack "nitrergic selectivity" and to contact both nNOS+ and nNOS- enteric neurons. In addition to the quantitative assessment of the efferent axons in stomach, qualitative observations of the proximal duodenum indicated similar selective vagal efferent projections, in proportions comparable with those evaluated in the stomach. Limited injections of tracer, three-dimensional (3-D) tracing of individual axons, and histochemistry of myenteric neurons might distinguish additional efferent phenotypes.NEW & NOTEWORTHY The present study highlights the following: 1) one type of vagal efferent axon selectively innervates nitrergic upper gastrointestinal myenteric neurons; 2) a second type of vagal efferent selectively innervates non-nitrergic gastrointestinal myenteric neurons; and 3) the two types of vagal efferents might modulate peristalsis reciprocally and cooperatively.


Assuntos
Dextranos , Plexo Mientérico , Animais , Plexo Mientérico/fisiologia , Nervo Vago/fisiologia , Axônios , Neurônios
15.
Cell Mol Neurobiol ; 43(1): 315-325, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34932174

RESUMO

The close interaction between the enteric nervous system, microbiome, and brain in vertebrates is an emerging topic of recent studies. Different species such as rat, mouse, and human are currently being used for this purpose, among others. The transferability of protocols for tissue isolation and sample collection is not always straightforward. Thus, the present work presents a new protocol for isolation and sample collection of rat myenteric plexus cells for in vivo as well as in vitro studies. With the methods and chemicals described in detail, a wide variety of investigations can be performed with regard to normal physiological as well as pathological processes in the postnatal developing enteric nervous system. The fast and efficient preparation of the intestine as the first step is particularly important. We have developed and described a LIENS chamber to obtain optimal tissue quality during intestinal freezing. Cryosections of the flat, snap-frozen intestine can then be prepared for histological examination of the various wall layers of the intestine, e.g. by immunohistochemistry. In addition, these cryosections are suitable for the preparation of defined regions, as shown here using the ganglia of the mesenteric plexus. This specific tissue was obtained by laser microdissection, making the presented methodology also suitable for subsequent analyses that require high quality (specificity) of the samples. Furthermore, we present here a fully modernized protocol for the cultivation of myenteric neurons from the rat intestine, which is suitable for a variety of in vitro studies.


Assuntos
Sistema Nervoso Entérico , Plexo Mientérico , Ratos , Camundongos , Humanos , Animais , Imuno-Histoquímica , Neurônios , Intestino Delgado
16.
Neuroendocrinology ; 113(3): 289-303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35952633

RESUMO

INTRODUCTION: Calcium-sensitive receptor (CaSR) is expressed in the enteric nervous system of gastrointestinal tract. However, its role in the regulation of gastrointestinal motility has not yet been fully elucidated. We aimed to investigate the effect of the CaSR agonist - R568 on gastric motility and its potential mechanism. METHODS: In vivo, R568 was given by gavage to explore gastric emptying with or without capsaicin which specifically blocks the function of vagal afferents; neurotransmitters synthetized in the myenteric plexus of the gastric corpus and antrum were analysed by ELISA and immunofluorescence staining; gastric muscle strips contraction recording and intracellular single unit firing recording were used to study the effect of R568 on muscle strips and myenteric interstitial cells of Cajal (ICCs) ex vitro. RESULTS: Gastric emptying was inhibited by R568 in Kunming male mice, and capsaicin weakened this effect. The expression of c-fos-positive neurons increased in the nucleus tractus solitarius when R568 was treated. R568 decreased the expression of cholinergic neurons and reduced the synthesis of acetylcholine. Conversely, R568 increased the expression of nitrogenic neurons and enhanced the synthesis of nitric oxide in the myenteric plexus. Ex vitro results showed that R568 inhibited the contraction of the gastric antral muscle strip and suppressed the spontaneous firing activity of pacemaker ICCs. CONCLUSION: Activation of the gastrointestinal CaSR inhibited gastric motility in vivo and ex vitro. Transmitting nutrient signals to the brain through the vagal afferent nerve, modulating the cholinergic and nitrergic system in the enteric nervous system, and inhibiting activity of pacemaker ICCs in the myenteric plexus are involved in the mechanism of CaSR in gastric motility suppression.


Assuntos
Cálcio , Sistema Nervoso Entérico , Camundongos , Animais , Masculino , Cálcio/metabolismo , Cálcio/farmacologia , Capsaicina/farmacologia , Capsaicina/metabolismo , Sistema Nervoso Entérico/fisiologia , Plexo Mientérico/metabolismo , Motilidade Gastrointestinal/fisiologia
17.
J Pathol ; 257(2): 198-217, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35107828

RESUMO

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Megacariócitos , Plexo Mientérico , Neurônios
18.
Dig Dis Sci ; 68(7): 2963-2974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36920665

RESUMO

BACKGROUND: Diabetes Mellitus causes a systemic oxidative stress due in part to the hyperglycemia and the reactive oxygen species generated. Up to 75% of diabetic patients present with an autonomic neuropathy affecting the Enteric Nervous System. Deficits in the human population are chronic dysmotilities with either increased (i.e., constipation) or decreased (i.e., diarrhea) total gastrointestinal transit times. These are recapitulated in the streptozocin-induced diabetic rat, which is a model of Type I Diabetes Mellitus. AIMS: Examine the effects that a precursor of nicotinamide adenosine dinucleotide (NAD), nicotinamide riboside (NR), had on the development of dysmotility in induced diabetic rats and if fecal microbiota transplant (FMT) could produce the same results. MATERIALS AND METHODS: Utilizing a 6-week treatment paradigm, NR was administered intraperitoneally every 48 h. Total gastrointestinal transit time was assessed weekly utilizing the carmine red method. Three weeks following hyperglycemic induction, FMT was performed between NR-treated animals and untreated animals. SIGNIFICANT RESULTS: There is improvement in overall gastrointestinal transit time with the use of NR. 16S microbiome sequencing demonstrated decreased alpha and beta diversity in induced diabetic rats without change in animals receiving FMT. Improvements in myenteric plexus ganglia density in small and large intestines in diabetic animals treated with NR were seen. CONCLUSIONS: NR treatment led to functional improvement in total gastrointestinal transit time in induced diabetic animals. This was associated with neuroprotection in the myenteric plexuses of both small and large intestines of induced diabetic rats. This represents an important first step in showing NR's benefit as a treatment for diabetic enteric neuropathy. Streptozocin-induced diabetic rats have improved transit times and increased myenteric plexus ganglia density when treated with intraperitoneal nicotinamide riboside.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Pseudo-Obstrução Intestinal , Humanos , Ratos , Animais , Plexo Mientérico , Estreptozocina/efeitos adversos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/induzido quimicamente , Neuroproteção , Niacinamida/efeitos adversos
19.
Morphologie ; 107(356): 38-46, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35764504

RESUMO

OBJECTIVES: The Enteric Nervous System (ENS) present in the wall of the gut is currently being explored because of its influence on the gut and beyond. In this context, the morphology of developing ENS has not been completely understood in humans due to lack of adequate literature. The aim of the present study was to observe the morphology of the enteric neurons in the human fetal colon and compare the findings in ascending colon a midgut derivative and descending colon a hindgut derivative at various weeks of gestation (WG). MATERIAL AND METHODS: Tissue samples from 15 aborted fetuses (11 WG to 2 months postnatal) were processed for Cresyl violet, H & E staining, and NADPH Diaphorase histochemistry. The morphometric analysis was done by calculating the neuronal number density and neuronal fractional area. The Student t-test; Mann-Whitney test and Wilcoxon signed-rank test were used to analyze the data. RESULTS: The muscularis externa with two distinct layers was visible as early as 13 WG and the muscularis mucosae was first observed at 18 WG. The size of the myenteric neurons appeared to be larger with increasing weeks of gestation suggesting a process of neuronal maturation. The neuronal number density and neuronal fractional area seemed to be reduced with advancing fetal age. There was no marked difference between the ascending and sigmoid colon. At 23 and 26 WG, a mature pattern of nitrergic innervation was observed. CONCLUSION: This study is done on human fetal tissue samples unlike previous studies on animal samples to comprehend the morphology of developing ENS. It will aid in understanding the effect of ENS on various neurological disorders.


Assuntos
Sistema Nervoso Entérico , Plexo Mientérico , Animais , Humanos , Colo/inervação , Neurônios , Feto
20.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G341-G347, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044672

RESUMO

Live calcium imaging is often used as a proxy for electrophysiological measurements and has been a valuable tool that allows simultaneous analysis of neuronal activity in multiple cells at the population level. In the enteric nervous system, there are two main electrophysiological classes of neurons, after-hyperpolarizing (AH)- and synaptic (S)-neurons, which have been shown to have different calcium handling mechanisms. However, they are rarely considered separately in calcium imaging experiments. A handful of studies have shown that in guinea pig, a calcium transient will accompany a single action potential in AH-neurons, but multiple action potentials are required to generate a calcium transient in S-neurons. How this translates to different modes of cellular depolarization and whether this is consistent across species is unknown. In this study, we used simultaneous whole-cell patch-clamp electrophysiology together with calcium imaging to investigate how enteric neurons respond to different modes of depolarization. Using both traditional (4 Hz) and also high-speed (1,000 Hz) imaging techniques, we found that single action potentials elicit calcium transients in both AH-neurons and S-neurons. Subthreshold membrane depolarizations were also able to elicit calcium transients, although calcium responses were generally amplified if an action potential was present. Furthermore, we identified that responses to nicotinic acetylcholine receptor stimulation can be used to distinguish between AH- and S-neurons in calcium imaging.NEW & NOTEWORTHY Live calcium imaging is an important tool for investigating enteric nervous system (ENS) function. Previous studies have shown that multiple action potentials are needed to generate a calcium response in S-neurons, which has important implications for the interpretation of calcium imaging data. Here, we show that in mouse myenteric neurons, calcium transients are elicited by single action potentials in both AH- and S-neurons. In addition, nicotinic acetylcholine receptor stimulation can be used to distinguish between these two classes.


Assuntos
Plexo Mientérico , Receptores Nicotínicos , Potenciais de Ação/fisiologia , Animais , Cálcio , Eletrofisiologia , Cobaias , Humanos , Camundongos , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa