Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Ecotoxicol Environ Saf ; 281: 116633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941659

RESUMO

Soil Cd pollution is a significant environmental issue faced by contemporary society. Kentucky bluegrass is considered a potential phytoremediation species, as some varieties have excellent cadmium (Cd) tolerance. However, the mechanisms of Cd accumulation and transportation in Kentucky bluegrass are still not fully understood. The Cd-tolerant Kentucky bluegrass cultivar 'Midnight' (M) exhibits lower Cd translocation efficiency and a higher leaf Cd concentration compared to the Cd-sensitive cultivar 'Rugby II' (R). We hypothesized that Cd translocation from roots to shoots in cultivar M is hindered by the endodermal barriers and cell wall polysaccharides; hence, we conducted Cd distribution, cytological observation, cell wall component, and transcriptomic analyses under Cd stress conditions using the M and R cultivars. Cd stress resulted in the thickening of the endodermis and increased synthesis of cell wall polysaccharides in both the M and R cultivars. Endodermis development restricted the radical transport of Cd from the root cortex to the stele, while the accumulation of cell wall polysaccharides promoted the binding of Cd to the cell wall. These changes further inhibited the long-distance translocation of Cd from the roots to the aerial parts. Furthermore, the M cultivar exhibited limited long-distance Cd translocation efficiency compared to the R cultivar, which was attributed to the enhanced development of endodermal barriers and increased Cd binding by cell wall polysaccharides. This study provides valuable insights for screening high Cd transport efficiency in Kentucky bluegrass based on anatomical structure and genetic modification.


Assuntos
Cádmio , Parede Celular , Raízes de Plantas , Polissacarídeos , Poluentes do Solo , Parede Celular/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Polissacarídeos/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Poa/efeitos dos fármacos , Poa/metabolismo , Transporte Biológico
2.
Plant Cell Physiol ; 61(12): 2018-2030, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32931553

RESUMO

Choline, as a precursor of glycine betaine (GB) and phospholipids, is known to play roles in plant tolerance to salt stress, but the downstream metabolic pathways regulated by choline conferring salt tolerance are still unclear for non-GB-accumulating species. The objectives were to examine how choline affects salt tolerance in a non-GB-accumulating grass species and to determine major metabolic pathways of choline regulating salt tolerance involving GB or lipid metabolism. Kentucky bluegrass (Poa pratensis) plants were subjected to salt stress (100 mM NaCl) with or without foliar application of choline chloride (1 mM) in a growth chamber. Choline or GB alone and the combined application increased leaf photochemical efficiency, relative water content and osmotic adjustment and reduced leaf electrolyte leakage. Choline application had no effects on the endogenous GB content and GB synthesis genes did not show responses to choline under nonstress and salt stress conditions. GB was not detected in Kentucky bluegrass leaves. Lipidomic analysis revealed an increase in the content of monogalactosyl diacylglycerol, phosphatidylcholine and phosphatidylethanolamine and a decrease in the phosphatidic acid content by choline application in plants exposed to salt stress. Choline-mediated lipid reprogramming could function as a dominant salt tolerance mechanism in non-GB-accumulating grass species.


Assuntos
Colina/metabolismo , Metabolismo dos Lipídeos , Poa/metabolismo , Plantas Tolerantes a Sal/metabolismo , Betaína/metabolismo , Colina/farmacologia , Colina/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Folhas de Planta/metabolismo , Poa/efeitos dos fármacos , Poa/fisiologia , Estresse Salino , Tolerância ao Sal , Plantas Tolerantes a Sal/fisiologia
3.
Chem Biodivers ; 18(12): e2100701, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34622554

RESUMO

The chemical profile and allelopathic action of the volatiles produced by Artemisia selengensis were studied. Artemisia selengensis was found to release volatile chemicals to the environment to influence other plants' growth, which suppressed the root length of Amaranthus retroflexus and Poa annua by 50.46 % and 87.83 % under 80 g/1.5 L treatment, respectively. GC/MS analysis led to the identification of 41 compounds (by hydrodistillation, HD) and 48 compounds (by headspace solid-phase microextraction, HS-SPME), with eucalyptol (15.45 % by HD and 28.09 % by HS-SPME) being detected as the most abundant constituent. The essential oil (EO) of A. selengensis completely inhibited the seed germination of A. retroflexus and P. annua at 1 mg/mL and 0.5 mg/mL, respectively. However, eucalyptol displayed much weaker activity compared with the EO, indicating that other less abundant constituents might contribute significantly to the EO's activity. Our study is the first report on the phytotoxicity of A. selengensis EO, suggesting that A. selengensis might release allelopathic volatile agents into the environment that negatively affect other plants' development so as to facilitate its own dominance; the potential value of utilizing A. selengensis EO as an environmentally friendly herbicide is also discussed.


Assuntos
Amaranthus/efeitos dos fármacos , Artemisia/química , Desenvolvimento Vegetal/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Poa/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Amaranthus/crescimento & desenvolvimento , Poa/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação
4.
Chem Biodivers ; 16(4): e1800595, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30614178

RESUMO

The chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplex cana Ledeb. (Amaranthaceae) essential oil were investigated. Nineteen compounds were identified via GC/MS, representing 82.3 % of the total oil, and the most abundant constituents were dibutyl phthalate (21.79 %), eucalyptol (20.14 %) and myrtenyl acetate (15.56 %). The results showed that volatile organic compounds (VOCs) released by A. cana significantly inhibited seedling growth of Amaranthus retroflexus L. and Poa annua L., and 80 g of fresh stems and leaves of A. cana in a 1.5 L airtight container almost completely suppressed the seed germination of both plants. Meanwhile, 5 µg/mL essential oil completely inhibited the seed germination of A. retroflexus, Medicago sativa L., P. annua and Echinochloa crusgalli L. Pesticidal testing revealed that the essential oil had strong behavioral avoidance and lethal effects on Aphis pomi DeGeer. Five microliters of essential oil/Petri dish treatment resulted in an 84.5 % mortality rate after 12 h, and the mortality rate reached nearly 100 % after 48 h. This report is the first one on the chemical composition as well as the biological activity of the essential oil of A. cana, and our results indicate that the oil is valuable in terms of being further exploited as a bioherbicide/insecticide.


Assuntos
Amaranthaceae/química , Amaranthus/efeitos dos fármacos , Afídeos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Praguicidas/farmacologia , Compostos Fitoquímicos/farmacologia , Poa/efeitos dos fármacos , Alelopatia , Amaranthus/crescimento & desenvolvimento , Animais , Relação Dose-Resposta a Droga , Estrutura Molecular , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Praguicidas/química , Praguicidas/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Folhas de Planta/química , Poa/crescimento & desenvolvimento , Relação Estrutura-Atividade
5.
Chem Biodivers ; 15(11): e1800348, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30168654

RESUMO

To evaluate the potential value of Seriphidium terrae-albae (Krasch.) Poljakov essential oil as bioherbicide, its chemical composition as well as phytotoxic activity was investigated. Seventeen compounds were identified via GC/MS, representing 98.1 % of the total oil, and the most abundant constituents were α-thujone (43.18 %), ß-thujone (16.92 %), eucalyptol (17.55 %), and camphor (13.88 %). Phytotoxic assay revealed that the essential oil as well as its major constituents exhibited inhibitory activity on root and shoot growth of receiver plants in a dose-dependent manner. When the concentration reached 20 µg/mL, root length of Amaranthus retroflexus was reduced to 31.3 %, 70.6 %, 36.9 %, and 66.6 % of the control, respectively, when treated with α-thujone, eucalyptol, camphor, and the mixture of these compounds; meanwhile, root length of Poa annua was 3.0 %, 24.2 %, 0 %, and 4.4 % of the control when the same chemicals were applied. On the other hand, the essential oil showed a much stronger activity. At 1.5 µL/mL, root and shoot length of A. retroflexus and P. annua were reduced to 0.65 %, 0.5 %, and 1.53 %, 1.51 % of the control, respectively, and seed germination of A. retroflexus and P. annua was completely inhibited when the oil concentration reached 3 µg/mL and 5 µg/mL, respectively. This is the first report on the chemical composition of the essential oil of S. terrae-albae, and our results indicated that it has the potential to be further exploited as a bioherbicide.


Assuntos
Amaranthus/efeitos dos fármacos , Herbicidas/farmacologia , Monoterpenos/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Poa/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Monoterpenos Bicíclicos , Relação Dose-Resposta a Droga , Herbicidas/química , Herbicidas/isolamento & purificação , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Poa/crescimento & desenvolvimento , Relação Estrutura-Atividade
6.
BMC Genomics ; 18(1): 953, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29212446

RESUMO

BACKGROUND: Asia minor bluegrass (Polypogon fugax, P. fugax), a weed that is both distributed across China and associated with winter crops, has evolved resistance to acetyl-CoA carboxylase (ACCase) herbicides, but the resistance mechanism remains unclear. The goal of this study was to analyze the transcriptome between resistant and sensitive populations of P. fugax at the flowering stage. RESULTS: Populations resistant and susceptible to clodinafop-propargyl showed distinct transcriptome profiles. A total of 206,041 unigenes were identified; 165,901 unique sequences were annotated using BLASTX alignment databases. Among them, 5904 unigenes were classified into 58 transcription factor families. Nine families were related to the regulation of plant growth and development and to stress responses. Twelve unigenes were differentially expressed between the clodinafop-propargyl-sensitive and clodinafop-propargyl-resistant populations at the early flowering stage; among those unigenes, three belonged to the ABI3VP1, BHLH, and GRAS families, while the remaining nine belonged to the MADS family. Compared with the clodinafop-propargyl-sensitive plants, the resistant plants exhibited different expression pattern of these 12 unigenes. CONCLUSION: This study identified differentially expressed unigenes related to ACCase-resistant P. fugax and thus provides a genomic resource for understanding the molecular basis of early flowering.


Assuntos
Perfilação da Expressão Gênica/métodos , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Magnoliopsida/genética , Proteínas de Plantas/genética , Poa/genética , Acetil-CoA Carboxilase/genética , Regulação da Expressão Gênica de Plantas , Poa/efeitos dos fármacos
7.
Ecotoxicol Environ Saf ; 145: 200-206, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28734223

RESUMO

Organic acids play an important role in cadmium availability, uptake, translocation, and detoxification. A sand culture experiment was designed to investigate the effects of citric acid on Cd uptake, translocation, and accumulation in tall fescue and Kentucky bluegrass. The results showed that two grass species presented different Cd chemical forms, organic acid components and amount in roots. The dormant Cd accumulated in roots of tall fescue was the pectate- and protein- integrated form, which contributed by 84.85%. However, in Kentucky bluegrass, the pectate- and protein- integrated Cd was only contributed by 35.78%, and the higher proportion of Cd form was the water soluble Cd-organic acid complexes. In tall fescue, citric acid dramatically enhanced 2.8 fold of Cd uptake, 3 fold of root Cd accumulation, and 2.3 fold of shoot Cd accumulation. In Kentucky bluegrass, citric acid promoted Cd accumulation in roots, but significantly decreased Cd accumulation in shoots. These results suggested that the enhancements of citric acid on Cd uptake, translocation, and accumulation in tall fescue was associated with its promotion of organic acids and the water soluble Cd-organic acid complexes in roots.


Assuntos
Cádmio/metabolismo , Ácido Cítrico/farmacologia , Festuca/metabolismo , Poa/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cádmio/toxicidade , Festuca/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Poa/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solubilidade , Água/química
8.
Planta ; 243(1): 149-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26353912

RESUMO

MAIN CONCLUSION: This is a first report of an Ala-205-Phe substitution in acetolactate synthase conferring resistance to imidazolinone, sulfonylurea, triazolopyrimidines, sulfonylamino-carbonyl-triazolinones, and pyrimidinyl (thio) benzoate herbicides. Resistance to acetolactate synthase (ALS) and photosystem II inhibiting herbicides was confirmed in a population of allotetraploid annual bluegrass (Poa annua L.; POAAN-R3) selected from golf course turf in Tennessee. Genetic sequencing revealed that seven of eight POAAN-R3 plants had a point mutation in the psbA gene resulting in a known Ser-264-Gly substitution on the D1 protein. Whole plant testing confirmed that this substitution conferred resistance to simazine in POAAN-R3. Two homeologous forms of the ALS gene (ALSa and ALSb) were detected and expressed in all POAAN-R3 plants sequenced. The seven plants possessing the Ser-264-Gly mutation conferring resistance to simazine also had a homozygous Ala-205-Phe substitution on ALSb, caused by two nucleic acid substitutions in one codon. In vitro ALS activity assays with recombinant protein and whole plant testing confirmed that this Ala-205-Phe substitution conferred resistance to imidazolinone, sulfonylurea, triazolopyrimidines, sulfonylamino-carbonyl- triazolinones, and pyrimidinyl (thio) benzoate herbicides. This is the first report of Ala-205-Phe mutation conferring wide spectrum resistance to ALS inhibiting herbicides.


Assuntos
Acetolactato Sintase/metabolismo , Resistência a Herbicidas , Herbicidas/farmacologia , Poa/genética , Acetolactato Sintase/genética , Alanina/metabolismo , Substituição de Aminoácidos , Sequência de Bases , Homozigoto , Dados de Sequência Molecular , Mutação , Fenilalanina/metabolismo , Poa/efeitos dos fármacos , Poa/enzimologia , Proteínas Recombinantes , Análise de Sequência de DNA
9.
Plant Physiol ; 166(3): 1177-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25077797

RESUMO

Cellulose biosynthesis is a common feature of land plants. Therefore, cellulose biosynthesis inhibitors (CBIs) have a potentially broad-acting herbicidal mode of action and are also useful tools in decoding fundamental aspects of cellulose biosynthesis. Here, we characterize the herbicide indaziflam as a CBI and provide insight into its inhibitory mechanism. Indaziflam-treated seedlings exhibited the CBI-like symptomologies of radial swelling and ectopic lignification. Furthermore, indaziflam inhibited the production of cellulose within <1 h of treatment and in a dose-dependent manner. Unlike the CBI isoxaben, indaziflam had strong CBI activity in both a monocotylonous plant (Poa annua) and a dicotyledonous plant (Arabidopsis [Arabidopsis thaliana]). Arabidopsis mutants resistant to known CBIs isoxaben or quinoxyphen were not cross resistant to indaziflam, suggesting a different molecular target for indaziflam. To explore this further, we monitored the distribution and mobility of fluorescently labeled CELLULOSE SYNTHASE A (CESA) proteins in living cells of Arabidopsis during indaziflam exposure. Indaziflam caused a reduction in the velocity of YELLOW FLUORESCENT PROTEIN:CESA6 particles at the plasma membrane focal plane compared with controls. Microtubule morphology and motility were not altered after indaziflam treatment. In the hypocotyl expansion zone, indaziflam caused an atypical increase in the density of plasma membrane-localized CESA particles. Interestingly, this was accompanied by a cellulose synthase interacting1-independent reduction in the normal coincidence rate between microtubules and CESA particles. As a CBI, for which there is little evidence of evolved weed resistance, indaziflam represents an important addition to the action mechanisms available for weed management.


Assuntos
Arabidopsis/efeitos dos fármacos , Celulose/biossíntese , Glucosiltransferases/antagonistas & inibidores , Herbicidas/farmacologia , Indenos/farmacologia , Poa/efeitos dos fármacos , Triazinas/farmacologia , Arabidopsis/citologia , Arabidopsis/enzimologia , Benzamidas/farmacologia , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Glucosiltransferases/metabolismo , Herbicidas/química , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/enzimologia , Indenos/química , Microtúbulos/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo , Poa/citologia , Poa/enzimologia , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Triazinas/química
10.
Ecotoxicol Environ Saf ; 117: 96-106, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25841065

RESUMO

To improve the salinity tolerance of turfgrass and investigate the effect of spermidine (Spd) on antioxidant metabolism and gene expression under salinity stress condition, exogenous Spd was applied before two kentucky bluegrass (Poa pratensis L.) cultivars ('Kenblue' and 'Midnight') were exposed to 200 mM sodium chloride (NaCl) stress for 28 d. Salinity stress decreased the turfgrass quality, increased the content of malonyldialdehyde (MDA), superoxide anion (O2(·-)) and hydrogen peroxide (H2O2), and enhanced activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD) and ascorbate peroxidase (APX) and isozymes intensity in both cultivars. In addition, the expression level of Cu/ZnSOD was down-regulated in 'Kenblue' but up-regulated in 'Midnight' after salt treatment. Salinity stress also enhanced the expression of APX but inhibited the expression of CAT and POD in both cultivars. Exogenous Spd treatment alleviated the salinity-induced oxidative stress through decreasing MDA, H2O2 and O2(·-) contents in both cultivars. Besides, exogenous Spd further enhanced the activities of SOD, CAT, POD and APX accompanied with the increased intensity of specific isozymes of SOD, CAT and APX in both cultivars and POD in 'Kenblue'. Moreover, Spd further up-regulated expression levels of Cu/ZnSOD and APX, but down-regulated those of CAT and POD in both cultivars. These results indicated that exogenous Spd might improve turfgrass quality and promote the salinity tolerance in the two cultivars of kentucky bluegrass through reducing oxidative damages and increasing enzyme activity both at protein and transcriptional levels.


Assuntos
Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poa/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Espermidina/farmacologia , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Isoenzimas/metabolismo , Malondialdeído/metabolismo , Poa/enzimologia , Salinidade , Cloreto de Sódio/farmacologia , Especificidade da Espécie , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
11.
Pestic Biochem Physiol ; 108: 16-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24485310

RESUMO

Asia minor bluegrass (Polypogon fugax) is a common annual grass weed of winter crops distributed across China. We conducted a study on the resistance level and the mechanism of resistance to ACCase-inhibiting herbicides in a P. fugax population from China. Whole-plant dose-response experiments in greenhouse showed that the resistant P. fugax population was 1991, 364, 269, 157, and 8-fold resistant to clodinafop-propargyl, fluazifop-p-butyl, haloxyfop-R-methyl, quizalofop-p-ethyl and fenoxaprop-p-ethyl relative to the reference susceptible population, which was susceptible to all the five AOPP herbicides. Much lower R/S values of 3.5, 2.4 and 3.5, respectively, were detected for clethodim, sethoxydim and pinoxaden. Molecular analysis of resistance confirmed that the Ile2041 to Asn mutation in the resistant population conferred resistance to AOPP herbicides, but not to CHD and DEN herbicides. This is the first report of a target site mutation that corresponded to resistance to AOPP herbicides in P. fugax. Proper resistance management practices are necessary to prevent ACCase-inhibiting herbicides from becoming ineffective over wide areas.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas , Herbicidas/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Poa/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Sequência de Aminoácidos , China , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poa/enzimologia , Poa/genética
12.
ScientificWorldJournal ; 2014: 368694, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054178

RESUMO

Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensis L.). Drought stress and four levels (0, 200, 400, and 800 mg L(-1)) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L(-1) significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses.


Assuntos
Secas , Poa/fisiologia , Silício/farmacologia , Adaptação Fisiológica , Fotossíntese , Poa/efeitos dos fármacos , Poa/metabolismo , Estresse Fisiológico , Água/metabolismo
13.
J Environ Manage ; 142: 60-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24836716

RESUMO

Accidental fuel spills on world heritage subantarctic Macquarie Island have caused considerable contamination. Due to the island's high latitude position, its climate, and its fragile ecosystem, traditional methods of remediation are unsuitable for on-site clean up. We investigated the tolerance of a subantarctic native tussock grass, Poa foliosa (Hook. f.), to Special Antarctic Blend (SAB) diesel fuel and its potential to reduce SAB fuel contamination via phytoremediation. Toxicity of SAB fuel to P. foliosa was assessed in an 8 month laboratory growth trial under growth conditions which simulated the island's environment. Single seedlings were planted into 1 L pots of soil spiked with SAB fuel at concentrations of 1000, 5 000, 10,000, 2000 and 40,000 mg/kg (plus control). Plants were harvested at 0, 2, 4 and 8 months and a range of plant productivity endpoints were measured (biomass production, plant morphology and photosynthetic efficiency). Poa foliosa was highly tolerant across all SAB fuel concentrations tested with respect to biomass, although higher concentrations of 20,000 and 40,000 mg SAB/kg soil caused slight reductions in leaf length, width and area. To assess the phytoremediation potential of P. foliosa (to 10 000 mg/kg), soil from the planted pots was compared with that from paired unplanted pots at each SAB fuel concentration. The effect of the plant on SAB fuel concentrations and the associated microbial communities found within the soil (total heterotrophs and hydrocarbon degraders) were compared between planted and unplanted treatments at the 0, 2, 4 and 8 month harvest periods. The presence of plants resulted in significantly less SAB fuel in soils at 2 months and a return to background concentration by 8 months. Microbes did not appear to be the sole driving force behind the observed hydrocarbon loss. This study provides evidence that phytoremediation using P. foliosa is a valuable remediation option for use at Macquarie Island, and may be applicable to the management of fuel spills in other cold climate regions.


Assuntos
Gasolina , Hidrocarbonetos/metabolismo , Poa/metabolismo , Poluentes do Solo/metabolismo , Regiões Antárticas , Biodegradação Ambiental , Biomassa , Hidrocarbonetos/toxicidade , Poa/efeitos dos fármacos , Poa/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/toxicidade
14.
J Hazard Mater ; 474: 134727, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38824780

RESUMO

Kentucky bluegrass (Poa pratensis L., KB) demonstrates superior performance in both cadmium (Cd) accumulation and tolerance; however, the regulatory mechanisms and detoxification pathways in this species remain unclear. Therefore, phenotype, root ultrastructure, cell wall components, proteomics, transcriptomics, and metabolomics were analyzed under the hydroponic system to investigate the Cd tolerance and accumulation mechanisms in the Cd-tolerant KB variety 'Midnight (M)' and the Cd-sensitive variety 'Rugby II (R)' under Cd stress. The M variety exhibited higher levels of hydroxyl and carboxyl groups as revealed by Fourier transform infrared spectroscopy spectral analysis. Additionally, a reduced abundance of polysaccharide degradation proteins was observed in the M variety. The higher abundance of glutathione S-transferase and content of L-cysteine-glutathione disulfide and oxidized glutathione in the M variety may contribute to better performance of the M variety under Cd stress. Additionally, the R variety had an enhanced content of carboxylic acids and derivatives, increasing the Cd translocation capacity. Collectively, the down-regulation of cell wall polysaccharide degradation genes coupled with the up-regulation of glutathione metabolism genes enhances the tolerance to Cd stress in KB. Additionally, lignification of the endodermis and the increase in carboxylic acids and derivatives play crucial roles in the redistribution of Cd in KB.


Assuntos
Cádmio , Metabolômica , Raízes de Plantas , Poa , Proteômica , Cádmio/toxicidade , Poa/metabolismo , Poa/genética , Poa/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Perfilação da Expressão Gênica
15.
Pestic Biochem Physiol ; 107(3): 334-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24267695

RESUMO

Herbicide resistance or tolerance in weeds mediated by cytochrome P450 monooxygenase is a considerable problem. However, cytochrome P450 mediated resistance or tolerance in weeds was less studied. Thus, in this work, the role of the cytochrome P450 monooxygenase in the different responses of Poa annua and Alopecurus aequalis to fenoxaprop-P-ethyl was studied. We found that the effect of fenoxaprop-P-ethyl could be synergized by piperonyl butoxide (PBO) in P. annua, but not by malathion. After being treated with fenoxaprop-P-ethyl (containing mefenpyr-diethyl), the contents of cytochrome P450 and cytochrome b5 in P. annua increased significantly compared to plants treated with mefenpyr-diethyl only or untreated plants. However, the increase was less in A. aequalis, which was susceptible to fenoxaprop-P-ethyl. The activities of ρ-nitroanisole O-demethylase (PNOD), ethoxyresorufin O-deethylase (EROD), ethoxycoumarin oxidase (ECOD) and NADPH-dependent cytochrome P450 reductase mediated by cytochrome P450 monooxygenase increased in P. annua after treatment with fenoxaprop-P-ethyl, especially the activities of ECOD and cytochrome P450 reductase. Besides this, cytochrome P450 monooxygenase activity toward fenoxaprop-P-ethyl in P. annua increased significantly compared to untreated or treated with mefenpyr-diethyl plants and treated or untreated A. aequalis. Cytochrome P450 monooxygenase may play an important role in the different responses to fenoxaprop-P-ethyl in P. annua and A. aequalis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Poa/enzimologia , Poaceae/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Oxazóis/farmacologia , Butóxido de Piperonila/metabolismo , Poa/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Propionatos/farmacologia
16.
Am J Bot ; 98(1): 38-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21613083

RESUMO

PREMISE OF STUDY: There is increasing evidence that many plant invaders interfere with native plants through allelopathy. This allelopathic interference may be a key mechanism of plant invasiveness. One of the most aggressive current plant invaders is the clonal knotweed hybrid Fallopia × bohemica, which often forms monocultures in its introduced range. Preliminary results from laboratory studies suggest that allelopathy could play a role in this invasion. METHODS: We grew experimental communities of European plants together with F. × bohemica. We used activated carbon to test for allelopathic effects, and we combined this with single or repeated removal of Fallopia shoots to examine how mechanical control can reduce the species' impact. KEY RESULTS: Addition of activated carbon to the soil significantly reduced the suppressive effect of undamaged F. × bohemica on native forbs. The magnitude of this effect was similar to that of regular cutting of Fallopia shoots. Regular cutting of Fallopia shoots efficiently inhibited the growth of rhizomes, together with their apparent allelopathic effects. CONCLUSIONS: The ecological impact of F. × bohemica on native forbs is not just a result of competition for shared resources, but it also appears to have a large allelopathic component. Still, regular mechnical control successfully eliminated allelopathic effects. Therefore, allelopathy will create an additional challenge to knotweed management and ecological restoration only if the allelochemicals are found to persist in the soil. More research is needed to examine the mechanisms underlying Fallopia allelopathy, and the long-term effects of soil residues.


Assuntos
Espécies Introduzidas , Magnoliopsida/crescimento & desenvolvimento , Plantas Daninhas/crescimento & desenvolvimento , Polygonum/crescimento & desenvolvimento , Confrei/efeitos dos fármacos , Confrei/crescimento & desenvolvimento , Geranium/efeitos dos fármacos , Geranium/crescimento & desenvolvimento , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Feromônios/metabolismo , Brotos de Planta/química , Plantas Daninhas/metabolismo , Poa/efeitos dos fármacos , Poa/crescimento & desenvolvimento , Polygonum/metabolismo , Rizoma/efeitos dos fármacos , Rizoma/crescimento & desenvolvimento , Silene/efeitos dos fármacos , Silene/crescimento & desenvolvimento , Suíça
17.
Allergy ; 65(10): 1313-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20374228

RESUMO

BACKGROUND: Pollution is considered as one main cause for the increase of allergic diseases. Air pollutants may cause and worsen airway diseases and are probably able to make pollen allergens more aggressive. Previous studies looked at traffic-related air pollution, but no data about the effects of polluted soils on pollen allergens are available. We aimed to assess the effects of plant exposure to cadmium-contaminated soil on allergenicity of the annual blue grass, Poa annua L, pollen. METHODS: Poa plants were grown in soil contaminated or not contaminated (control) with cadmium. At flowering, mature pollen was analyzed by microscopy, to calculate the percentage of pollen grains releasing cytoplasmic granules, and by proteomic techniques to analyze allergen proteins. Allergens were identified by sera from grass pollen-allergic patients and by mass spectrometry. RESULTS: Pollen from Cd-exposed plants released a higher amount of allergenic proteins than control plants. Moreover, Cd-exposed pollen released allergens-containing cytoplasmic grains much more promptly than control pollen. Group 1 and 5 allergens, the major grass pollen allergens, were detected both in control and Cd-exposed extracts. These were the only allergens reacting with patient's sera in control pollen, whereas additional proteins strengthening the signal in the gel region reacting with patient's sera were present in Cd-exposed pollen. These included a pectinesterase, a lipase, a nuclease, and a secretory peroxydase. Moreover, a PR3 class I chitinase-like protein was also immunodetected in exposed plants. CONCLUSION: Pollen content of plants grown in Cd-contaminated soils is more easily released in the environment and also shows an increased propensity to bind specific IgE.


Assuntos
Cádmio/farmacologia , Exposição Ambiental/efeitos adversos , Hipersensibilidade/etiologia , Poa/imunologia , Pólen/imunologia , Poluentes do Solo/farmacologia , Adulto , Alérgenos/análise , Alérgenos/sangue , Alérgenos/efeitos dos fármacos , Cádmio/metabolismo , Humanos , Imunoglobulina E/imunologia , Espectrometria de Massas , Poa/efeitos dos fármacos , Poa/metabolismo , Pólen/efeitos adversos , Poluentes do Solo/metabolismo
18.
J Nat Prod ; 73(11): 1853-7, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-20979386

RESUMO

A new oxyvinylglycine has been identified as a naturally occurring herbicide that irreversibly arrests germination of the seeds of grassy weeds, such as annual bluegrass (Poa annua), without significantly affecting the growth of established grass seedlings and mature plants or germination of the seeds of broadleaf plant species (dicots). Previously, Pseudomonas fluorescens WH6 and over 20 other rhizosphere bacteria were isolated and selected for their ability to arrest germination of P. annua seeds. The germination-arrest factor (GAF, 1) responsible for this developmentally specific herbicidal action has now been isolated from the culture filtrate of P. fluorescens WH6. Purification of this highly polar, low molecular weight natural product allowed its structure to be assigned as 4-formylaminooxy-l-vinylglycine on the basis of NMR spectroscopic and mass spectrometric data, in combination with D/L-amino acid oxidase reactions to establish the absolute configuration. Assay results for P. annua inhibition by related compounds known to regulate plant growth are presented, and a cellular target for 1 is proposed. Furthermore, using bioassays, TLC, and capillary NMR spectroscopy, it has been shown that GAF (1) is secreted by all other herbicidally active rhizosphere bacteria in our collection.


Assuntos
Germinação/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/isolamento & purificação , Herbicidas/farmacologia , Poa/efeitos dos fármacos , Pseudomonas/química , Glicina/química , Glicina/isolamento & purificação , Glicina/farmacologia , Herbicidas/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Plantas Daninhas/efeitos dos fármacos , Sementes/química
19.
Ecotoxicol Environ Saf ; 73(4): 620-5, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20036424

RESUMO

In order to test the possibility for recycling use of aged refuse as sward soil, the study determined the responses of Lolium perenne L. (perennial ryegrass), Festuca arundinacea (tall fescue), and Poa annua (annual bluegrass) to its leaching. The growth of three seedlings was significantly inhibited after treatment, especially for longer treatment duration and higher concentration leaching; however, with the better growth and chlorophyll content for shorter time and lower concentration, tall fescue was more tolerant to the stress. Afterwards, several physiological responses of tall fescue were determined. For shorter treatment duration, antioxidant enzyme activities remained unchanged, and no obvious oxidative damage was observed. Prolonging exposure time, lipid peroxidation and protein oxidation occurred after treatment of higher concentration leaching, accompanying by changes of antioxidant status. It implicates that it is possible for using aged refuse as sward soil, and the critical point focused on selecting tolerant grass and controlling exposure condition.


Assuntos
Conservação dos Recursos Naturais , Festuca/efeitos dos fármacos , Lolium/efeitos dos fármacos , Poa/efeitos dos fármacos , Eliminação de Resíduos , Poluentes do Solo/farmacologia , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Peroxidação de Lipídeos , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Estresse Oxidativo , Poa/crescimento & desenvolvimento , Poa/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Poluentes do Solo/metabolismo
20.
J Environ Qual ; 39(1): 375-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20048325

RESUMO

To prevent the 7 to 11 million metric tons of waste foundry sand (WFS) produced annually in the USA from entering landfills, current research is focused on the reuse of WFSs as soil amendments. The effects of different WFS-containing amendments on turfgrass growth and nutrient content were tested by planting perennial ryegrass (Lolium perenne L.) and tall fescue (Schedonorus phoenix (Scop.) Holub) in different blends containing WFS. Blends of WFS were created with compost or acid-washed sand (AWS) at varying percent by volume with WFS or by amendment with gypsum (9.6 g gypsum kg(-1) WFS). Measurements of soil strength, shoot and root dry weight, plant surface coverage, and micronutrients (Al, Fe, Mn, Cu, Zn, B, Na) and macronutrients (N, P, K, S, Ca, Mg) were performed for each blend and compared with pure WFS and with a commercial potting media control. Results showed that strength was not a factor for any of the parameters studied, but the K/Na base saturation ratio of WFS:compost mixes was highly correlated with total shoot dry weight for perennial ryegrass (r = 0.995) and tall fescue (r = 0.94). This was further substantiated because total shoot dry weight was also correlated with shoot K/Na concentration of perennial ryegrass (r = 0.99) and tall fescue (r = 0.95). A compost blend containing 40% WFS was determined to be the optimal amendment for the reuse of WFS because it incorporated the greatest possible amount of WFS without major reduction in turfgrass growth.


Assuntos
Sulfato de Cálcio/química , Resíduos Industriais/efeitos adversos , Poa/efeitos dos fármacos , Eliminação de Resíduos/métodos , Dióxido de Silício/química , Solo/análise , Monitoramento Ambiental , Metalurgia , Raízes de Plantas , Brotos de Planta , Poa/crescimento & desenvolvimento , Poluentes do Solo/efeitos adversos , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa