Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Annu Rev Biochem ; 82: 387-414, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23495935

RESUMO

The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Ligases/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Humanos
2.
Nature ; 580(7804): 536-541, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32322060

RESUMO

Separation of eukaryotic sister chromatids during the cell cycle is timed by the spindle assembly checkpoint (SAC) and ultimately triggered when separase cleaves cohesion-mediating cohesin1-3. Silencing of the SAC during metaphase activates the ubiquitin ligase APC/C (anaphase-promoting complex, also known as the cyclosome) and results in the proteasomal destruction of the separase inhibitor securin1. In the absence of securin, mammalian chromosomes still segregate on schedule, but it is unclear how separase is regulated under these conditions4,5. Here we show that human shugoshin 2 (SGO2), an essential protector of meiotic cohesin with unknown functions in the soma6,7, is turned into a separase inhibitor upon association with SAC-activated MAD2. SGO2-MAD2 can functionally replace securin and sequesters most separase in securin-knockout cells. Acute loss of securin and SGO2, but not of either protein individually, resulted in separase deregulation associated with premature cohesin cleavage and cytotoxicity. Similar to securin8,9, SGO2 is a competitive inhibitor that uses a pseudo-substrate sequence to block the active site of separase. APC/C-dependent ubiquitylation and action of the AAA-ATPase TRIP13 in conjunction with the MAD2-specific adaptor p31comet liberate separase from SGO2-MAD2 in vitro. The latter mechanism facilitates a considerable degree of sister chromatid separation in securin-knockout cells that lack APC/C activity. Thus, our results identify an unexpected function of SGO2 in mitotically dividing cells and a mechanism of separase regulation that is independent of securin but still supervised by the SAC.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Mad2/metabolismo , Securina , Separase/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Linhagem Celular , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Ligação Proteica , Securina/metabolismo , Separase/metabolismo , Coesinas
3.
Mol Cell ; 69(2): 253-264.e5, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351845

RESUMO

At the restriction point (R), mammalian cells irreversibly commit to divide. R has been viewed as a point in G1 that is passed when growth factor signaling initiates a positive feedback loop of Cdk activity. However, recent studies have cast doubt on this model by claiming R occurs prior to positive feedback activation in G1 or even before completion of the previous cell cycle. Here we reconcile these results and show that whereas many commonly used cell lines do not exhibit a G1 R, primary fibroblasts have a G1 R that is defined by a precise Cdk activity threshold and the activation of cell-cycle-dependent transcription. A simple threshold model, based solely on Cdk activity, predicted with more than 95% accuracy whether individual cells had passed R. That a single measurement accurately predicted cell fate shows that the state of complex regulatory networks can be assessed using a few critical protein activities.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Quinase 2 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Linhagem Celular , Quinase 2 Dependente de Ciclina/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Fibroblastos/fisiologia , Fase G1/fisiologia , Humanos , Fosforilação , Cultura Primária de Células , Transdução de Sinais
4.
Mol Cell ; 69(5): 879-892.e5, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29478807

RESUMO

The access-repair-restore model for the role of chromatin in DNA repair infers that chromatin is a mere obstacle to DNA repair. However, here we show that blocking chromatin assembly, via knockdown of the histone chaperones ASF1 or CAF-1 or a mutation that prevents ASF1A binding to histones, hinders Rad51 loading onto ssDNA during homologous recombination. This is a consequence of reduced recruitment of the Rad51 loader MMS22L-TONSL to ssDNA, resulting in persistent RPA foci, extensive DNA end resection, persistent activation of the ATR-Chk1 pathway, and cell cycle arrest. In agreement, histones occupy ssDNA during DNA repair in yeast. We also uncovered DNA-PKcs-dependent DNA damage-induced ASF1A phosphorylation, which enhances chromatin assembly, promoting MMS22L-TONSL recruitment and, hence, Rad51 loading. We propose that transient assembly of newly synthesized histones onto ssDNA serves to recruit MMS22L-TONSL to efficiently form the Rad51 nucleofilament for strand invasion, suggesting an active role of chromatin assembly in homologous recombination.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Chaperonas Moleculares/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Dano ao DNA/fisiologia , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Células K562 , Chaperonas Moleculares/genética , NF-kappa B/genética , Proteínas Nucleares/genética , Rad51 Recombinase/genética
5.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34164654

RESUMO

Understanding the mechanisms of embryonic cell cycles is a central goal of developmental biology, as the regulation of the cell cycle must be closely coordinated with other events during early embryogenesis. Quantitative imaging approaches have recently begun to reveal how the cell cycle oscillator is controlled in space and time, and how it is integrated with mechanical signals to drive morphogenesis. Here, we discuss how the Drosophila embryo has served as an excellent model for addressing the molecular and physical mechanisms of embryonic cell cycles, with comparisons to other model systems to highlight conserved and species-specific mechanisms. We describe how the rapid cleavage divisions characteristic of most metazoan embryos require chemical waves and cytoplasmic flows to coordinate morphogenesis across the large expanse of the embryo. We also outline how, in the late cleavage divisions, the cell cycle is inter-regulated with the activation of gene expression to ensure a reliable maternal-to-zygotic transition. Finally, we discuss how precise transcriptional regulation of the timing of mitosis ensures that tissue morphogenesis and cell proliferation are tightly controlled during gastrulation.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Drosophila/embriologia , Desenvolvimento Embrionário/fisiologia , Animais , Proteína Quinase CDC2 , Ciclo Celular/genética , Proteínas de Drosophila , Embrião de Mamíferos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mitose , Morfogênese , Xenopus/embriologia , Zigoto/metabolismo
6.
PLoS Genet ; 17(7): e1009650, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288923

RESUMO

Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Divisão Celular/genética , Proliferação de Células/genética , Larva/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/genética , Ativação Transcricional/genética , Zigoto/metabolismo
7.
Plant J ; 109(3): 490-507, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741364

RESUMO

Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.


Assuntos
Absorção Fisiológica/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Dano ao DNA/genética , Estresse Fisiológico/genética , Absorção Fisiológica/fisiologia , Dano ao DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estresse Fisiológico/fisiologia , Fatores de Transcrição
8.
Anal Chem ; 95(2): 1643-1651, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36580602

RESUMO

Cellular senescence is a stable cell cycle arrest in response to stress or other damage stimuli to maintain tissue homeostasis. However, the accumulation of senescent cells can lead to the progression of various senescence-related disorders. In this paper, we describe the development of a ß-galactosidase-activatable near-infrared (NIR) senoprobe, NBGal, for the detection of senescent cells based on the use of the FDA-approved Nile blue (NB) fluorophore. NBGal was validated in chemotherapeutic-induced senescence cancer models in vitro using SK-Mel 103 and 4T1 cell lines. In vivo monitoring of cellular senescence was evaluated in orthotopic triple-negative breast cancer-bearing mice treated with palbociclib to induce senescence. In all cases, NBGal exhibited a selective tracking of senescent cells mainly ascribed to the overexpressed ß-galactosidase enzyme responsible for hydrolyzing the NBGal probe generating the highly emissive NB fluorophore. In this way, NBGal has proven to be a qualitative, rapid, and minimally invasive probe that allows the direct detection of senescent cells in vivo.


Assuntos
Senescência Celular , Camundongos , Animais , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular , beta-Galactosidase/metabolismo
9.
Biochem J ; 479(2): 185-206, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35098993

RESUMO

In the last 20 years, a growing army of systems biologists has employed quantitative experimental methods and theoretical tools of data analysis and mathematical modeling to unravel the molecular details of biological control systems with novel studies of biochemical clocks, cellular decision-making, and signaling networks in time and space. Few people know that one of the roots of this new paradigm in cell biology can be traced to a serendipitous discovery by an obscure Russian biochemist, Boris Belousov, who was studying the oxidation of citric acid. The story is told here from an historical perspective, tracing its meandering path through glycolytic oscillations, cAMP signaling, and frog egg development. The connections among these diverse themes are drawn out by simple mathematical models (nonlinear differential equations) that share common structures and properties.


Assuntos
Relógios Biológicos/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , AMP Cíclico/metabolismo , Transdução de Sinais/fisiologia , Biologia de Sistemas/métodos , Amoeba/metabolismo , Animais , Anuros/embriologia , Ácido Cítrico , Glicólise/fisiologia , Modelos Biológicos , Óvulo/crescimento & desenvolvimento , Oxirredução , Leveduras/metabolismo
10.
Genes Dev ; 29(2): 184-96, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25593308

RESUMO

Vacuolar protein-sorting 34 (Vps34), the catalytic subunit in the class III PtdIns3 (phosphatidylinositol 3) kinase complexes, mediates the production of PtdIns3P, a key intracellular lipid involved in regulating autophagy and receptor degradation. However, the signal transduction pathways by which extracellular signals regulate Vps34 complexes and the downstream cellular mechanisms are not well understood. Here we show that DNA damage-activated mitotic arrest and CDK activation lead to the phosphorylation of Vps34, which provides a signal to promote its ubiquitination and proteasomal degradation mediated by FBXL20 (an F-box protein) and the associated Skp1 (S-phase kinase-associated protein-1)-Cullin1 complex, leading to inhibition of autophagy and receptor endocytosis. Furthermore, we show that the expression of FBXL20 is regulated by p53-dependent transcription. Our study provides a molecular pathway by which DNA damage regulates Vps34 complexes and its downstream mechanisms, including autophagy and receptor endocytosis, through SCF (Skp1-Cul1-F-box)-mediated ubiquitination and degradation. Since the expression of FBXL20 is regulated by p53-dependent transcription, the control of Vps34 ubiquitination and proteasomal degradation by FBXL20 and the associated SCF complex expression provides a novel checkpoint for p53 to regulate autophagy and receptor degradation in DNA damage response.


Assuntos
Autofagia/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas F-Box/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Classe III de Fosfatidilinositol 3-Quinases/genética , Dano ao DNA/fisiologia , Endocitose/fisiologia , Células HeLa , Humanos , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Ubiquitinação
11.
Prostate ; 82(2): 182-192, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34672379

RESUMO

BACKGROUND: Despite multiple treatment advances for castration-resistant prostate cancer (CRPC), there are currently no curative therapies and patients ultimately to succumb to the disease. Docetaxel (DTX) is the standard first-line chemotherapy for patients with metastatic CRPC; however, drug resistance is inevitable and often develops rapidly, leading to disease progression in nearly all patients. In contrast, when DTX is deployed with androgen deprivation therapy in castration-sensitive disease, more durable responses and improved outcomes are observed, suggesting that aberrant androgen receptor (AR) signaling accelerates DTX resistance in CRPC. In this study, we demonstrate that AR dysregulates the mitotic checkpoint, a critical pathway involved in the anticancer action of DTX. METHODS: Androgen-dependent and independent cell lines were used to evaluate the role of AR in DTX resistance. Impact of drug treatment on cell viability, survival, and cell-cycle distribution were determined by plate-based viability assay, clonogenic assay, and cell-cycle analysis by flow cytometry, respectively. Mitotic checkpoint kinase signal transduction and apoptosis activation was evaluated by Western blotting. Pathway gene expression analysis was evaluated by RT-PCR. A Bliss independence model was used to calculate synergy scores for drug combination studies. RESULTS: Activation of AR in hormone-sensitive cells induces a rescue phenotype by increasing cell viability and survival and attenuating G2/M arrest in response to DTX. Analysis of mitotic checkpoint signaling shows that AR negatively regulates spindle checkpoint signaling, resulting in premature mitotic progression and evasion of apoptosis. This phenotype is characteristic of mitotic slippage and is also observed in CRPC cell lines where we demonstrate involvement of AR splice variant AR-v7 in dysregulation of checkpoint signaling. Our findings suggest that DTX resistance is mediated through mechanisms that drive premature mitotic exit. Using pharmacologic inhibitors of anaphase-promoting complex/cyclosome and polo-like kinase 1, we show that blocking mitotic exit induces mitotic arrest, apoptosis, and synergistically inhibits cell survival in combination with DTX. CONCLUSION: Our results suggest that targeting the mechanisms of dysregulated mitotic checkpoint signaling in AR-reactivated tumors has significant clinical potential to extend treatment benefit with DTX and improve outcomes in patients with lethal prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Pontos de Checagem do Ciclo Celular , Docetaxel/farmacologia , Neoplasias de Próstata Resistentes à Castração , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo
12.
EMBO J ; 37(9)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29581097

RESUMO

Polymerase-blocking DNA lesions are thought to elicit a checkpoint response via accumulation of single-stranded DNA at stalled replication forks. However, as an alternative to persistent fork stalling, re-priming downstream of lesions can give rise to daughter-strand gaps behind replication forks. We show here that the processing of such structures by an exonuclease, Exo1, is required for timely checkpoint activation, which in turn prevents further gap erosion in S phase. This Rad9-dependent mechanism of damage signaling is distinct from the Mrc1-dependent, fork-associated response to replication stress induced by conditions such as nucleotide depletion or replisome-inherent problems, but reminiscent of replication-independent checkpoint activation by single-stranded DNA Our results indicate that while replisome stalling triggers a checkpoint response directly at the stalled replication fork, the response to replication stress elicited by polymerase-blocking lesions mainly emanates from Exo1-processed, postreplicative daughter-strand gaps, thus offering a mechanistic explanation for the dichotomy between replisome- versus template-induced checkpoint signaling.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Fase S/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
EMBO J ; 37(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29363506

RESUMO

The atypical E2Fs, E2F7 and E2F8, act as potent transcriptional repressors of DNA replication genes providing them with the ability to induce a permanent S-phase arrest and suppress tumorigenesis. Surprisingly in human cancer, transcript levels of atypical E2Fs are frequently elevated in proliferating cancer cells, suggesting that the tumor suppressor functions of atypical E2Fs might be inhibited through unknown post-translational mechanisms. Here, we show that atypical E2Fs can be directly phosphorylated by checkpoint kinase 1 (Chk1) to prevent a permanent cell cycle arrest. We found that 14-3-3 protein isoforms interact with both E2Fs in a Chk1-dependent manner. Strikingly, Chk1 phosphorylation and 14-3-3-binding did not relocate or degrade atypical E2Fs, but instead, 14-3-3 is recruited to E2F7/8 target gene promoters to possibly interfere with transcription. We observed that high levels of 14-3-3 strongly correlate with upregulated transcription of atypical E2F target genes in human cancer. Thus, we reveal that Chk1 and 14-3-3 proteins cooperate to inactivate the transcriptional repressor functions of atypical E2Fs. This mechanism might be of particular importance to cancer cells, since they are exposed frequently to DNA-damaging therapeutic reagents.


Assuntos
Proteínas 14-3-3/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Quinase 1 do Ponto de Checagem/metabolismo , Fator de Transcrição E2F7/antagonistas & inibidores , Neoplasias/patologia , Proteínas Repressoras/antagonistas & inibidores , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Replicação do DNA/genética , Fator de Transcrição E2F7/metabolismo , Células HEK293 , Células HeLa , Humanos , Fosforilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Biossíntese de Proteínas/genética , Proteínas Repressoras/metabolismo
14.
Am J Pathol ; 191(1): 157-167, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129760

RESUMO

Colorectal cancer (CRC) is a leading nonfamilial cause of cancer mortality among men and women. Although various genetic and epigenetic mechanisms have been identified, the full molecular mechanisms deriving CRC tumorigenesis are not fully understood. This study demonstrates that cell adhesion molecule transmembrane and immunoglobulin domain containing 1 (TMIGD1) are highly expressed in mouse and human normal intestinal epithelial cells. TMIGD1 knockout mice were developed, and the loss of TMIGD1 in mice was shown to result in the development of adenomas in small intestine and colon. In addition, the loss of TMIGD1 significantly impaired intestinal epithelium brush border membrane, junctional polarity, and maturation. Mechanistically, TMIGD1 inhibits tumor cell proliferation and cell migration, arrests cell cycle at the G2/M phase, and induces expression of p21CIP1 (cyclin-dependent kinase inhibitor 1), and p27KIP1 (cyclin-dependent kinase inhibitor 1B) expression, key cell cycle inhibitor proteins involved in the regulation of the cell cycle. Moreover, TMIGD1 is shown to be progressively down-regulated in sporadic human CRC, and its downregulation correlates with poor overall survival. The findings herein identify TMIGD1 as a novel tumor suppressor gene and provide new insights into the pathogenesis of colorectal cancer and a novel potential therapeutic target.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Neoplasias do Colo/metabolismo , Glicoproteínas de Membrana/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Genes Supressores de Tumor/fisiologia , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
15.
PLoS Comput Biol ; 17(8): e1009008, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379640

RESUMO

Modeling biochemical reactions by means of differential equations often results in systems with a large number of variables and parameters. As this might complicate the interpretation and generalization of the obtained results, it is often desirable to reduce the complexity of the model. One way to accomplish this is by replacing the detailed reaction mechanisms of certain modules in the model by a mathematical expression that qualitatively describes the dynamical behavior of these modules. Such an approach has been widely adopted for ultrasensitive responses, for which underlying reaction mechanisms are often replaced by a single Hill function. Also time delays are usually accounted for by using an explicit delay in delay differential equations. In contrast, however, S-shaped response curves, which by definition have multiple output values for certain input values and are often encountered in bistable systems, are not easily modeled in such an explicit way. Here, we extend the classical Hill function into a mathematical expression that can be used to describe both ultrasensitive and S-shaped responses. We show how three ubiquitous modules (ultrasensitive responses, S-shaped responses and time delays) can be combined in different configurations and explore the dynamics of these systems. As an example, we apply our strategy to set up a model of the cell cycle consisting of multiple bistable switches, which can incorporate events such as DNA damage and coupling to the circadian clock in a phenomenological way.


Assuntos
Ciclo Celular/fisiologia , Modelos Biológicos , Animais , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Biologia Computacional , Simulação por Computador , Dano ao DNA , Humanos , Cinética , Biologia de Sistemas
16.
Cell Mol Life Sci ; 78(3): 817-831, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32920697

RESUMO

The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas HMGA/metabolismo , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Proteínas HMGA/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
17.
Cell Mol Life Sci ; 78(5): 2001-2018, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33179140

RESUMO

Cardiovascular disease (CVD) remains the leading cause of mortality globally, so further investigation is required to identify its underlying mechanisms and potential targets for its prevention. The transcription factor p53 functions as a gatekeeper, regulating a myriad of genes to maintain normal cell functions. It has received a great deal of research attention as a tumor suppressor. In the past three decades, evidence has also shown a regulatory role for p53 in the heart. Basal p53 is essential for embryonic cardiac development; it is also necessary to maintain normal heart architecture and physiological function. In pathological cardiovascular circumstances, p53 expression is elevated in both patient samples and animal models. Elevated p53 plays a regulatory role via anti-angiogenesis, pro-programmed cell death, metabolism regulation, and cell cycle arrest regulation. This largely promotes the development of CVDs, particularly cardiac remodeling in the infarcted heart, hypertrophic cardiomyopathy, dilated cardiomyopathy, and diabetic cardiomyopathy. Roles for p53 have also been found in atherosclerosis and chemotherapy-induced cardiotoxicity. However, it has different roles in cardiomyocytes and non-myocytes, even in the same model. In this review, we describe the different effects of p53 in cardiovascular physiological and pathological conditions, in addition to potential CVD therapies targeting p53.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Cardiomiopatias Diabéticas/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Senescência Celular/genética , Cardiomiopatias Diabéticas/genética , Regulação da Expressão Gênica , Humanos , Miócitos Cardíacos/citologia , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/genética
18.
Genes Dev ; 28(12): 1310-22, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24939934

RESUMO

dsRNA-dependent protein kinase R (PKR) is a ubiquitously expressed enzyme well known for its roles in immune response. Upon binding to viral dsRNA, PKR undergoes autophosphorylation, and the phosphorylated PKR (pPKR) regulates translation and multiple signaling pathways in infected cells. Here, we found that PKR is activated in uninfected cells, specifically during mitosis, by binding to dsRNAs formed by inverted Alu repeats (IRAlus). While PKR and IRAlu-containing RNAs are segregated in the cytosol and nucleus of interphase cells, respectively, they interact during mitosis when nuclear structure is disrupted. Once phosphorylated, PKR suppresses global translation by phosphorylating the α subunit of eukaryotic initiation factor 2 (eIF2α). In addition, pPKR acts as an upstream kinase for c-Jun N-terminal kinase and regulates the levels of multiple mitotic factors such as cyclins A and B and Polo-like kinase 1 and phosphorylation of histone H3. Disruption of PKR activation via RNAi or expression of a transdominant-negative mutant leads to misregulation of the mitotic factors, delay in mitotic progression, and defects in cytokinesis. Our study unveils a novel function of PKR and endogenous dsRNAs as signaling molecules during the mitosis of uninfected cells.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Mitose/fisiologia , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Elementos Alu/fisiologia , Ciclo Celular/fisiologia , Ativação Enzimática/fisiologia , Regulação da Expressão Gênica , Células HeLa , Humanos , Fosforilação , Ligação Proteica
19.
Genes Dev ; 28(5): 451-62, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24532689

RESUMO

The Mre11 complex (Mre11, Rad50, and Nbs1) is a central component of the DNA damage response (DDR), governing both double-strand break repair and DDR signaling. Rad50 contains a highly conserved Zn(2+)-dependent homodimerization interface, the Rad50 hook domain. Mutations that inactivate the hook domain produce a null phenotype. In this study, we analyzed mutants with reduced hook domain function in an effort to stratify hook-dependent Mre11 complex functions. One of these alleles, Rad50(46), conferred reduced Zn(2+) affinity and dimerization efficiency. Homozygous Rad50(46/46) mutations were lethal in mice. However, in the presence of wild-type Rad50, Rad50(46) exerted a dominant gain-of-function phenotype associated with chronic DDR signaling. At the organismal level, Rad50(+/46) exhibited hydrocephalus, liver tumorigenesis, and defects in primitive hematopoietic and gametogenic cells. These outcomes were dependent on ATM, as all phenotypes were mitigated in Rad50(+/46) Atm(+/-) mice. These data reveal that the murine Rad50 hook domain strongly influences Mre11 complex-dependent DDR signaling, tissue homeostasis, and tumorigenesis.


Assuntos
Carcinogênese/genética , Dano ao DNA , Transdução de Sinais/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinogênese/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Germinativas/patologia , Proteína Homóloga a MRE11 , Camundongos , Mutação , Fenótipo , Estrutura Terciária de Proteína
20.
Genes Dev ; 28(2): 140-52, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24402315

RESUMO

The spindle checkpoint is a conserved signaling pathway that ensures genomic integrity by preventing cell division when chromosomes are not correctly attached to the spindle. Checkpoint activation depends on the hierarchical recruitment of checkpoint proteins to generate a catalytic platform at the kinetochore. Although Mad1 kinetochore localization is the key regulatory downstream event in this cascade, its receptor and mechanism of recruitment have not been conclusively identified. Here, we demonstrate that Mad1 kinetochore association in budding yeast is mediated by phosphorylation of a region within the Bub1 checkpoint protein by the conserved protein kinase Mps1. Tethering this region of Bub1 to kinetochores bypasses the checkpoint requirement for Mps1-mediated kinetochore recruitment of upstream checkpoint proteins. The Mad1 interaction with Bub1 and kinetochores can be reconstituted in the presence of Mps1 and Mad2. Together, this work reveals a critical mechanism that determines kinetochore activation of the spindle checkpoint.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Fuso Acromático/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Escherichia coli/genética , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa