Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.955
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Cell ; 187(18): 5102-5117.e16, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39043179

RESUMO

Neurons produce and release neuropeptides to communicate with one another. Despite their importance in brain function, circuit-based mechanisms of peptidergic transmission are poorly understood, primarily due to the lack of tools for monitoring and manipulating neuropeptide release in vivo. Here, we report the development of two genetically encoded tools for investigating peptidergic transmission in behaving mice: a genetically encoded large dense core vesicle (LDCV) sensor that detects presynaptic neuropeptide release and a genetically encoded silencer that specifically degrades neuropeptides inside LDCVs. Using these tools, we show that neuropeptides, not glutamate, encode the unconditioned stimulus in the parabrachial-to-amygdalar threat pathway during Pavlovian threat learning. We also show that neuropeptides play important roles in encoding positive valence and suppressing conditioned threat response in the amygdala-to-parabrachial endogenous opioidergic circuit. These results show that our sensor and silencer for presynaptic peptidergic transmission are reliable tools to investigate neuropeptidergic systems in awake, behaving animals.


Assuntos
Medo , Neuropeptídeos , Animais , Neuropeptídeos/metabolismo , Camundongos , Medo/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Transmissão Sináptica , Masculino , Camundongos Endogâmicos C57BL , Ponte/metabolismo , Ponte/fisiologia , Condicionamento Clássico , Terminações Pré-Sinápticas/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo
2.
Cell ; 167(1): 73-86.e12, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27662084

RESUMO

Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Contração Muscular/fisiologia , Neurônios/fisiologia , Ponte/fisiologia , Bexiga Urinária/fisiologia , Micção/fisiologia , Animais , Feminino , Ácido Glutâmico/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Ponte/citologia , Olfato , Medula Espinal/citologia , Medula Espinal/fisiologia , Bexiga Urinária/inervação
3.
Nature ; 625(7996): 743-749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233522

RESUMO

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Assuntos
Aprendizagem da Esquiva , Núcleo Central da Amígdala , Vias Neurais , Neurônios , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Vias Neurais/fisiologia , Cálcio/análise , Eletrofisiologia , Ponte/citologia , Ponte/fisiologia
4.
Nature ; 632(8027): 1092-1100, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048016

RESUMO

Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACC→Pn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACC→Pn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACC→Pn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACC→Pn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.


Assuntos
Vias Neurais , Percepção da Dor , Dor , Efeito Placebo , Animais , Feminino , Masculino , Camundongos , Analgesia , Antecipação Psicológica/fisiologia , Sinalização do Cálcio , Cerebelo/citologia , Cerebelo/fisiologia , Cognição/fisiologia , Eletrofisiologia , Perfilação da Expressão Gênica , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Dor/fisiopatologia , Dor/prevenção & controle , Dor/psicologia , Manejo da Dor/métodos , Manejo da Dor/psicologia , Manejo da Dor/tendências , Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Limiar da Dor/psicologia , Ponte/citologia , Ponte/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Células de Purkinje/fisiologia , Receptores Opioides/metabolismo , Transmissão Sináptica
5.
Nature ; 589(7840): 96-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208951

RESUMO

The hippocampus has a major role in encoding and consolidating long-term memories, and undergoes plastic changes during sleep1. These changes require precise homeostatic control by subcortical neuromodulatory structures2. The underlying mechanisms of this phenomenon, however, remain unknown. Here, using multi-structure recordings in macaque monkeys, we show that the brainstem transiently modulates hippocampal network events through phasic pontine waves known as pontogeniculooccipital waves (PGO waves). Two physiologically distinct types of PGO wave appear to occur sequentially, selectively influencing high-frequency ripples and low-frequency theta events, respectively. The two types of PGO wave are associated with opposite hippocampal spike-field coupling, prompting periods of high neural synchrony of neural populations during periods of ripple and theta instances. The coupling between PGO waves and ripples, classically associated with distinct sleep stages, supports the notion that a global coordination mechanism of hippocampal sleep dynamics by cholinergic pontine transients may promote systems and synaptic memory consolidation as well as synaptic homeostasis.


Assuntos
Corpos Geniculados/fisiologia , Hipocampo/fisiologia , Lobo Occipital/fisiologia , Ponte/fisiologia , Sono/fisiologia , Ritmo Teta/fisiologia , Animais , Pareamento Cromossômico/fisiologia , Feminino , Homeostase , Macaca/fisiologia , Consolidação da Memória/fisiologia , Plasticidade Neuronal , Fases do Sono/fisiologia
6.
Proc Natl Acad Sci U S A ; 121(9): e2320276121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38381789

RESUMO

Neuropeptide S (NPS) was postulated to be a wake-promoting neuropeptide with unknown mechanism, and a mutation in its receptor (NPSR1) causes the short sleep duration trait in humans. We investigated the role of different NPS+ nuclei in sleep/wake regulation. Loss-of-function and chemogenetic studies revealed that NPS+ neurons in the parabrachial nucleus (PB) are wake-promoting, whereas peri-locus coeruleus (peri-LC) NPS+ neurons are not important for sleep/wake modulation. Further, we found that a NPS+ nucleus in the central gray of the pons (CGPn) strongly promotes sleep. Fiber photometry recordings showed that NPS+ neurons are wake-active in the CGPn and wake/REM-sleep active in the PB and peri-LC. Blocking NPS-NPSR1 signaling or knockdown of Nps supported the function of the NPS-NPSR1 pathway in sleep/wake regulation. Together, these results reveal that NPS and NPS+ neurons play dichotomous roles in sleep/wake regulation at both the molecular and circuit levels.


Assuntos
Neuropeptídeos , Sono , Humanos , Sono/fisiologia , Ponte/fisiologia , Locus Cerúleo/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Development ; 149(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262177

RESUMO

Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei.


Assuntos
Mapeamento Encefálico , Ponte , Animais , Axônios , Córtex Cerebral , Camundongos , Vias Neurais/fisiologia , Neurônios , Ponte/fisiologia
8.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443190

RESUMO

The release of urine, or micturition, serves a fundamental physiological function and, in many species, is critical for social communication. In mice, the pattern of urine release is modulated by external and internal factors and transmitted to the spinal cord via the pontine micturition center (PMC). Here, we exploited a behavioral paradigm in which mice, depending on strain, social experience, and sensory context, either vigorously cover an arena with small urine spots or deposit urine in a few isolated large spots. We refer to these micturition modes as, respectively, high and low territory-covering micturition (TCM) and find that the presence of a urine stimulus robustly induces high TCM in socially isolated mice. Comparison of the brain networks activated by social isolation and by urine stimuli to those upstream of the PMC identified the lateral hypothalamic area as a potential modulator of micturition modes. Indeed, chemogenetic manipulations of the lateral hypothalamus can switch micturition behavior between high and low TCM, overriding the influence of social experience and sensory context. Our results suggest that both inhibitory and excitatory signals arising from a network upstream of the PMC are integrated to determine context- and social-experience-dependent micturition patterns.


Assuntos
Hipotálamo/fisiologia , Isolamento Social/psicologia , Micção/fisiologia , Animais , Encéfalo/fisiologia , Comunicação , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ponte/fisiologia , Reflexo/fisiologia , Medula Espinal/fisiologia , Bexiga Urinária/fisiologia , Micção/genética
9.
BMC Biol ; 21(1): 135, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280580

RESUMO

BACKGROUND: Based on their anatomical location, rostral projections of nuclei are classified as ascending circuits, while caudal projections are classified as descending circuits. Upper brainstem neurons participate in complex information processing and specific sub-populations preferentially project to participating ascending or descending circuits. Cholinergic neurons in the upper brainstem have extensive collateralizations in both ascending and descending circuits; however, their single-cell projection patterns remain unclear because of the lack of comprehensive characterization of individual neurons. RESULTS: By combining fluorescent micro-optical sectional tomography with sparse labeling, we acquired a high-resolution whole-brain dataset of pontine-tegmental cholinergic neurons (PTCNs) and reconstructed their detailed morphology using semi-automatic reconstruction methods. As the main source of acetylcholine in some subcortical areas, individual PTCNs had abundant axons with lengths up to 60 cm and 5000 terminals and innervated multiple brain regions from the spinal cord to the cortex in both hemispheres. Based on various collaterals in the ascending and descending circuits, individual PTCNs were grouped into four subtypes. The morphology of cholinergic neurons in the pedunculopontine nucleus was more divergent, whereas the laterodorsal tegmental nucleus neurons contained richer axonal branches and dendrites. In the ascending circuits, individual PTCNs innervated the thalamus in three different patterns and projected to the cortex via two separate pathways. Moreover, PTCNs targeting the ventral tegmental area and substantia nigra had abundant collaterals in the pontine reticular nuclei, and these two circuits contributed oppositely to locomotion. CONCLUSIONS: Our results suggest that individual PTCNs have abundant axons, and most project to various collaterals in the ascending and descending circuits simultaneously. They target regions with multiple patterns, such as the thalamus and cortex. These results provide a detailed organizational characterization of cholinergic neurons to understand the connexional logic of the upper brainstem.


Assuntos
Axônios , Tronco Encefálico , Tronco Encefálico/fisiologia , Axônios/fisiologia , Ponte/anatomia & histologia , Ponte/fisiologia , Encéfalo , Neurônios Colinérgicos
10.
J Neurophysiol ; 130(2): 278-290, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377198

RESUMO

The anterior lateral motor cortex (ALM) is critical to subsequent correct movements and plays a vital role in predicting specific future movements. Different descending pathways of the ALM are preferentially involved in different roles in movements. However, the circuit function mechanisms of these different pathways may be concealed in the anatomy circuit. Clarifying the anatomy inputs of these pathways should provide some helpful information for elucidating these function mechanisms. Here, we used a retrograde trans-synaptic rabies virus to systematically generate, analyze, and compare whole brain maps of inputs to the thalamus (TH)-, medulla oblongata (Med)-, superior colliculus (SC)-, and pontine nucleus (Pons)-projecting ALM neurons in C57BL/6J mice. Fifty-nine separate regions from nine major brain areas projecting to the descending pathways of the ALM were identified. Brain-wide quantitative analyses revealed identical whole brain input patterns between these descending pathways. Most inputs to the pathways originated from the ipsilateral side of the brain, with most innervations provided by the cortex and TH. The contralateral side of the brain also sent sparse projections, but these were rare, emanating only from the cortex and cerebellum. Nevertheless, the inputs received by TH-, Med-, SC-, and Pons-projecting ALM neurons had different weights, potentially laying an anatomical foundation for understanding the diverse functions of well-defined descending pathways of the ALM. Our findings provide anatomical information to help elucidate the precise connections and diverse functions of the ALM.NEW & NOTEWORTHY Distinct descending pathways of anterior lateral motor cortex (ALM) share common inputs. These inputs are with varied weights. Most inputs were from the ipsilateral side of brain. Preferential inputs were provided by cortex and thalamus (TH).


Assuntos
Córtex Motor , Camundongos , Animais , Córtex Motor/fisiologia , Camundongos Endogâmicos C57BL , Ponte/fisiologia , Tálamo/fisiologia , Neurônios Motores/fisiologia , Vias Neurais/fisiologia
11.
J Neurosci ; 41(4): 674-688, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33268542

RESUMO

The medial nucleus of trapezoid body (MNTB) is a major source of inhibition in auditory brainstem circuitry. The MNTB projects well-timed inhibitory output to principal sound-localization nuclei in the superior olive (SOC) as well as other computationally important centers. Acoustic information is conveyed to MNTB neurons through a single calyx of Held excitatory synapse arising from the cochlear nucleus. The encoding efficacy of this large synapse depends on its activity rate, which is primarily determined by sound intensity and stimulus frequency. However, MNTB activity rate is additionally influenced by inhibition and possibly neuromodulatory inputs, albeit their functional role is unclear. Happe and Morley (2004) discovered prominent expression of α7 nAChRs in rat SOC, suggesting possible engagement of ACh-mediated modulation of neural activity in the MNTB. However, the existence and nature of this putative modulation have never been physiologically demonstrated. We probed nicotinic cholinergic influences on acoustic responses of MNTB neurons from adult gerbils (Meriones unguiculatus) of either sex. We recorded tone-evoked MNTB single-neuron activity in vivo using extracellular single-unit recording. Piggyback multibarrel electrodes enabled pharmacological manipulation of nAChRs by reversibly applying antagonists to two receptor types, α7 and α4ß2. We observed that tone-evoked responses are dependent on ACh modulation by both nAChR subtypes. Spontaneous activity was not affected by antagonist application. Functionally, we demonstrate that ACh contributes to sustaining high discharge rates and enhances signal encoding efficacy. Additionally, we report anatomic evidence revealing novel cholinergic projections to MNTB arising from pontine and superior olivary nuclei.SIGNIFICANCE STATEMENT This study is the first to physiologically probe how acetylcholine, a pervasive neuromodulator in the brain, influences the encoding of acoustic information by the medial nucleus of trapezoid body, the most prominent source of inhibition in brainstem sound-localization circuitry. We demonstrate that this cholinergic input enhances neural discrimination of tones from noise stimuli, which may contribute to processing important acoustic signals, such as speech. Additionally, we describe novel anatomic projections providing cholinergic input to the MNTB. Together, these findings shed new light on the contribution of neuromodulation to fundamental computational processes in auditory brainstem circuitry and to a more holistic understanding of modulatory influences in sensory processing.


Assuntos
Estimulação Acústica , Sistema Nervoso Parassimpático/fisiologia , Corpo Trapezoide/fisiologia , Acetilcolina/fisiologia , Animais , Vias Auditivas/fisiologia , Feminino , Gerbillinae , Masculino , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Ponte/fisiologia , Receptores Nicotínicos/fisiologia , Som , Receptor Nicotínico de Acetilcolina alfa7/fisiologia
12.
J Neurophysiol ; 128(5): 1117-1132, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197016

RESUMO

Opioids suppress breathing through actions in the brainstem, including respiratory-related areas of the dorsolateral pons, which contain multiple phenotypes of respiratory patterned neurons. The discharge identity of dorsolateral pontine neurons that are impacted by opioids is unknown. To address this, single neuronal units were recorded in the dorsolateral pons of arterially perfused in situ rat preparations that were perfused with an apneic concentration of the opioid agonist fentanyl, followed by the opioid antagonist naloxone (NLX). Dorsolateral pontine neurons were categorized based on respiratory-associated discharge patterns, which were differentially affected by fentanyl. Inspiratory neurons and a subset of inspiratory/expiratory phase-spanning neurons were either silenced or had reduced firing frequency during fentanyl-induced apnea, which was reversed upon administration of naloxone. In contrast, the majority of expiratory neurons continued to fire tonically during fentanyl-induced apnea, albeit with reduced firing frequency. In addition, pontine late-inspiratory and postinspiratory neuronal activity were absent from apneustic-like breaths during the transition to fentanyl-induced apnea and the naloxone-mediated transition to recovery. Thus, opioid-induced deficits in respiratory patterning may occur due to reduced activity of pontine inspiratory neurons, whereas apnea occurs with loss of all phasic pontine activity and sustained tonic expiratory neuron activity.NEW & NOTEWORTHY Opioids can suppress breathing via actions throughout the brainstem, including the dorsolateral pons. The respiratory phenotype of dorsolateral pontine neurons inhibited by opioids is unknown. Here, we describe the effect of the highly potent opioid fentanyl on the firing activity of these dorsolateral pontine neurons. Inspiratory neurons were largely silenced by fentanyl, whereas expiratory neurons were not. We provide a framework whereby this differential sensitivity to fentanyl can contribute to respiratory pattern deficits and apnea.


Assuntos
Analgésicos Opioides , Apneia , Ratos , Animais , Analgésicos Opioides/farmacologia , Fentanila/farmacologia , Ponte/fisiologia , Neurônios/fisiologia , Respiração , Naloxona/farmacologia
13.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R512-R531, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993562

RESUMO

In mammals, the pontine noradrenergic system influences nearly every aspect of central nervous system function. A subpopulation of pontine noradrenergic neurons, called A5, are thought to be important in the cardiovascular response to physical stressors, yet their function is poorly defined. We hypothesized that activation of A5 neurons drives a sympathetically mediated increase in blood pressure (BP). To test this hypothesis, we conducted a comprehensive assessment of the cardiovascular effects of chemogenetic stimulation of A5 neurons in male and female adult rats using intersectional genetic and anatomical targeting approaches. Chemogenetic stimulation of A5 neurons in freely behaving rats elevated BP by 15 mmHg and increased cardiac baroreflex sensitivity with a negligible effect on resting HR. Importantly, A5 stimulation had no detectable effect on locomotor activity, metabolic rate, or respiration. Under anesthesia, stimulation of A5 neurons produced a marked elevation in visceral sympathetic nerve activity (SNA) and no change in skeletal muscle SNA, showing that A5 neurons preferentially stimulate visceral SNA. Interestingly, projection mapping indicates that A5 neurons target sympathetic preganglionic neurons throughout the spinal cord and parasympathetic preganglionic neurons throughout in the brainstem, as well as the nucleus of the solitary tract, and ventrolateral medulla. Moreover, in situ hybridization and immunohistochemistry indicate that a subpopulation of A5 neurons coreleases glutamate and monoamines. Collectively, this study suggests A5 neurons are a central modulator of autonomic function with a potentially important role in sympathetically driven redistribution of blood flow from the visceral circulation to critical organs and skeletal muscle.


Assuntos
Neurônios Adrenérgicos , Neurônios Adrenérgicos/fisiologia , Animais , Pressão Sanguínea/fisiologia , Feminino , Glutamatos/farmacologia , Masculino , Mamíferos , Ponte/fisiologia , Ratos , Sistema Nervoso Simpático/fisiologia
14.
PLoS Biol ; 17(10): e3000480, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613896

RESUMO

Many species execute ballistic escape reactions to avoid imminent danger. Despite fast reaction times, responses are often highly regulated, reflecting a trade-off between costly motor actions and perceived threat level. However, how sensory cues are integrated within premotor escape circuits remains poorly understood. Here, we show that in zebrafish, less precipitous threats elicit a delayed escape, characterized by flexible trajectories, which are driven by a cluster of 38 prepontine neurons that are completely separate from the fast escape pathway. Whereas neurons that initiate rapid escapes receive direct auditory input and drive motor neurons, input and output pathways for delayed escapes are indirect, facilitating integration of cross-modal sensory information. These results show that rapid decision-making in the escape system is enabled by parallel pathways for ballistic responses and flexible delayed actions and defines a neuronal substrate for hierarchical choice in the vertebrate nervous system.


Assuntos
Reação de Fuga/fisiologia , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Ponte/fisiologia , Peixe-Zebra/fisiologia , Animais , Tomada de Decisões/fisiologia , Larva/fisiologia , Córtex Motor/citologia , Neurônios Motores/citologia , Ponte/citologia , Tempo de Reação/fisiologia
15.
J Neurosci ; 40(31): 5970-5989, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32576622

RESUMO

The cholinergic neurons in the pontomesencephalic tegmentum have been shown to discharge in association with and promote cortical activation during active or attentive waking and paradoxical or rapid eye movement sleep. However, GABA neurons lie intermingled with the cholinergic neurons and may contribute to or oppose this activity and role. Here we investigated in vitro and in vivo the properties, activities, and role of GABA neurons within the laterodorsal tegmental and sublaterodorsal tegmental nuclei (LDT/SubLDT) using male and female transgenic mice expressing channelrhodopsin-(ChR2)-EYFP in vesicular GABA transporter (VGAT)-expressing neurons. Presumed GABA (pGABA) neurons were identified by response to photostimulation and verified by immunohistochemical staining following juxtacellular labeling in vivo pGABA neurons were found to be fast-firing neurons with the capacity to burst when depolarized from a hyperpolarized membrane potential. When stimulated in vivo in urethane-anesthetized or unanesthetized mice, the pGABA neurons fired repetitively at relatively fast rates (∼40 Hz) during a continuous light pulse or phasically in bursts (>100 Hz) when driven by rhythmic light pulses at theta (4 or 8 Hz) frequencies. pNon-GABA, which likely included cholinergic, neurons were inhibited during each light pulse to discharge rhythmically in antiphase to the pGABA neurons. The reciprocal rhythmic bursting by the pGABA and pNon-GABA neurons drove rhythmic theta activity in the EEG. Such phasic bursting by GABA neurons also occurred in WT mice in association with theta activity during attentive waking and paradoxical sleep.SIGNIFICANCE STATEMENT Neurons in the pontomesencephalic tegmentum, particularly cholinergic neurons, play an important role in cortical activation, which occurs during active or attentive waking and paradoxical or rapid eye movement sleep. Yet the cholinergic neurons lie intermingled with GABA neurons, which could play a similar or opposing role. Optogenetic stimulation and recording of these GABA neurons in mice revealed that they can discharge in rhythmic bursts at theta frequencies and drive theta activity in limbic cortex. Such phasic burst firing also occurs during natural attentive waking and paradoxical sleep in association with theta activity and could serve to enhance sensory-motor processing and memory consolidation during these states.


Assuntos
Córtex Cerebral/fisiologia , Mesencéfalo/fisiologia , Ponte/fisiologia , Sono/fisiologia , Vigília/fisiologia , Ácido gama-Aminobutírico/fisiologia , Anestesia , Animais , Eletroencefalografia , Fenômenos Eletrofisiológicos , Feminino , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Estimulação Luminosa , Ponte/citologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/fisiologia
16.
Pediatr Blood Cancer ; 68(2): e28817, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33251768

RESUMO

PURPOSE: Children with brain tumors experience cognitive late effects, often related to cranial radiation. We sought to determine differential effects of surgery and chemotherapy on brain structure and neuropsychological outcomes in children who did not receive cranial radiation therapy (CRT). METHODS: Twenty-eight children with a history of posterior fossa tumor (17 treated with surgery, 11 treated with surgery and chemotherapy) underwent neuroimaging and neuropsychological assessment a mean of 4.5 years (surgery group) to 9 years (surgery + chemotherapy group) posttreatment, along with 18 healthy sibling controls. Psychometric measures assessed IQ, language, executive functions, processing speed, memory, and social-emotional functioning. Group differences and correlations between diffusion tensor imaging findings and psychometric scores were examined. RESULTS: The z-score mapping demonstrated fractional anisotropy (FA) values were ≥2 standard deviations lower in white matter tracts, prefrontal cortex gray matter, hippocampus, thalamus, basal ganglia, and pons between patient groups, indicating microstructural damage associated with chemotherapy. Patients scored lower than controls on visuoconstructional reasoning and memory (P ≤ .02). Lower FA in the uncinate fasciculus (R = -0.82 to -0.91) and higher FA in the thalamus (R = 0.73-0.91) associated with higher IQ scores, and higher FA in the thalamus associated with higher scores on spatial working memory (R = 0.82). CONCLUSIONS: Posterior fossa brain tumor treatment with surgery and chemotherapy affects brain microstructure and neuropsychological functioning years into survivorship, with spatial processes the most vulnerable. Biomarkers indicating cellular changes in the thalamus, hippocampus, pons, prefrontal cortex, and white matter tracts associate with lower psychometric scores.


Assuntos
Antineoplásicos/uso terapêutico , Lesões Encefálicas/patologia , Neoplasias Encefálicas/terapia , Neoplasias Infratentoriais/terapia , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/psicologia , Adolescente , Anisotropia , Neoplasias Encefálicas/psicologia , Criança , Estudos Transversais , Feminino , Hipocampo/fisiologia , Humanos , Neoplasias Infratentoriais/psicologia , Masculino , Testes Neuropsicológicos , Ponte/fisiologia , Córtex Pré-Frontal/fisiologia , Psicometria , Tálamo/fisiologia , Substância Branca/fisiologia
17.
Nature ; 526(7573): 435-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26444238

RESUMO

Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation, and the neural circuits in the pons have since been studied extensively. The medulla also contains neurons that are active during REM sleep, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions.


Assuntos
Neurônios GABAérgicos/fisiologia , Bulbo/citologia , Bulbo/fisiologia , Sono REM/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Feminino , Asseio Animal/fisiologia , Masculino , Camundongos , Vias Neurais/fisiologia , Optogenética , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Ponte/citologia , Ponte/fisiologia , Medula Espinal/citologia , Fatores de Tempo , Vigília/fisiologia , Ácido gama-Aminobutírico/metabolismo
18.
Cereb Cortex ; 30(1): 113-134, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31220212

RESUMO

Persistent activity of cue-representing neurons in the prefrontal cortex (PFC) is regarded as a neural basis for working memory. The contribution of short-term synaptic plasticity (STP) at different types of synapses comprising the cortical network to persistent activity, however, remains unclear. Characterizing STP at synapses of the rat PFC layer 5 network, we found that PFC synapses exhibit distinct STP patterns according to presynaptic and postsynaptic identities. Excitatory postsynaptic currents (EPSCs) from corticopontine (Cpn) neurons were well sustained throughout continued activity, with stronger depression at synapses onto fast-spiking interneurons than those onto pyramidal cells. Inhibitory postsynaptic currents (IPSCs) were sustained at a weaker level compared with EPSC from Cpn synapses. Computational modeling of a balanced network incorporating empirically observed STP revealed that little depression at recurrent excitatory synapses, combined with stronger depression at other synapses, could provide the PFC with a unique synaptic mechanism for the generation and maintenance of persistent activity.


Assuntos
Plasticidade Neuronal , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia , Potenciais Sinápticos , Animais , Feminino , Masculino , Modelos Neurológicos , Vias Neurais/fisiologia , Ponte/fisiologia , Ratos Sprague-Dawley , Tálamo/fisiologia
19.
Pflugers Arch ; 472(8): 1051-1063, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32617654

RESUMO

The Kölliker-Fuse (KF) nucleus is a part of the parabrachial complex, located in the dorsolateral pons. It is involved in the chemoreflex-evoked cardiovascular and respiratory changes, but the role of GABA and glutamate in cardiovascular chemoreflex has not been shown yet. This study was performed to determine the role of GABA, glutamate, and their interaction in the KF, in cardiovascular chemoreflex in anesthetized rat. The antagonists were microinjected into the KF, and arterial pressure, heart rate, and single-unit responses were recorded simultaneously. The chemoreflex was evoked by i.v. injection of KCN, consisted of a short pressor followed by long bradycardia responses. Both responses were significantly attenuated by injection of a synaptic blocker (CoCl2) into the KF, confirming involvement of the KF in generating the reflex. Microinjection of AP5, an NMDA receptor antagonist, into the KF significantly attenuated the pressor and bradycardia responses, while blocking the AMPA receptors by CNQX had no significant effect. Blockade of GABAA receptors by bicuculline methiodide (BMI) potentiated both responses. Co-injection of BMI and CNQX potentiated the responses too. Co-injection of BMI and AP5 had no significant effect on the pressor response but significantly attenuated the bradycardia response. In conclusion, the KF plays a role in generating cardiovascular chemoreflex via its glutamate NMDA but not AMPA receptors. GABA inhibits both components of this reflex through GABAA receptors. There is an interaction between GABAA and NMDA receptors in regulating the bradycardia response of the reflex. Single-unit results were also presented which were correlated with and supported the homodynamic findings.


Assuntos
Sistema Cardiovascular/metabolismo , Células Quimiorreceptoras/metabolismo , Ácido Glutâmico/metabolismo , Núcleo de Kölliker-Fuse/metabolismo , Reflexo/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Bicuculina/análogos & derivados , Bicuculina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Células Quimiorreceptoras/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Núcleo de Kölliker-Fuse/efeitos dos fármacos , Masculino , Ponte/efeitos dos fármacos , Ponte/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo/efeitos dos fármacos , Respiração/efeitos dos fármacos
20.
Neuroimage ; 213: 116692, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32135263

RESUMO

The relevance of subcortical structures for affective processing is not fully understood. Inspired by the gerbil retino-raphe pathway that has been shown to regulate affective behavior and previous human work showing that the pontine region is important for processing emotion, we asked whether well-established tracts in humans traveling between the eye and the brain stem contribute to functions beyond their conventionally understood roles. Here we report neuroimaging findings showing that optic chiasm-brain stem diffusivity predict responses reflecting perceived arousal and valence. Analyses of subsequent task-evoked connectivity further revealed that visual affective processing implicates the brain stem, particularly the pontine region at an early stage of the cascade, projecting to cortico-limbic regions in a feedforward manner. The optimal model implies that all intrinsic connections between the regions of interest are unidirectional and outwards from the pontine region. These findings suggest that affective processing implicates regions outside the cortico-limbic network. The involvement of a phylogenetically older locus in the pons that has consequences in oculomotor control may imply adaptive consequences of affect detection.


Assuntos
Emoções/fisiologia , Vias Neurais/fisiologia , Ponte/fisiologia , Percepção Visual/fisiologia , Adulto , Nível de Alerta/fisiologia , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa