Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.698
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
J Immunol ; 212(11): 1807-1818, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639584

RESUMO

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.


Assuntos
Injúria Renal Aguda , Antibacterianos , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Camundongos , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Polimixina B/farmacologia , Camundongos Endogâmicos C57BL , Colistina/efeitos adversos , Colistina/farmacologia , Peptídeos/farmacologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo
2.
Am J Physiol Renal Physiol ; 327(1): F137-F145, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38779756

RESUMO

Polymyxins are a last-resort treatment option for multidrug-resistant gram-negative bacterial infections, but they are associated with nephrotoxicity. Gelofusine was previously shown to reduce polymyxin-associated kidney injury in an animal model. However, the mechanism(s) of renal protection has not been fully elucidated. Here, we report the use of a cell culture model to provide insights into the mechanisms of renal protection. Murine epithelial proximal tubular cells were exposed to polymyxin B. Cell viability, lactate dehydrogenase (LDH) release, polymyxin B uptake, mitochondrial superoxide production, nuclear morphology, and apoptosis activation were evaluated with or without concomitant gelofusine. A megalin knockout cell line was used as an uptake inhibition control. Methionine was included in selected experiments as an antioxidant control. A polymyxin B concentration-dependent reduction in cell viability was observed. Increased viability was observed in megalin knockout cells following comparable polymyxin B exposures. Compared with polymyxin B exposure alone, concomitant gelofusine significantly increased cell viability as well as reduced LDH release, polymyxin B uptake, mitochondrial superoxide, and apoptosis. Gelofusine and methionine were more effective at reducing renal cell injury in combination than either agent alone. In conclusion, the mechanisms of renal protection by gelofusine involve decreasing cellular drug uptake, reducing subsequent oxidative stress and apoptosis activation. These findings would be valuable for translational research into clinical strategies to attenuate drug-associated acute kidney injury.NEW & NOTEWORTHY Gelofusine is a gelatinous saline solution with the potential to attenuate polymyxin-associated nephrotoxicity. We demonstrated that the mechanisms of gelofusine renal protection involve reducing polymyxin B uptake by proximal tubule cells, limiting subsequent oxidative stress and apoptosis activation. In addition, gelofusine was more effective at reducing cellular injury than a known antioxidant control, methionine, and a megalin knockout cell line, indicating that gelofusine likely has additional pharmacological properties besides only megalin inhibition.


Assuntos
Antibacterianos , Apoptose , Polimixina B , Animais , Polimixina B/farmacologia , Camundongos , Apoptose/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Linhagem Celular , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , L-Lactato Desidrogenase/metabolismo
3.
Anal Chem ; 96(23): 9317-9324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38818541

RESUMO

Inaccurate or cumbersome clinical pathogen diagnosis between Gram-positive bacteria (G+) and Gram-negative (G-) bacteria lead to delayed clinical therapeutic interventions. Microelectrode-based electrochemical sensors exhibit the significant advantages of rapid response and minimal sample consumption, but the loading capacity and discrimination precision are weak. Herein, we develop reversible fusion-fission MXene-based fiber microelectrodes for G+/G- bacteria analysis. During the fissuring process, the spatial utilization, loading capacity, sensitivity, and selectivity of microelectrodes were maximized, and polymyxin B and vancomycin were assembled for G+/G- identification. The surface-tension-driven reversible fusion facilitated its reusability. A deep learning model was further applied for the electrochemical impedance spectroscopy (EIS) identification in diverse ratio concentrations of G+ and G- of (1:100-100:1) with higher accuracy (>93%) and gave predictable detection results for unknown samples. Meanwhile, the as-proposed sensing platform reached higher sensitivity toward E. coli (24.3 CFU/mL) and S. aureus (37.2 CFU/mL) in 20 min. The as-proposed platform provides valuable insights for bacterium discrimination and quantification.


Assuntos
Microeletrodos , Bactérias Gram-Positivas/isolamento & purificação , Bactérias Gram-Negativas/isolamento & purificação , Escherichia coli/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Técnicas Eletroquímicas/instrumentação , Vancomicina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/análise , Polimixina B/química , Polimixina B/farmacologia , Espectroscopia Dielétrica
4.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739436

RESUMO

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Assuntos
Antibacterianos , Endopeptidases , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidases/farmacologia , Endopeptidases/química , Endopeptidases/metabolismo , Polimixina B/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiologia , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/virologia , Camundongos , Salmonella typhimurium/virologia , Salmonella typhimurium/efeitos dos fármacos , Bacteriófagos/fisiologia , Bacteriófagos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Proteínas Virais/química
5.
Small ; 20(6): e2305052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798622

RESUMO

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Assuntos
Nanopartículas , Polimixina B , Polimixina B/farmacologia , Lipossomos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae , Polissacarídeos Bacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
6.
J Antimicrob Chemother ; 79(2): 391-402, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158772

RESUMO

OBJECTIVES: Combination therapy is often used for carbapenem-resistant Gram-negative bacteria. We previously demonstrated synergy of polymyxin B and minocycline against carbapenem-resistant Klebsiella pneumoniae in static time-kill experiments and developed an in silico pharmacokinetic/pharmacodynamic (PK/PD) model. The present study assessed the synergistic potential of this antibiotic combination in dynamic experiments. METHODS: Two clinical K. pneumoniae isolates producing KPC-3 and OXA-48 (polymyxin B MICs 0.5 and 8 mg/L, and minocycline MICs 1 and 8 mg/L, respectively) were included. Activities of the single drugs and the combination were assessed in 72 h dynamic time-kill experiments mimicking patient pharmacokinetics. Population analysis was performed every 12 h using plates containing antibiotics at 4× and 8× MIC. WGS was applied to reveal resistance genes and mutations. RESULTS: The combination showed synergistic and bactericidal effects against the KPC-3-producing strain from 12 h onwards. Subpopulations with decreased susceptibility to polymyxin B were frequently detected after single-drug exposures but not with the combination. Against the OXA-48-producing strain, synergy was observed between 4 and 8 h and was followed by regrowth. Subpopulations with decreased susceptibility to polymyxin B and minocycline were detected throughout experiments. For both strains, the observed antibacterial activities showed overall agreement with the in silico predictions. CONCLUSIONS: Polymyxin B and minocycline in combination showed synergistic effects, mainly against the KPC-3-producing K. pneumoniae. The agreement between the experimental results and in silico predictions supports the use of PK/PD models based on static time-kill data to predict the activity of antibiotic combinations at dynamic drug concentrations.


Assuntos
Minociclina , Polimixina B , Humanos , Polimixina B/farmacocinética , Minociclina/farmacologia , Klebsiella pneumoniae , beta-Lactamases/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
7.
PLoS Pathog ; 18(9): e1010851, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36174087

RESUMO

During infection, Bacillus anthracis bacilli encounter potent antimicrobial peptides (AMPs) such as defensins. We examined the role that B. anthracis capsule plays in protecting bacilli from defensins and other cationic AMPs by comparing their effects on a fully virulent encapsulated wild type (WT) strain and an isogenic capsule-deficient capA mutant strain. We identified several human defensins and non-human AMPs that were capable of killing B. anthracis. The human alpha defensins 1-6 (HNP-1-4, HD-5-6), the human beta defensins 1-4 (HBD-1-4), and the non-human AMPs, protegrin, gramicidin D, polymyxin B, nisin, and melittin were all capable of killing both encapsulated WT and non-encapsulated capA mutant B. anthracis. However, non-encapsulated capA mutant bacilli were significantly more susceptible than encapsulated WT bacilli to killing by nearly all of the AMPs tested. We demonstrated that purified capsule bound HBD-2, HBD-3, and HNP-1 in an electrophoretic mobility shift assay. Furthermore, we determined that the capsule layer enveloping WT bacilli bound and trapped HBD-3, substantially reducing the amount reaching the cell wall. To assess whether released capsule might also play a protective role, we pre-incubated HBD-2, HBD-3, or HNP-1 with purified capsule before their addition to non-encapsulated capA mutant bacilli. We found that free capsule completely rescued the capA mutant bacilli from killing by HBD-2 and -3 while killing by HNP-1 was reduced to the level observed with WT bacilli. Together, these results suggest an immune evasion mechanism by which the capsule, both that enveloping the bacilli and released fragments, contributes to virulence by binding to and inhibiting the antimicrobial activity of cationic AMPs.


Assuntos
Bacillus anthracis , Nisina , alfa-Defensinas , beta-Defensinas , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Defensinas/genética , Defensinas/farmacologia , Gramicidina , Humanos , Meliteno , Polimixina B , alfa-Defensinas/farmacologia
8.
Metab Eng ; 83: 123-136, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582143

RESUMO

Polymyxin is a lipopeptide antibiotic that is effective against multidrug-resistant Gram-negative bacteria. However, its clinical development is limited due to low titer and the presence of homologs. To address this, the polymyxin gene cluster was integrated into Bacillus subtilis, and sfp from Paenibacillus polymyxa was expressed heterologously, enabling recombinant B. subtilis to synthesize polymyxin B. Regulating NRPS domain inhibited formation of polymyxin B2 and B3. The production of polymyxin B increased to 329.7 mg/L by replacing the native promoters of pmxA, pmxB, and pmxE with PfusA, C2up, and PfusA, respectively. Further enhancement in this production, up to 616.1 mg/L, was achieved by improving the synthesis ability of 6-methyloctanoic acid compared to the original strain expressing polymyxin heterologously. Additionally, incorporating an anikasin-derived domain into the hybrid nonribosomal peptide synthase of polymyxin increased the B1 ratio in polymyxin B from 57.5% to 62.2%. Through optimization of peptone supply in the fermentation medium and fermentation in a 5.0-L bioreactor, the final polymyxin B titer reached 962.1 mg/L, with a yield of 19.24 mg/g maltodextrin and a productivity of 10.02 mg/(L·h). This study demonstrates a successful approach for enhancing polymyxin B production and increasing the B1 ratio through combinatorial metabolic engineering.


Assuntos
Bacillus subtilis , Engenharia Metabólica , Polimixina B , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Família Multigênica , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Antibacterianos/biossíntese , Antibacterianos/metabolismo
9.
Arch Microbiol ; 206(4): 191, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520490

RESUMO

Escherichia coli are generally resistant to the lantibiotic's action (nisin and warnerin), but we have shown increased sensitivity of E. coli to lantibiotics in the presence of subinhibitory concentrations of polymyxins. Synergistic lantibiotic-polymyxin combinations were found for polymyxins B and M. The killing of cells at the planktonic and biofilm levels was observed for two collection and four clinical multidrug-resistant E. coli strains after treatment with lantibiotic-polymyxin B combinations. Thus, 24-h treatment of E. coli mature biofilms with warnerin-polymyxin B or nisin-polymyxin B leads to five to tenfold decrease in the number of viable cells, depending on the strain. AFM revealed that the warnerin and polymyxin B combination caused the loss of the structural integrity of biofilm and the destruction of cells within the biofilm. It has been shown that pretreatment of cells with polymyxin B leads to an increase of Ca2+ and Mg2+ ions in the culture medium, as detected by atomic absorption spectroscopy. The subsequent exposure to warnerin caused cell death with the loss of K+ ions and cell destruction with DNA and protein release. Thus, polymyxins display synergy with lantibiotics against planktonic and biofilm cells of E. coli, and can be used to overcome the resistance of Gram-negative bacteria to lantibiotics.


Assuntos
Bacteriocinas , Nisina , Polimixinas/farmacologia , Polimixina B/farmacologia , Antibacterianos/farmacologia , Nisina/farmacologia , Escherichia coli/genética , Plâncton , Bacteriocinas/farmacologia , Biofilmes , Íons , Testes de Sensibilidade Microbiana
10.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772980

RESUMO

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Biofilmes , Sinergismo Farmacológico , Endopeptidases , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Endopeptidases/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Nisina/farmacologia , Nisina/química , Polimixina B/farmacologia , Bacteriófagos , Colistina/farmacologia , Bacteriófago T4/efeitos dos fármacos , Bacteriófago T4/fisiologia , Bacteriófago T7/efeitos dos fármacos , Bacteriófago T7/genética
11.
Langmuir ; 40(13): 6847-6861, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501650

RESUMO

The use of an exogenous pulmonary surfactant (EPS) to deliver other relevant drugs to the lungs is a promising strategy for combined therapy. We evaluated the interaction of polymyxin B (PxB) with a clinically used EPS, the poractant alfa Curosurf (PSUR). The effect of PxB on the protein-free model system (MS) composed of four phospholipids (diC16:0PC/16:0-18:1PC/16:0-18:2PC/16:0-18:1PG) was examined in parallel to distinguish the specificity of the composition of PSUR. We used several experimental techniques (differential scanning calorimetry, small- and wide-angle X-ray scattering, small-angle neutron scattering, fluorescence spectroscopy, and electrophoretic light scattering) to characterize the binding of PxB to both EPS. Electrostatic interactions PxB-EPS are dominant. The results obtained support the concept of cationic PxB molecules lying on the surface of the PSUR bilayer, strengthening the multilamellar structure of PSUR as derived from SAXS and SANS. A protein-free MS mimics a natural EPS well but was found to be less resistant to penetration of PxB into the lipid bilayer. PxB does not affect the gel-to-fluid phase transition temperature, Tm, of PSUR, while Tm increased by ∼+ 2 °C in MS. The decrease of the thickness of the lipid bilayer (dL) of PSUR upon PxB binding is negligible. The hydrophobic tail of the PxB molecule does not penetrate the bilayer as derived from SANS data analysis and changes in lateral pressure monitored by excimer fluorescence at two depths of the hydrophobic region of the bilayer. Changes in dL of protein-free MS show a biphasic dependence on the adsorbed amount of PxB with a minimum close to the point of electroneutrality of the mixture. Our results do not discourage the concept of a combined treatment with PxB-enriched Curosurf. However, the amount of PxB must be carefully assessed (less than 5 wt % relative to the mass of the surfactant) to avoid inversion of the surface charge of the membrane.


Assuntos
Polimixina B , Surfactantes Pulmonares , Polimixina B/farmacologia , Polimixina B/química , Espalhamento a Baixo Ângulo , Bicamadas Lipídicas , Difração de Raios X , Tensoativos , Termodinâmica , Pulmão/metabolismo
12.
Biomacromolecules ; 25(2): 1133-1143, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226558

RESUMO

Apart from bacterial growth and endotoxin generation, the excessive production of reactive radicals linked with sepsis also has a substantial impact on triggering an inflammatory response and further treatment failure. Hence, the rational design and fabrication of robust and multifunctional nanoparticles (NPs) present a viable means of overcoming this dilemma. In this study, we used antibiotic polymyxin B (PMB) and antioxidant natural polyphenolic protocatechualdehyde (PCA) to construct robust and multifunctional NPs for sepsis treatment, leveraging the rich chemistries of PCA. The PMB release profile from the NPs demonstrated pH-responsive behavior, which allowed the NPs to exhibit effective bacterial killing and radical scavenging properties. Data from in vitro cells stimulated with H2O2 and lipopolysaccharide (LPS) showed the multifunctionalities of NPs, including intracellular reactive oxygen species (ROS) scavenging, elimination of the bacterial toxin LPS, inhibiting macrophage M1 polarization, and anti-inflammation capabilities. Additionally, in vivo studies further demonstrated that NPs could increase the effectiveness of sepsis treatment by lowering the bacterial survival ratio, the expression of the oxidative marker malondialdehyde (MDA), and the expression of inflammatory cytokine TNF-α. Overall, this work provides ideas of using those robust and multifunctional therapeutic NPs toward enhanced sepsis therapy efficiency.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Sepse , Humanos , Lipopolissacarídeos/toxicidade , Peróxido de Hidrogênio , Polimixina B/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Espécies Reativas de Oxigênio/metabolismo
13.
Int Microbiol ; 27(1): 277-290, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37316617

RESUMO

BACKGROUND: Polymyxin B is considered a last-line therapeutic option against multidrug-resistant gram-negative bacteria, especially in COVID-19 coinfections or other serious infections. However, the risk of antimicrobial resistance and its spread to the environment should be brought to the forefront. METHODS: Pandoraea pnomenusa M202 was isolated under selection with 8 mg/L polymyxin B from hospital sewage and then was sequenced by the PacBio RS II and Illumina HiSeq 4000 platforms. Mating experiments were performed to evaluate the transfer of the major facilitator superfamily (MFS) transporter in genomic islands (GIs) to Escherichia coli 25DN. The recombinant E. coli strain Mrc-3 harboring MFS transporter encoding gene FKQ53_RS21695 was also constructed. The influence of efflux pump inhibitors (EPIs) on MICs was determined. The mechanism of polymyxin B excretion mediated by FKQ53_RS21695 was investigated by Discovery Studio 2.0 based on homology modeling. RESULTS: The MIC of polymyxin B for the multidrug-resistant bacterial strain P. pnomenusa M202, isolated from hospital sewage, was 96 mg/L. GI-M202a, harboring an MFS transporter-encoding gene and conjugative transfer protein-encoding genes of the type IV secretion system, was identified in P. pnomenusa M202. The mating experiment between M202 and E. coli 25DN reflected the transferability of polymyxin B resistance via GI-M202a. EPI and heterogeneous expression assays also suggested that the MFS transporter gene FKQ53_RS21695 in GI-M202a was responsible for polymyxin B resistance. Molecular docking revealed that the polymyxin B fatty acyl group inserts into the hydrophobic region of the transmembrane core with Pi-alkyl and unfavorable bump interactions, and then polymyxin B rotates around Tyr43 to externally display the peptide group during the efflux process, accompanied by an inward-to-outward conformational change in the MFS transporter. Additionally, verapamil and CCCP exhibited significant inhibition via competition for binding sites. CONCLUSIONS: These findings demonstrated that GI-M202a along with the MFS transporter FKQ53_RS21695 in P. pnomenusa M202 could mediate the transmission of polymyxin B resistance.


Assuntos
Burkholderiaceae , Escherichia coli , Polimixina B , Polimixina B/farmacologia , Escherichia coli/genética , Ilhas Genômicas , Simulação de Acoplamento Molecular , Esgotos , Proteínas de Membrana Transportadoras/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
14.
Eur J Clin Microbiol Infect Dis ; 43(5): 875-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443737

RESUMO

PURPOSE: Post-neurosurgical intracranial infection caused by carbapenem-resistant gram-negative bacteria (CRGNB) is a life-threatening complication. This study aimed to assess the current practices and clinical outcomes of intravenous (IV) combined with intraventricular (IVT)/intrathecal (ITH) polymyxin B in treating CRGNB intracranial infection. METHODS: A retrospective study was conducted on patients with post-neurosurgical intracranial infection due to CRGNB from January 2013 to December 2020. Clinical characteristics and treatment outcomes were collected and described. Kaplan-Meier survival and multivariate logistic regression analyses were performed. RESULTS: The study included 114 patients, of which 72 received systemic antimicrobial therapy combined with IVT/ITH polymyxin B, and 42 received IV administration alone. Most infections were caused by carbapenem-resistant Acinetobacter baumannii (CRAB, 63.2%), followed by carbapenem-resistant Klebsiella pneumoniae (CRKP, 31.6%). Compared with the IV group, the IVT/ITH group had a higher cerebrospinal fluid (CSF) sterilization rate in 7 days (p < 0.001) and lower 30-day mortality (p = 0.032). In the IVT/ITH group, patients with CRKP infection had a higher initial fever (p = 0.014), higher incidence of bloodstream infection (p = 0.040), lower CSF sterilization in 7 days (p < 0.001), and higher 30-day mortality (p = 0.005) than those with CRAB infection. Multivariate logistic regression analysis revealed that the duration of IVT/ITH polymyxin B (p = 0.021) was independently associated with 30-day mortality. CONCLUSIONS: Intravenous combined with IVT/ITH polymyxin B increased CSF microbiological eradication and improved clinical outcomes. CRKP intracranial infections may lead to more difficult treatment and thus warrant attention and further optimized treatment.


Assuntos
Antibacterianos , Carbapenêmicos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Polimixina B , Humanos , Polimixina B/uso terapêutico , Polimixina B/administração & dosagem , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Bactérias Gram-Negativas/efeitos dos fármacos , Idoso , Adulto , Injeções Espinhais , Procedimentos Neurocirúrgicos/efeitos adversos , Resultado do Tratamento , Injeções Intraventriculares
15.
Eur J Clin Microbiol Infect Dis ; 43(7): 1407-1417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733425

RESUMO

PURPOSE: To evaluate the performance of the rapid colorimetric polymyxin B microelution (RCPEm) in determining polymyxin B resistance directly from Enterobacterales-positive blood cultures. METHODS: A set volume of positive blood culture bottles (diluted 1:10) was inoculated into a glucose-broth-phenol red solution (NP solution), where a polymyxin B disk was previously eluted (final concentration of 3 µg/mL). Test was read each 1 h for up to 4 h. Color change from red/orange to yellow indicated resistant isolates. Results were compared to the reference method, broth microdilution (BMD), performed from colonies grown on solid media from the same blood culture bottle. RESULTS: One hundred fifty-two Enterobacterales-positive blood cultures were evaluated, 22.4% (34/152) of them resistant to polymyxin B (including 6.6% with borderline MICs). When performing directly from positive blood cultures (RCPEm-BC), specificity and sensitivity were 99.1% and 94.1%, respectively. Of note, 79.4% (27/34) of truly resistant isolates required 3 h of incubation, compared to the 18 ± 2 h incubation that microtiter plates of BMD demand before reading can be performed. CONCLUSIONS: RCPEm directly from blood cultures has great potential to be part of the routine of clinical microbiology laboratories to establish polymyxin B susceptibility, impacting outcome of patients with bloodstream infections caused by carbapenem-resistant Enterobacterales.


Assuntos
Antibacterianos , Hemocultura , Colorimetria , Testes de Sensibilidade Microbiana , Polimixina B , Polimixina B/farmacologia , Humanos , Colorimetria/métodos , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Hemocultura/métodos , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Sensibilidade e Especificidade , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/diagnóstico , Farmacorresistência Bacteriana , Bacteriemia/microbiologia , Bacteriemia/diagnóstico
16.
Photochem Photobiol Sci ; 23(3): 395-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38300464

RESUMO

Despite advances achieved in the health field over the last decade, infections caused by resistant bacterial strains are an increasingly important societal issue that needs to be addressed. New approaches have already been developed to overcome this problem. Photodynamic antimicrobial chemotherapy (PACT) could provide a promising alternative method to eradicate microbes. This approach has already inspired the development of innovative surfaces. Interesting results were achieved against Gram-positive bacteria, but it also appeared that Gram-negative strains, especially Pseudomonas aeruginosa, were less sensitive to PACT. However, materials coated with cationic porphyrins have already proven their wide-spectrum activity, but these materials were not suitable for industrial-scale production. The main aim of this work was the design of a large-scale evolutionary material based on PACT and antibiotic prophylaxis. Transparent regenerated cellulose has been simply impregnated with a usual cationic porphyrin (N-methylpyridyl) and an antimicrobial peptide (polymyxin B). In addition to its photophysical properties, this film exhibited a wide-spectrum bactericidal activity over 4 days despite daily application of fresh bacterial inoculums. The efficiency of PACT and polymyxin B combination could help to reduce the emergence of bacterial multi-resistant strains and we believe that this kind of material would provide an excellent opportunity to prevent bacterial contamination of bandages or packaging.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Polimixina B/farmacologia , Fotoquimioterapia/métodos , Bactérias , Bactérias Gram-Positivas , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
17.
Microbiol Immunol ; 68(7): 224-236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797913

RESUMO

Pathogenic bacteria form biofilms on epithelial cells, and most bacterial biofilms show increased production of membrane vesicles (MVs), also known as outer membrane vesicles in Gram-negative bacteria. Numerous studies have investigated the MVs released under planktonic conditions; however, the impact of MVs released from biofilms on immune responses remains unclear. This study aimed to investigate the characteristics and immunomodulatory activity of MVs obtained from both planktonic and biofilm cultures of Pseudomonas aeruginosa PAO1. The innate immune responses of macrophages to planktonic-derived MVs (p-MVs) and biofilm-derived MVs (b-MVs) were investigated by measuring the mRNA expression of proinflammatory cytokines. Our results showed that b-MVs induced a higher expression of inflammatory cytokines, including Il1b, Il6, and Il12p40, than p-MVs. The mRNA expression levels of Toll-like receptor 4 (Tlr4) differed between the two types of MVs, but not Tlr2. Polymyxin B significantly neutralized b-MV-mediated cytokine induction, suggesting that lipopolysaccharide of native b-MVs is the origin of the immune response. In addition, heat-treated or homogenized b-MVs induced the mRNA expression of cytokines, including Tnfa, Il1b, Il6, and Il12p40. Heat treatment of MVs led to increased expression of Tlr2 but not Tlr4, suggesting that TLR2 ligands play a role in detecting the pathogen-associated molecular patterns in lysed MVs. Taken together, our data indicate that potent immunomodulatory MVs are produced in P. aeruginosa biofilms and that this behavior could be a strategy for the bacteria to infect host cells. Furthermore, our findings would contribute to developing novel vaccines using MVs.


Assuntos
Biofilmes , Citocinas , Macrófagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/fisiologia , Biofilmes/crescimento & desenvolvimento , Citocinas/metabolismo , Camundongos , Animais , Macrófagos/imunologia , Macrófagos/microbiologia , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Imunidade Inata , Polimixina B/farmacologia , Células RAW 264.7 , Fatores Imunológicos/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Lipopolissacarídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Bioorg Med Chem ; 97: 117541, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096681

RESUMO

Infections caused by antibiotic-resistant bacteria are a major threat to health, increasing mortality rates and straining health systems worldwide. Adjuvants targeted to beta-lactamase function are able to resensitize bacteria to beta-lactam antibiotics, but there is comparatively little research into the use of adjuvants against other resistance phenotypes. In this study, we performed a high-throughput screen of 74 natural products to identify adjuvants that synergized with antibiotics to eradicate resistant Gram-negative bacteria. From this, we identified six adjuvant hits which restored growth inhibition when combined with the relevant antibiotic, and pursued a lead candidate, perforone, which possessed selective adjuvant activity in combination with polymyxin B against polymyxin-resistant Escherichia coli cells. These results suggest that pairing adjuvants with antibiotics could be a useful general intervention against resistant bacteria, helping to mitigate the effects of antimicrobial resistance.


Assuntos
Antibacterianos , Polimixina B , Polimixina B/farmacologia , Antibacterianos/farmacologia , Polimixinas/farmacologia , Bactérias , Bactérias Gram-Negativas , Escherichia coli , Adjuvantes Farmacêuticos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
19.
Eur J Clin Pharmacol ; 80(6): 813-826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38483544

RESUMO

BACKGROUND AND OBJECTIVES: Despite being clinically utilized for the treatment of infections, the limited therapeutic range of polymyxin B (PMB), along with considerable interpatient variability in its pharmacokinetics and frequent occurrence of acute kidney injury, has significantly hindered its widespread utilization. Recent research on the population pharmacokinetics of PMB has provided valuable insights. This study aims to review relevant literature to establish a theoretical foundation for individualized clinical management. METHODS: Follow PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, Pop-PK studies of PMB were searched in PubMed and EMBASE database systems from the inception of the database until March 2023. RESULT: To date, a total of 22 population-based studies have been conducted, encompassing 756 subjects across six different countries. The recruited population in these studies consisted of critically infected individuals with multidrug-resistant bacteria, patients with varying renal functions, those with cystic fibrosis, kidney or lung transplant recipients, patients undergoing extracorporeal membrane oxygenation (ECMO) or continuous renal replacement therapy (CRRT), as well as individuals with obesity or pediatric populations. Among these studies, seven employed a one-compartmental model, with the range of typical clearance (CL) and volume (Vc) being 1.18-2.5L /h and 12.09-47.2 L, respectively. Fifteen studies employed a two-compartmental model, with the ranges of the clearance (CL) and volume of the central compartment (Vc), the volume of the peripheral compartment (Vp), and the intercompartment clearance (Q) were 1.27-8.65 L/h, 5.47-38.6 L, 4.52-174.69 L, and 1.34-24.3 L/h, respectively. Primary covariates identified in these studies included creatinine clearance and body weight, while other covariates considered were CRRT, albumin, age, and SOFA scores. Internal evaluation was conducted in 19 studies, with only one study being externally validated using an independent external dataset. CONCLUSION: We conclude that small sample sizes, lack of multicentre collaboration, and patient homogeneity are the primary reasons for the discrepancies in the results of the current studies. In addition, most of the studies limited in the internal evaluation, which confined the implementation of model-informed precision dosing strategies.


Assuntos
Antibacterianos , Polimixina B , Humanos , Polimixina B/farmacocinética , Polimixina B/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Modelos Biológicos , Oxigenação por Membrana Extracorpórea , Estado Terminal
20.
Ann Clin Microbiol Antimicrob ; 23(1): 60, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965559

RESUMO

BACKGROUND: Gram-negative bacteria (GNB) are becoming increasingly resistant to a wide variety of antibiotics. There are currently limited treatments for GNB, and the combination of antibiotics with complementary mechanisms has been reported to be a feasible strategy for treating GNB infection. The inability to cross the GNB outer membrane (OM) is an important reason that a broad spectrum of Gram-positive only class of antibiotics (GPOAs) is lacking. Polymyxins may help GPOAs to permeate by disrupting OM of GNB. OBJECTIVE: To identify what kind of GPOAs can be aided to broaden their anti-GNB spectrum by polymyxins, we systematically investigated the synergy of eight GPOAs in combination with colistin (COL) and polymyxin B (PMB) against GNB in vitro. METHODS: The synergistic effect of COL or PMB and GPOAs combinations against GNB reference strains and clinical isolates were determined by checkerboard tests. The killing kinetics of the combinations were assessed using time-kill assays. RESULTS: In the checkerboard tests, polymyxins-GPOAs combinations exert synergistic effects characterized by species and strain specificity. The synergistic interactions on P. aeruginosa strains are significantly lower than those on strains of A. baumannii, K. pneumoniae and E. coli. Among all the combinations, COL has shown the best synergistic effect in combination with dalbavancin (DAL) or oritavancin (ORI) versus almost all of the strains tested, with FICIs from 0.16 to 0.50 and 0.13 to < 0.28, respectively. In addition, the time-kill assays demonstrated that COL/DAL and COL/ORI had sustained bactericidal activity. CONCLUSIONS: Our results indicated that polymyxins could help GPOAs to permeate the OM of specific GNB, thus showed synergistic effects and bactericidal effects in the in vitro assays. In vivo combination studies should be further conducted to validate the results of this study.


Assuntos
Antibacterianos , Colistina , Sinergismo Farmacológico , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Polimixina B , Polimixinas , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Polimixinas/farmacologia , Polimixina B/farmacologia , Humanos , Colistina/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa